ON BOUNDED ANALYTIC FUNCTIONS AND CONKFORMAL MAPPING, IX.

By Mitsuru 0ZAWA

4. Nacessary conditions
for boundedness.

In-the formeér part of -our paper [7],
which contains “a part of references, an
sxtenslion of Schwarz's lemma, wnlch also
can be proved by making use of the maxi-
mum principle, has been studled by the
fact

)
"'57173' (z,%) >0.

The following statement is evident:

Let f(* , 94(z) bve the functions
analytic, single-valued and satisfyling
the condltlons:

(1) 1@ z gt for zel;

(11) %(zb/f(z) be regular, l.,e.,
the zeros of (%) are those of %(z)
and the poles of 4(2z) are those of

(2) o Then {fm)]2= 2z |3(=)} 1is
valid in D .

We shall refer the above statement
to (S). PFrom (S) we obtaln |o |z} 1,
where f(z)s.o(f(z-alﬂ)-h-- y F(r=dg a.ok
about a zero
point af of f¢z) . Thus, for the
occurrence of max |%3| the following
three conditions on 3 (2} are neces-~
sary:

(1) On every point of [ , 13(=}}
18 the largest, as far as possible;

(2) the zero points ars least pos-
gible in number;

(3) the poles are largest possible
in number,

To explain a perfect condition for
the boundedness of single-valued regu-
lar function making use of the coeffi-
clents of the expansion at a glven point
18 not yet met with success in the M-
ply connected case, For simply con-
nected case Schur [8] established a
beautiful perfect condition for the pro-
blem. Garabedlan [2] attempted to es-
tablish a corresponding perfect condi-
tlon, but he did not investigate with
reapact to the geometry of the coeffi-
clent domaln.

We shall attempt to esteblish a sys-~
tem of necessary conditions. We use
the functions stated bslow,

Let (%) 1be a single-valued re-
gular function, mapping D onto a ach-
licht disc furnished with m-~1 . concen-
tric eircular slits and fixing the opl=-
gin, and satisfying the conditlon

e Bz =1 .7 This function sure-
ly exlgtas. Let [L(%)- hgvg the expan-
slon :g‘ALz° about Z =0 , then

= exp( 2 @,QJA0)-i(v)),

XCc) being ‘the RoBlin’a constant and

e v denoting the distance of the
image of the V ~th boundary component

[, , and hence

1
man v =
tdvem

We have the monodromy condltlons

v {1 rn,
§ @v?,w “'wf.(a)x o »*L;

A being an index such that fa cor-
responds to the outer circumfersnce of
the image-disc,

Next, o (%) , the Ahlfors’ const~
ant, 1s defined in the following men-
ner, Let , be the class of analy-
tic functlons [ (z) satisfyling
[Fyis! in D and possessing the expan=,
slong of the form F’(z)..o(p(z % )+b,'(z -z

LA about Z = %, .
men  A(Z) = Sap | o]
Felly
Now, we consider & funcflon, F
with the expsusion [f(z}= 3,¢;%*

about the orlgin which isg single -valued,
regular and pounded in T , that is,
itz s i , Evidently we have

(N [Cl 21 ;
squallty sign holds if aad only Lf
fezy= et in D .. Hence, assu~

ing that |jC, l< 1 , wa put
fuas (fo-e) 1 -Tfm) ) .
o ~1C,
Then we obtain f\°)~0; T‘“ /(4 1e.t?)
and 1Ho) £ in D,
Remembering the Ahlfors’ tqeorem {11 ,
one finds

(m lCJ/(i 16,44 of Loy

fiA

and moreover, from (3),

(E) {T(ZJ‘Ci
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(X" o Femyen §om | < B, ]

for o+ T =1,

In (II) equallty sign can hold, and
this has been thoroughly investlgated
by Ahlfors [1] and Garabedian [2] .
In {(II') or (II") equality sign can
occur only Lf D 1s a simply-connected
domain, and hence In multiply-connected
case we have always I(f (< [F. (=]
except Z =0 « {Convexity of the
family in question 1s easlly verlified
and so (II") holds good, but shall not

e, o,

discuss in this form.) Thus
fimr _ £ )/ Ty
= - 1 )
fur= ( R R | /(1 (go(.)}‘gf(.,,;)

satiafies the conditions ﬁ}a)==c and
1falm)] = 1in D . Hence we ob-
tain the inequality

i lf=(z>| £ (o) |
-0

Easy calculation leads us to the relsa-
tion

(1) lA l(l— !ca (*) /(1

By induction we introduce the sequence
lf. (zw in the following manner:
).

foon [l B

e t®
(A1 -1

e (2

[ fiyce) fot | TR (=

m=2,3,4--

then each fwutz) 1s single-valued
and regular in D , end fum(z)=o,

wm (x| 1 for z€ D , Hence,
we have

@) L | 22 sacoy,
-0

Theorem 6, The conditions (X), (II)
and (M), M = 3,4,..., are necessary
for the boundedness of single-valued
regular function f(z» in D , hav-
ing the expansion’ f(z)= C, +C,% +C 27~
about the origin. In multiply-connec-
ted case the equality signs in (M),

m = 3,4,..., mry be excluded.

Remarks, I. The condltlons in the
Theorem 6, the equality signs being
preserved, reduce to the Schur's, if
the basic domain D 1s the unit cir-
c¢le., Moreover, if 1V 1s simply-con-
nected, the total system of these con-
ditions becomes perfect.

II. Some analogous necessary condi-
tions for functions single~valued,
regular except the fixed poles Q7

(p=-- L) , and bdounded on the
boundary, that is, f(nl= for

z e » can be established by the
simllar ways based on {S).

x.) S 0((0)_
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ITI. We may replace !F(IE1 oy
the other conditions, for example
0 =R Sy £4 .

IV. What phenomena can onse sexpect
when one deletes the single-valuedness
of (z) ! If we delete the single~
valuedness, the results will become
loosar, but trhe best possible extremal
function in such class of functions
can easily be given, in general.
Painlevé problem without the restric-
tion of single~valuedness 1s nonsense,
but Schur problem without such .restric-
tion will not -be nonsense, The last
problem for the analytic function F(2)
with the expansion €,+&Z+C2Z2%+
ia easy to 1nvest1gate, that 1s, we
may replace (2} by the function
exp (~ &%z ¢)) , and the resuting in-
equalitlies 1n every step are Dest pos-
sible. In the theory of functions, to
delete the single-valuedness obliges
us to make the systematic errors, in-
vestigated by Telchmliller [61 , Grun-
sky [31 , Hobinson [5] , Heina (9}
and Ahlfors [1] .+ For Schur problem
these phenomena do happens.

5. Some distortion theorems.

Consldering the fact *3L‘Uu(1)"o
for ze I, and 20 for 2z & [

HoF v ,wecmxdWMneanﬁom of
Y.KOMATU'’s theorems [10] explaining
the distortion of functions analytic
in the concentrlc circular ri ng F<izlcl
by making use of his so~called “mono-
dromy conditions',

’

Theorem 7, Suppose that §(=z) is
a single-valued analytic function, re-

gular and non- vanishing 1n D except
eventual poles O (=i~ £) , and
zZ8ros P,(p~l - ,mt) and that 1t’ satis-
fles the conditions m, _lf(W)‘g P1V N
Jor z e[,
Then. we have the inequalities:
n
- 1 ~ 3 4h \
‘F\IV ‘& My m??" gM \‘
[
. - _4* g
< -t lg I, = Yr,g
v
y o ,

)

are deflned as in
1.

» ’ b
the proof of Theorem

where b,

Proof. We make use of the zame
terminologles as In the Theorem 1.
we consider the inbtegral

( L.g) fer wmrde

Now

which venlgshes by the residue theorem.
On the other hand, from the same reason
as in the Thecrem 1, we obtain



i
ry {lg if(v)’ 2w, (2)dd
I.’ N . .
= z\cuv(.x,:)-w,(b,if))ﬁ Z(w.,,(‘*;)—,wi“‘p),.

Making:Use of the -assuymptions m,3 f»]
€ My¢ Fu'z‘ ze¢ [, -and . the definition
of the' periodicity modult -fr;, , We
obtain the desired results,

Nowy we shall explaln an application
of Theorem 1 and 7. -As the basic .domain
D we adopt a disc cut along the
concantrid scircalar slits, and denote
the outer circumference by 1, and

otheré¢ by T, ses 5, I - 5 whose
distances: from’ the ‘origln are Ry Ra,
oee R« » mespectively. Let ‘j-(z) be

a fuqction, regular, si%le-valued,
floy=.0:and ! fCor.= 1 “If -we .apply
the .fMMeorem 1 .and- 7 for the runction
f/2’, we obteln -some distortidn fn- -
equalities, - ‘In“the.first place, we Te=
striet D ds doubly-connected in order
to-attatn the exdet formulae. The+n we
obtain ‘the following distortion inequa-
11t1es from the ThHeorém l, and 7,

\x% z (M ‘)(“WR, (4_;_]) SE';= (’M)‘ﬁ, ‘%a

-Hl M,

EU] oy My
K| 13 &,L and R| g,‘i R,_f_ ’

)N

where mw ,,up»‘f(n' = % I
and lg is the irwariant module
of . For . M;=ply: connected- case,.
we obte.bin

VR o M et
[k

where ~ 1§ ﬁ,, are the invarlant modulil
of the’domain which has only two boun-
daries T, and [7 °of the domain
“that is, the domein f1lling up
the slits‘ Co {ptt, 3y of T

Moreover, we can recognize some ex~
tremal propertiea of functions which

l. maps D onto the schlicht full
plane cut along the m eircular or
radial slits;

2, maps D onto the schlicht annu-
lus cut along the mMm -2 circular sli-
ts;

3. maps D onto the schlicht circu~
lar disc cut along the m ~-i{ o¢ircular
slitsy

4, maps D onto the m- times cover«
ed disc cut along the "some number of
circua&‘ stitsy —

In (1) radial slits may be infinite,
zero, infinlbte-zero or finite. (See
{121y,

Théorem 1 ‘shows the distortion of
the' funcétion 1tself,” but Theorem -7 cor-
resporids the sc-dalled “monodromy con-
ditions*,: (See (137 ).

If we discuss the:problsm under the
assumptions m, <R f)s M, or m,
fdn frsM,for  2¢ [°, " we can establi-
sh the slmiler dlstortion inequalitles
a8 in the Theorem 7.

Somes equa.lities in the Garabedian-
Sehiffer”s paper {111 ‘tan be regarded
88 @xtremal cases’ of  the 'distortion
inequalities for our more general fami-
17, by Theorem 1, 7 and the related
Theorems’.

6. 4 special character of
triply-connected doriin,

With regard ‘to ‘the funotion in (1)
of the last section, we offer the fol-
lowing problem. ‘Whert icdn’ wer érrange
the 8T1ts on the same circwnrerence or
stralght 1ine ?

We ‘shall now éxplain ‘that trf
connected domain ‘is 'special Ir-c ara.C~
ter with respect to this pg‘oblem.

Definition. Let l".,m be the re-
flected curve of I,  with res‘Fect to
a straight Tine [ . When TX coin-
cides with [, a3 a polnht-set for
sach v and a fixed & s W6 call D
a domain symmstric with respect to §
Moreover, the conformal images of such
a domain T dre also “dalled to be sym-
metric.” ‘The line § dnd its conformal
images are called symmetric line,

T™is definition obliges us to dis-
tingulsh the triply-connected domains
from the ones. of highér connectivity,
For the  connectivity m =i, 2 every
domaln 1s evidently symmetrlc and there
are 1nfinitely many symmetric Lines,
For m'=3 , any domains ere &lso al-
ways but there. 1s only one symmetric
line. 'For m 24 ., gny domalns are
not symmetric except special ones.
Moreover, for m =1 s @véry point of
the domaln are the center of the sym-~
metry, that ls, every direction of that
point become a symmetric 1ine, For
symmetrlc domdins, 1f we take, for a
given Z , a polnt &  sultably, there
happens remarkdable relations:

W (2)y = w, gy , v=lL., m,

and & %2 provided % does not be-
long to a symmetric line,
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Lemma.  Any symmetric domain can be
mapped onto a circular slit domain or a
radial slit domain whose.slits lie on
the same circumference or the same st-
ralght line, respectively,

Proof. This lerma follows evidently
also from other considerations, but we
shall -give here a proof based on our
view-point. First, we consider the cir~
culapr sllts mapping. In the Theorem 1,
we can choose all the ¢, are equal
and <1 , m=1 » and hence we have
the mapping function

fzy= exp (-—Gﬂ(z;a;’)&-G—cz; ary)

with i1ts monodromy conditions
wyaS)=wy,(afly ¥ =1, ,. M « D Dbeing
of symmatric, these conditions are sa-
tisfied, and hence we have .the desired
results,

For the radial slit mapping, we can
use of the similar relations for the
with respect to .» that 1s, there
ig the point satisfying the relations
Day= O, () , val, -, m R
for -a given .7 » -1lying on the
symmetric line. On the .other hand,
for radial slit mapping the above rela-
tions correspond to the monodromy con-
ditions in the circular slit mapping,.

Garabedian considered an extremal
problem Atated as follows:

Let F(i) be regular in D save
at only one .pole- a> such as
f)=tpfg-apy t Ko t (z-aly- about aj” ,
and Jful 241 . for 2&[ . What is
the range of |7gl 7 for this pro-
blem he answered in his thesis [2] as
follows:

Let f.(2) realize the maximum of
AT L , then f,(x) ~ has at most m-L
z€éro points, If we assume f(z) heas
just m-i zero points, the extremal
function §,(»» 1s uniquely determi-
ned and can}bquxpreﬁsed in the form
1&!(7:) = exp [-PZ_;:,.G-('L;&;) +G (zral)
" M | ) = exp (V) -2 g@Tio),

We shall treat this problem under
the dssumption that D 1s symmetric
and one zero &' o We remark here that
ir il =4 for ze[' and af
belongs to the symmetric line £ of
symmetric¢c domain D , then Ftz) =1t
for ze D 4 end If 1fy=s4 for

7€ ‘and mgz 2 then $@) thas
at least one zero point. We now state
our theorem in the followlng manner:

Theorem 8, In our problem for the
symmetric domain D , the function

stated in Lemma is the unique extremal
function under the followlng conditions:

(1) connectivity of D 1s not less
than 2;

(11) 4" does not belong to a
symmatric linej

(111) f(z»  has at most one zero
point and at most one pole o~ o

If D is simply-connected, then the
extremal. function coincldes with the
Riemann’s mapping function, that 1is,
it maps D onto the disc Izf>{ . If

0. Dbelongs to a symmetric line, th-
ere 1s no non-constant extremal func-
tion, provided m 2 3 .

Proof« 1If extremal case happens,
then f.@=)y must have the form
£, ) = exp (=G (o) +Gxi 2), Since
D 1ls symmetric; -thls function sure-~
ly exists by the Lemma.

‘Thus, we have obtalned differences
for the essential -different characters,
especlally from the view-point.of con-~
formal mapping, among the cases n=1t,_
Mm=2, 34am <o ‘and M = o0, we.
have ouly few knowledges of the special
character .of triply-connected case.
Above mentioned Lemms and Theorem 8
show a speclality of m =3
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