ON A HOMOTOPY CLASSIFICATION PROBLEM

By Hiroshi UEHARA

(Communicated by Y. Komatu)

As is snown by S.Eilenberg in
his paper "On the problems of topo-
logy", Annals of Math., 1949, it
may well be said that the homotopy
classification problem is a central
problem in modern topology. It 1s
to enumerate eifectively all the
homotopy classes of mappings ¥+ of
one space X into the other space

by some computable invariants
of + ', X ana Y . This general
problem has not yet been solved,
but in several: special cases vari=-
ous kinds of brilliant results are
known.

Some of them have much to do
with the problem discussed in this
paper and therefore are shown as
follows, Witold Hurewicz reported
in 1936 that all the homotopy clas-
ses of mappings of an n -dimension-
sl connected finite polyhedron
into an arcwise connected topologi-
cal space Y with T;(Y)= O for

Ly are in one~to-one corres-
pondence with all the classes of
equivalent-homomorphisms of ¢ (X)
to M,(Y) . The homotopy classi-
fication problem in case where
is an M ~dimensicnal finite connec-
ted complex and Y an m-sphe-
re, was originally solved by H.Hopf
and reproduced by H.Whitney with
use of cohomology group. S.Eilen-
berg generalized the Hopf-Whitney's
Theorem to get far reaching results
that when X 1s also an M-dimen-
sional geometrical cell complex and

an arcwise connected topologi-
cal space with T (Y)=o0 for
m>iz A , all the homo~
topy classes are in (1 - 1) corres-
pondence with an M -dimensional co-
homology group H.(X, T tY))
with the coefficient group T, (Y),

It 1s reported that the homotopy
classification problem of an mMm-di-
mensional finite connected complex
with a fixed decomposition into an
arcwise connected topological space
with T (Y)= 0 for m>i>t )
has recently been solved completely
by several topologists, P.Clum
(Bull. Amer, Math. Soc., 53 (1947)),
M.M.Postnikov (Doklady Akad. Nauk
SSSR, 66 (1949)), and S.T.Hu (Akad,

Sinica Science Record 2, (1949)).
But detalls are not yet to hand in
Japan. I also intend to impart a
solution to this problem by the aid
of Ellenberg Mac-Lane's cohomology
group of abstract group and of
Steenrod's cohomology theory with
local coefficients. I am deeply
grateful to Mr. Nobuo Shimada for
his helpful criticisms and sugges=-
tions.

l. Reproduction of Hurewicz's
result and its application
to this problem,

Let {1 be the totality of all
the mappings of into and
of an point X, of X 1nto a fixed

polnt %, of Y . &L 1s ysually
designated by the symbol Y~ (x..%o) .
For two maps f, 3 €0 ,1% is
said to be homotoplc to (in

notation; f~ ¢ ) if there exists

a homotopy 4, € \(x (for { 2t

2 0 ) such that H,=f and
f,=9% . L is divided by this

equivalent relation into mutually

dis joint homotopy classes of map-
pings.

A mapping fe{)
homomorphism ﬂf
into (Y, 4,) . 1If f~¢g for
two mappings §, ¢ € 4. , there
exists a homotopy Ry « Let

M€ MY, 4, be represen-
ted by the closed path ‘R, (x,)
(for 12¢t 20 ), then we have

R = 4y ()T for any %

€ -t (X, %,) . Thus it is proved
that if f~g ,  %he and hy are
equivalent (in notation: {fnuﬁw )e

Two mappings § , 9 € Ll  are
said to be ¥ -homotopic (in nota-
tion: £ 3% ) if fIX"~&IX" ,
where X' is the ~¥=-skeleton of

X « Then M-homotopy is the usu-
al homotopy defined above. Since

Y ~homotopic relation is an equi-
valent relation, (1L 1is also divided
into 7 -homotopy classes. Then we
have

induces a
of M, (X, =®,)

Theorem 1. The set of all the
(n- ~homotopy classes is in one
to one correspondence with the set



of all the classes of equivalent
homomorphisms ot qt,(x) into
T, ().

In order to prove this it is
necessary and sufficient to show
that for a given homomorphism ¢
there exists a mapping i:ell such
that ¢ = and that if §o
for two mappings f.9 € n" , we
have f; ~hg , and vice versa.

The former statements are ob-
vious. Betore we prove the inverse
relation, scme preliminary remarks
are given. Let B be the topolo-
gical tree in the complex xt,
which starts %, and involves all
the vertices of X . Since B 1is
acntractible to a point %, in it-
self, for any mapping fell there
exists a mapping 4’ “such that fW

$’ and f(B)Y=4, . It is easily
verified that e = ﬁf' . There-
fore, in order to prove that if

by~ hy , we have f o ,
it 1s sufficient to show that 1f

hy ™ hy , we have f' o4 3’ ,
where §°,9’ are such mappings as
referred to above,

root’ eorem 1, Put Xx1:=Z,

z'=(x‘o)g(x:1§ , and 2™'=(x<1)
Vz/ . Let o be a l-simplex

X % and let “; be a path
joining in B a vertex =, to a
vertex %; of X . Putting ay;
= U0y Uy , the element
['V«,] of T, (X, ) which 1is
represented by the closed path w;
is a generator of W,(X, %) . As
Ry~ Ry we have 4[0qﬂ
="3 hy ([u4))§‘ for any genera-
tor Ev1 or' T, (X, %,) ,
where % € T, (Y. %) » In order
to prove Theorem 1, it is sufficient
to show that there exists a mapping

F:2"—Y  such that \:‘u,o) $7(0)
and Fx,1) = §¢' (v for an
xe X . Now, let ‘T(t)(fot 12t20)
be a representative of 3% and we
define a mapping F: z2’—Y as
fcllows:
Fix, 0 = §/(n , for we X,
Fa1y =9  for xeX,
Fog,t) = (), for 2 eX®and L2t20,
i 1
Then, for any 0y of X ,
Fla(n,x[) is homotopic to
zero, because

tf o, )]-[f(v )] = ﬂf(w.,;)
= 3 h (v 3 = 909wl 3t

= 309(epIgt.
Theretore F can be extended to a
mapping F : 'Z. —Y . For any

2-simplex o of X, F:la(f « 1)
is also 1nessential 1n virtue of

M (YY) =o , 8O0 that F 1is
again extended to a mapping f:
z*—>Y . Through the same argu-
ments we have an extended.mapping
F: 2" —Y , using the assump-
tions that TMY)= - = Wa(Y)=0 ,
It follows that we have f o ¢
Thus Theorem 1 has oeen established.

2. A generalized obstruction
theory with use of Steen-
rod's cohomology group with
local coetficients.

It is the main aim of the rest
part in this paper to find a neces-
sary and sufficient condition that
two maps in an (W —1) ~homotopy class
are M-homotoplc each other. To do
this Eilenberg's obstruction theory
should be slightly retouched to ap-
ply to our case, because the space

Y is not assumed to be Mm-simple.,
In this section § 2 this point is
clarified with use of Steenrod's
cohomology group with local coeffi-
clents and, moreover, an M -cohomo-
logy class CytP) (refer to
2.,1) which plays an eminent rdle in
this problem, is discussed in § 3
in cconnection with Eilenberg-Mac
Lane's cohomology group of abstract
group., In the last section §4 a
general theory established will be
reduced to the results obtained by
Hopf and Ellenberg as special cases.

2.1, Definition of an a-coho-
mology class Cg (f) and a formula
concerning .

All the mappings considered in
the rest part of this paper are
assumed to belong to an (M-1) -ho-
motopy class T* , sc that
without loss of generality they may
be assumed to coincide on X"

It may be also assumed that they
map the topological tree B 1into

Yo Dbecause B 1s contractible
in B to a point %, . Now, let §
be such a mapping and + an indu-
ced homomorphism of {X) Anto

ac, (Y) . We denote by 3 the
centralizer of the subgroup -kf
(‘It(x)) of T, (Y) ; in notation
={3; 30 = a9, for owery a e R (0],
Theg for any two mappings F 3
in an (m-1) -homotopy class o
we have = % from the assump-
tions rgferred to above, and there-
fore 5 can be merely designated
by 3. Let W) (for 12t 20)
be a r%gresentative ol an element

g e . Now a mapping F:Z'>Y
is detined as follows:

F(m) = foo ,
Fan = fo,

xeX,
xeX,



Flt) = T, ¢;e'X°nnd 12420

since [fal = {fwipl e hetm o0)

and so 3 commutes T[f TSN s
FF, can be extended to a map F .
7'— Y . Moreover, from the as-
sumptions thet M, (Y)= = T, (Y)=0,
F can be extended to a map F: 2"
—Y . Now, all the vertices of

X are ordered linearly so that
for any simplex of X the first
vertex in this order is preassigned.
Let @, be the first vertex of an

n -simplex o¢;° and ‘b the first
vertex of its (n-1) -face "' .

Flat"xD) represents an
element C(F, ") of T, (Y,

fa)=4,) , and c(F)= E C(F,%")

gre may be regarded as a m -
cocyle of m -complex X with local
group as coefficient group. An m-
cocycle C(F) may indeed depend

on i) the cholce of a representa-
tive of 3 and also on ) the

way of extending the mapping F ,
but it can be shown that, indepen-
dently of », W) , C(F) deter-
mines uniquely a cohomology class

of H, (X, T.(Y.%,)) ( n-th coho-
mology group of X with local co-

efficlents) for a mapping and
for 3¢ 8" , which we designated
by Co(f) .+ Asto b , W

1t 1s'surficlent to prove that when
for the mapping ard for a re-

presentative Tty (for 12420)
of %e %™ , another mapping
F’;2"—Y 1s constructed in the
same way as used in case of F ,
C(F) 1s cohomologous to C(F') .
From the horotopy extension pro-
perty of a polyhedron there exists
a mapping F".z2"—> Y such
that F’7 F"and F'l2'=Flz’
Then we have C(F’) = C(FD ,
Moreover, both the same property
of a polyhedron and the assumptions
M (Y)=---- =T, (Y)=0, assure

"

the existence of a mapping F " :

72" —»Y such that F'% F~ and
F“l2' = F| 2" o It is
clear that we have C(F“)= C(F")
= C(F) » Then we shall show
that C(F) is cohomologous to
C(F™) . As from Flz"'- F*|2™!

we have F|2(e"x D =F"lalex D)
for any ¢"'e X" , following
Ellenberg (Annals of Math., 41,
1940), d(FFHa™ e M LY, 4, =

£)) can be defined and also
we have an_(n-1) -cochain
d"(FF)= 5 d (F.F%s™ Ve, Now,
with Steenrod's cohomology theory
with local coefficients (Annals of
Math. 1942), we have

AR FM) (™)

- -
= Z:‘r- [‘i' 14}" ‘,'; )
n 9 an

g

1h o wid(FF
r

" g,

C(F, &™) - C(Fhe?)

so that §4™'(F, F") =c{Fi-a(F") ,
This proves that C(F) is co-
homologous to CLF) .

It should be ncticed that 1or
any element C of the cohomology
class Cithr=rccm] we can
construct a mapping F/: 2" Y
such that C(F)=¢ ; namely
all the elements of C[yjtfy can
be obtained through the procedure
referred to above irom ? and 3 .
Since ct(F)1is cohomologous to C ;

there exists an (n-1) -cochain
A" (=, a e T (Y, %),
such that §4™' =c(F)-¢ o

As is easily seen, there exists a
mapping F': *—Y such that
Fle== Fjz™ &and d&"'=a""(RF) .
As S4™Y(F F) = C(P~-CIF) =C(F) —-C ,
we have C = ¢ (F’) . This remark
is employed essentially in discus-
sions appeared later.

Now we show a formula concerning
Cych
=l
Coh-Lfr= G, (PO
.1 G -G Lv['a nt

A _ -t
where 3. 1¢ % and Cypy(H?
is represented by a cocycle

Z"(;‘-‘a-‘_‘" , putting C'l"é = ;‘K‘G‘"

Proof, Let C(F)=L&&"™
U= D ¥a" be represen-
tatives of Cy(h » \:.Ltf)
respectively, where @;=c(F, ;")
and ¥, = c(G,o ") . A mapping
I AN ( is defined such that

G -a) | Litzo,
@(1.'#) =

Fltat-1) , t2tzl

Since we have Pxo)=dwn)=fw)
and ®,t) (for L2b% o) .
represents an element 1"3e s .
for any vertex 2, 5 CP)= 20
represents  Uyn( £) o Then
it is easily seen in consideration
of reference points that we have

. This proves
Em(f)’l,

2.2 Definition of Vo AR D)
and some theorems concern-

ing 5G4 P .

We intend to introduce a concept
" 4 <homotopy”. If for two mappings

G- W= o .

that (:;(f)‘- C,l(f) =



f- % velonging to U", § .1s M -
homotopic to § , where $B) =

2(B) = Y, is assumed, there exi-
sts a homotopy iy (for 12t 20 )
such that #,=¢ and ®,=§ .
It is easlily veri%ied that I‘or any

vertex 4; of X, %, (%)) (for

12zt 20 ) represents an element

3 of 2% . Then is said

to be " 3 -homitopic" to § (in

noteation ) = , or simply
~ 3 .

by

Lemma 2.2.1 For a mapping feU
which maps B into 4. , and for
an element 3 € 8"  there exists

a mapping such that F[X™
l X"—‘ aa;:l ’QI 3 °
Proof, Let TLY) (for

lzt 20 ) be a representativg_' of
. A mapping F:(Xx0)¥(X"x1)
(X° I)—>Y can be defined as fol-
lows:

Flx,0) = §o,
Flot)= £,
F(ﬁ;,t)‘: 'l(t), 'l;éX",teI.

xeX,
-
ceX"

as [f¢ ez [f('\’lq)] com-

mutes 9 , F"b( 1) is

inessential, Therelore %= can be
Xx0)?

extended to a mapping F @ (
(X" V(X' I)-—”? . By the aid
of the assumptions that mY)=0

for 1<i< e have a map-
ping F: (XKO) (X" ]'.) — X .
Then from the homotopy extension

property of a polyhedron a desired
mappin is obtained,
for FF(XH)-—& 1s 3 -homotopic
to and §[X"'=§|x"* .

For two ma}pings §, 3¢ ot
which coincide on * X" and map
B into %, 4 ve construct an
m -coecycle d'(f,9)lg =df.$ ") ,
where d(§,% 6") € L (Y, 4.)
following Eilenberg. We designate

by (5. 3) a cohomology class
of H, (X, T.Y)) to which
a"(§, 5.) belongs. Then we have

Existence Theorenm 2 For
any element # of H. (ng,'“fn(Y))
and for a mapping fe U™ R
there exists a me.pping g€ o>

such that & (§.3) =4 .

Proof. Let 43' be represented
by a cocycle 20( LA , where
o € TalY, 4.) then it is

proved with Eilenberg that there
exists a mapping § such that
alf. 3, &™) = < for any 61"
of X

°
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to orem 2,2,3 For two
mappings we have §. ) £
if and only if [($.§)=C 5 N

This theorem corresponds to the
Ellenberg'!s Homotopy Theorem.

Since in his case M(Y)=0 is
also assumed, we have Cu(f)=o

so that H(f.f)=o « There-
rfore two mappings §,§’ are ho-

motopic each other it and only if

A" ) o o This theorem
will be again discussed in §4 in
a slightly generalized form,

Proof, Since fr,sx,' f’ R
there exists a homotopy +,
(1;1;20) such that f,=#

= § « Then #,(w) (tor
17_.1;;0 ) for any z.lex re-
presents an element 3¢ % .
Let T3 be a representative
of , then we define a mapping
’3': as follows:

r } (1;0,0)'—'-' "f'(l), x® GX; ?{x"/o)=‘ﬂ1)l
xeX 5 Fa, s, 0)=fm,xeX " sel,

and

Fa1) = R0, xeX, xe 1)

Fao,0)=Fo, 2eX, xel

e, sty = Ta-5), xeXS se [

Then it is easily seen that 3;'3(1.;
xIxI) is homotopie to zero, so

that can be also defined on
1,xTxT for any 1, €X .
As F| 7" has a partial homotopy

on the subcemplex (Xxo)”(Xx1)¥(X°<I)
7' of Z" , in virtue of
the homotopy extension property of

a polyhedron we have 2% I-Y .
Since '—JI'I’A(Gt X Ix o) repre-
sents d.(5.1»a") and ’J‘[ ’3(6‘

xTxt) represents Cs(F,a")
in consideration or thé homotopy
we have d(f, f’ a )—C34(F o) .
This proves that J(f,§)= Cf ) .

Conversely, & mapping D:7"—Y
is defined as follows:

Da,o) = f(o , xeX,

D, 1ry= f, xeX,

D,t) = f®, xex", zel.
Then d(f,§’ &i") is repre-

sented by a mapping D|3(s"xT)
If we choose suitably a representa-
tive C(F)=XLc(F&") " of Cg (f) R
by the remark given in the last part



of 2.1 we have d (,4)= C(F) .
Now we define a mapping J: 7 _Q\Y
such that

F(

£ty = > TEh=o0,
D 2x-1) , 12% 2—‘2—.
Then P, %) (for 1222 0) s
for any % € X° , represents
8§ , and we have &(xo) =4 ’
P, 1) = oo . Now,
@\;ul x[) represents (d(f,t, ")
selF. el ")} » regarding $(a;xo)

=Y, as a base point. As
af,§, ") = C(F,&") , it follows
that | 2(a"x 1) is inessential
for any " . Therefore is
extended to a mapping PAMES G
so that we ‘have § . § . The
proof has beén established.

We can mention 1ln more genera-
lized forms another formulaes cor-
responding to those shown by Eilen-
berg, but only several iormulaes,
which will be used in 8 4, are given
here without proof.

SRy . 3) = HGA)

(2.2.4)
(2.2.5) .&(f,g)—a&(f,3)%=C!(§)—Cg<3)
(2.2.6) Iff 3 f’ we have
3 C
C'L(f) = 3'134 (j') for any "LE%
3. Computation of the cocycles
Cy .
In this section we give some
meaning to the cocycles C,(f) .

There was found. an 1nvar1ant coho~-

mology class o™ in the cohomo-
logy group of Hp,(wmK), ®waly)) by

Eilenberg. Here is shown that the

class is reducible from .

3.1, Let T be a discrete
group, K(m) an abstract closure
finite complex defined as follows.
An ordered (n+\) =ple [w,w, -, w,]
of elements of -TT 1is-an w=cell
of the complex W (T) . The
boundary of an m-cell is an (WM-1)-
chain defined by

Q[W,,,'Wl,-",'\“,‘] = Z:(—‘)L[wo,'" 'a)-.' w'\] .
By putting w-[w. W, Wa)==
lwwe,wi,, -, Wwnl » 1T 1is

considered as a group of automor-
phisms of K(T)  without fixed
cells.. Let C"(TI') be the n =
th chain group of K(m) with in-
teger coeificlents. Let J be an
abelian group which admits TT as

a group of operators, An equivari-
ant M -cochain f" is a homomor-
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phism of (C"(T) 1into J such
that
n
f- (w'[wn,wﬁl“ ;W ] = W- f((wﬂzm’ w"])'

The coboundary of 5n
by

an([wo,‘; , mnﬂ]) = :S.n(a [wa > /“Jnﬂ])

is defined

By usual procedure, we can define
the m -th equivariant cohomology

group  H,(T,T) -

3.2, From now on we regard
'TC,(Y, 1«1«) as T and
To(Y,Y)as J o Let S,(X) be

a closure tinite complex defined

by singular simplexes in Y such
that all the vertices of the coun-
ter-image simplex are mapped into

a fixed point . in » Let
K"() be the M -skeleton

of K(m) . We consider m\ppings
E  of K"(T) into

follows. All 0 -cells [‘w] are

mapped into the point ¥, s A
1 -cell Cwe w3 is mapped

into a closed path representing

the element ~w,"' W, of T(Y.y.)) .

For a 2-cell  UTw,, W, wW,} ,
Flw,, w,, wel is a singular

simplex defined as follows. Define

a mapping T of a Euclidean 2 -

simplex =< 2,k P> into
Y rirst on 1ts boundary, such

that
TE)=y,, T®P)=Flw, w3,

T (P P)= Flaw,w, 3, T(pP)= Flw, %)

As easily seen, the mapping T can
be extended to the interior of o’ .

If we notice the assumption that

T (Y)=0 for {<i<m ’
we can always extend the mapping
given by F on the boundary of a
Euclidean (i+!) =~simplex into its
interior such that Flwae,ww,, wwWy]
Flws, - , wWin] for anyve T ,
and F(‘TC['UJ.;“,’U;*,])EﬁwF[wh.- W]
where T denotes a permutation of
Wo, s, Wik and Er equals
t1 according as T is even or odd
permutation. Thus the mapping F
of  K"(T) into S (YY) 1s de-
fined.

We consider the set M

F of K'(m)
For each F and
’ wﬂ*l] ’

303
of all such mappings
into S,(Y) .
an (n+ 1) =-cell [w,,
let



F(a[wo)” ’ wnﬂ]) = T(acﬂ“)

represent an element €T, (Y. Y,) »
To every (n+ () =cell [w,, , Wny]
we attach ths element o , then
we obtain an equivariant (n+1)
cochain RY" . It is easily seen
that &, 1s a cocyecle and thac
Re 1s cohomologous to k

for any two mappings F,G—et4 .
Thus we get the invariant cohomolo-

gy class e H oy (TN, T, 00
3.4, Suppose all the vertices
of X" are linearly ordered. A
mapping ¥ of X" into , which
maps X° into Y, , defines a
singular simplex in Y on each
simplex of X" . Thus (X".§) is

considered as a subcomplex of

S, o

Let R be the group ring of
T = T(Y) with integer coeffi-
cients. We construct a chain-trans-
formation (€ of the chain group
(X", R) of X" with coefficient
group R into the chain group C(Tr)
of K(T) as follows:

, Pm) be a
then 5:( fi )= ,‘;lq »
and §(f. bo) represents an ele-
ment w,_2 of TU . Put

fc (\:6'")= (1 oan,-- >WWwm)

m
Let ag =<Po:'
simplex of' X ,

and e (™) = Yofe (1 6™ foxr YeR,
where 1 denotes the unit element

of R &
If we define
ra(i'<‘l’.,“ ;?vn>)

S W <h > X e < T P,

it follows immediately that 2 =23k
and ( 1s a chain-transtormation.
From this we can define the dual
homomorphism «* of the equlvariant
cohomology group Hm(m, T) into
the equivariant cohomology group

Hw(X,T) , Wwhich may be re-
garded as the cohomology group with
local coefficients,

In the case m=m , %1s
defined on the equivariant cochain
group (C (T, T) o

3.50

Let |4 be a subgroup
Fig(e, (X™M)
3¢ %™ =

of TVY , and let

= then the following
M -cochain of K(\+) becomes equi-
variant:

- 12 -

n .
(5.1) /k“: [w.,»-m,.] = Z:‘(—I)‘/k:‘[w”... g
%wcl.“ g gwn] .

Now let F €™M be an exten-
sion of § such that F(l-e")= (")
for any a@"€X , Denote by M(f)
the set of all the mappings ‘&
which are extensions of { .

We show that

e U

(52)

3.6. To prove (5.2) we make use
of certain subdivision of the
product space X"xI o The ver-
tices of 7 are those of X xo

and X"x| + The order of the
vertices are definite on X"xo0

and X"x| respectively, we set
that the vertex §f, of X"x0 is
antecedent to the corresponding ¥;
of X™1{ . Thus the vertices of 77
are partlally ordered. Now define
a subdivision of ¢"x [ as fol-
lows:

en dde" xI) d(t-<p-- rml')
7_(—0 - BT

denote subdivision ._opera-
(Nt1) =cells<p, PPt Pn>
as their first vertices.

where d
tion and
admit P,

=z n
Denote by <7
of 7, .

the n -skeleton

Consider a mapping Fj: " — Y
such that Fs=+1 on X"x0  and
X" , and the paths
7 (?u PL) represent $€ %44 .

Let the path £ (PoPi)
present the element W:
putting

re-

of H ,

(€ (1 <P bi s P>
A G,

= [\., Wy o

(6.2)
Swa ],

we obtain a chain~transtormation

«’ of C(Z.R) into C(T) .
Let F &€ M) be an extension
of F«; such that

(€3) Fk'= Ty Z

on »

then by (6.1), (6.2) and (6.3) and
NO.&, No.5

C(F3) (1-<1°°,~-,+.>)={Fga(1~<r.m t o )f
=fFax’d (1-<p .A.Pn>XI)}



(6‘4‘ = n nti
) Z}““)A‘ /kF (4, w, 30~ Fwn]
= /h'f;‘l: rl:ﬂ\, "'wm]
— ko "
=k k—z)F(l'<?n‘“ Pn>)
where { } denotes the element
of qt‘n (Y) °

This proves (5.2).

4, The classification of an
(n-1) ~homotopy class.

Select a mapping ‘f, of an

(m-1) -homotopy class T” which
maps the toPological tree B 1into
Y, » then there exists at least
one mapping ¢ in any 1 -homotopy
class in U™ , such that £ [X™
=9| X" . If we choose from each
M ~homotopy class involved 1n U
all the mappings, which satisfy the
condition, and construct «J(f..§) ,
it 1s easily seen from Existence
Theorem 2.3.2 that every element
of Ha (X, TAY)) is obtained.
Also, the analysis of the relation
between b (f.,3) and <& (f,,$")
for two homotoplec mappings g¢,9”
belonging to U™ gives, in some
sense, a classification of an (n-1)-
homotopy class

e

Main Theorem 4.1,

For two maps %, 9’ belonging
to U™ such that ¢9=§'=f, on X" g’
is 3 -homotopic to § 1if and only

i 4
§..40-8¢..9) = Cpntf),

Proof. The necessity of Theorem
can be proved directly, but we in-
tend tc prove it here utilizing ‘some
formulaes mentioned in § 2. From
(2.2.4) we have o3 (f.,§) = O(%.9)
+ 809.9) and from (2.2.3)

o«F@.3°) = Cg( ) holds. Thus
e(}(fo,ﬁl)=a9(:f‘m3)+(:g-'(ﬂ) and
thereiore we have

S6&.9)-8¢,97 = 8G9 -E4.9
+ C-%"I (3)

Lastly, from (2.2.8) it is concluded

thet &, 9)- 8647 = L) .
Sufficiency: Let d(f,. %) and
Alter be representatives of
& (. 9) and §(4,,4) respec-

tively, then d-('{n,%) and 4, 3"
are represented by mappings D, D" :
Z"_ﬁ\( respectively. Choosing
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sultably a representative ((F)
of (4% , We have

d(f, 3 -dt,,3)° = C(F) in virtue
of the remark given in § 2., De-
fining a mapping § : 7" Y
such that

+ 2t zo0

s

Dk, I-3t)

3
D bt)= D(x, 2-3%) )_32_

o

|
drzy
‘ 2
D (% 3t-2), t2tz5

we have P@o)=Dx1) = 30 ,
B0 1) = D(x, 1) =g and
D, b)) (for 12t 20) represents

’ because [=(x;,2-3t) (for =%

4) represents 3 . Regarding

(aix3) as a base poirt,

FT{3FT) _represents

4(4.3.%")-d(f,9,q")° -c(F,a")

so that from d(f 9 6:")—d (fo,3,0")

~C(F,5.") =0, ¥ can be extended into

the interior of "+ 1L for any

" € X . This provass that

sy

Now, assuming that Y is n-~
simple in the sense of Ellenberg,
we can classify an (n-1) -homotopy
class TJ” by a rather simple method.
Since 1n (2.11) Uy (F)7 = Cpey (50)
in virtue of m -simplicity of Y ,
we have Ui(f,)~ Ty = Cyagls,) s
so that the totallty A (X, TC(Y))
of all the elements U, (%) »
for any 3e3%" , constitutes
a subgroup of (X, mW.(Y)) .
Because from (2.2,5) we have

L‘S(}X&C%cg) for any %e 7> ,

P

242

L5y

-1

s, () does not depend
on {, , but depenas only on an
(n-1y ~homotopy class U . This

group may alsc be regarded as the
image of the group %" by the homo-
morphlsm of 3 into Hy(X w.(Y),
Choosing from each m -~homotcpy class
involved in U> all such mappings
that coincide with f, cn X" "and
constructing ($,,%) fer any g
of them, it 1s seen irom Existence
Theorem 2.2.2 that every element of

HAlX, ®at)) is obtained
through this construction., From
the two considerations that tor two
mappings §. ¢ belonging to

> , ¢ 1s m-=homotcpic to %

if and only 1f & (.30 =43(f,. %)
mod A,(X,®aY)) because of
the main theorem 4.1 and that from
Lemma 2.2.]1 and from Homotopy Theo=-
rem 2.2.3 the totality of « (£ 7,),
for any f v § , colncicdes with

An(X, TaY)) all the n -homo-
topy classes involved in U™ is in
one~to-one correspondence with the
factor group of . Hn (X, TalY))
by An(x,’f’:n(Y)) °

-]



In case where the fundamental
group of Y vanishes, Y is, of
course, M -simple in the sense of
Eilenberg. In this case there is
Just one M ~homotopy class and also

An(X, TalY)) =0 by defi-
nition, so that all the n -homotopy
classes are in one=to-one correspon-
dence with |dpn (X, @a(D) ,
which i1s so-called Eilenberg's ge-
neralized Hopt Theorem.
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