By M1tsuru OZAWA
4. Necessary conditions for boundedness.

In the former part of our paper [7], which contains "a part of referenoes, an extension of Schwarz's lemma, which also can be proved by making use of the maximum princlple, has been studied by the fact

$$
-\frac{\partial}{\partial n} g(z, s)>0
$$

The following statement is evident:
Let $f(s)$, $g(z)$ be the functions analytic, single-valued and satisfying the conditions:
(i) $|f(z)| \geq|g(x)|$ for $z \in \Gamma$;
(1i) $g(z) / f(z)$ be regular, i.e., the zeros of $f(z)$ are those of $g(z)$ and the poles of $g(z)$ are those of
fis z in \dot{D} Then $|f(x)| \geq|g(z)|$ is

We shail refer the above statement to (S). From (S) we obtain $\left|\alpha_{f}\right| \geq\left|\alpha_{g}\right|$, where $\left.f(x)=\alpha_{f}\left(z-a_{i}^{0}\right)+\cdots, g(z)=\alpha_{g}\left(z-a_{i}^{d}\right)_{f}\right)$ point a_{i}^{0} of $f(z)$ thus, for the occurrence of max $\left|\alpha_{g}\right|$ the following three conditions on $g(z)$ are necessary:
(1) On every point of $\Gamma,|g(z)|$ la the largest, as far as possible;
(2) the zero points are least possible in number:
(3) the poles are largest possible in number.

To explain a perfect condition for the boundedness of single-valued regular function making use of the coefficients of the expangion at a given point is not yot met with success in the n-. ply connected case. For simply connected case Schur [8] established a beautiful perfect condition for the problem. Garabedian [2] attemptad to establish a corresponding perfect condition, but he did not investigate with respect to the geometry of the coefficient domain.

We shall attempt to establish a sys tem of necessary conditions. We use the functions stated below.

Let fo F_{0} (z) ba single-varued regular function, mapping D onto a schm licht disc furnished with $n-1$ concentric eircuiar silts and fixing the origing and satisfying the condition
$\min _{1 \rightarrow n}\left|F_{a}(z)\right|=1 \quad \dot{b}$ This function sure1y exists. Let $\dot{F}_{0}(z)$ have the expan$\operatorname{sion} \sum_{i=1}^{x,} A_{i} Z^{i} \quad$ about $Z=0$, then
$\gamma(0)$ being the Robin's constant and
$e^{\beta r}$ denoting the distance of the image of the v-th boundary component
Γ_{v}, and hence

$$
\min _{1 \leqq v \leqq n} \beta_{v}=0
$$

We have the monodromy conditions

$$
\sum_{v=1}^{n} \beta_{v} p_{\mu \nu} \cdots \omega_{\mu}(0)= \begin{cases}1 & \mu=\lambda \\ 0 & \mu \neq \lambda\end{cases}
$$

λ being, an index such that ρ_{λ} corresponds to the outer circumference of the image-disc.

Mext, $\alpha\left(z_{r}\right)$, the Ahlfors' constant, is defined in the following manner. Let $\Omega \boldsymbol{q}_{1}$ be the olass of analy tic functions $E(z)$ satisfying
$|F(z)| \leq 1$ in D and possessing the expanstons of the form $F(z)=\alpha_{F}\left(z-z_{1}\right)+b_{2}\left(z-z_{i}\right)^{2}$
$+\cdots$ about $Z=Z_{1}$.
Then $\alpha\left(Z_{1}\right)=\operatorname{Sup}_{F_{u} \in \Omega_{Z_{1}}}\left|\alpha_{F}\right|$.
Now, we constider a function, $f(z)$ with tho expension $f(z)=\sum_{i=1}^{\infty} c_{i} z^{i}$ sbout the orlgin which is aingle-valued, regular and pounded in D, that 19 , $|f(z)| \leq 1$. Evidently we have

$$
\text { (1) }\left|C_{0}\right| \leq 1
$$

oquality gign holis if and only li $f(Z)=e^{i \theta^{-g}}$ in D...Hence, asauning that $\left|c_{0}\right|<1$, wo put $f_{1}(z)=\left(f(z)-c_{0}\right) /\left(1-\bar{c}_{0} f(z)\right)$. Then we obtain $f_{1}(0)=0, f^{\prime}(0)=c_{1} /\left(1-\left|C_{0}\right|^{2}\right)$
and $\left|f_{1}(z)\right| \equiv 1$ in D. Remembering the Ahlfors' theorem [1]. one finds
(且) $\quad\left|C_{1}\right| /\left(1-\left|C_{0}\right|^{2}\right) \quad \Longleftrightarrow \alpha(0) \quad \because$
and moreover, from (s),

$$
\left(\boldsymbol{\pi}^{\prime}\right) \quad\left|\frac{f_{L}(z)}{\Gamma_{0}(z)}\right| \leqq 1
$$

or

> or ($\left.\mathbb{K}^{\prime \prime}\right)\left|\sigma F_{0}(z)+\tau f_{1}(z)\right| \leqq\left|F_{0}(z)\right|$
> $f_{0 x} \quad \sigma, r \geqq 0, \quad \sigma+\tau=1$.

In (II) equality sign can hold, and
this has been thoroughly investigated by Ahlfors [1] and Garabedian [2]. In (II') or (II") equality sign can occur only if D is a simply-connected domain, and hence in multiply-connected case we have always $\left|f_{1}(z)\right|<\left|F_{0}(z)\right|$
except $\mathrm{Z}=0$ - (Convetity of the
family in question is easily verified
and so (II") holds good, but shall not
discuss in this form.) Thus

$$
f_{2}(x)=\left(\frac{f_{1}(z)}{F_{0}(x)}-\frac{f_{1}(0)}{F_{0}(0)}\right) /\left(1-\overline{\left(\frac{f_{1}(0)}{F_{0}(0)}\right)} \frac{f_{1}(z)}{F_{0}(x)}\right)
$$

satisples the conditions $f_{2}(0)=0$ and $\left|f_{2}(z)\right| \leqq 1$ in D. Hence we obtain the inequality

$$
\lim _{z \rightarrow 0}\left|\frac{f_{z}(z)}{z}\right| \leqq \alpha(0) .
$$

Easy calculation leads us to the relation
(III)

$$
\frac{\left|c_{2}-A_{2}\right|}{\left|A_{1}\right|\left(1-\left|c_{0}\right|^{2}\right)} /\left(1-\frac{\left|c_{1}\right|^{2}}{\left|A_{1}\right|^{2}\left(1-\left|c_{1}\right|^{2}\right)^{2}}\right) \leqq \alpha(0) .
$$

By induction we introduce the sequence $\left\{f_{m}(z)\right\}$ in the following manner:

$$
\begin{gathered}
f_{m}(z)=\left(\frac{f_{m-1}(z)}{F_{a}(z)}-\frac{f_{m-1}(0)}{F_{0}(0)}\right) /\left(1-\left(\overline{\left.\frac{f_{m-1}(0)}{F_{0}(o)}\right)} \frac{f_{m-1}(z)}{F_{0}(z)}\right),\right. \\
m=2,3,4, \cdots,
\end{gathered}
$$

then each $f_{m}(x)$ is single-valued and regular in D, and $f_{m}(z)=0$, $\left|f_{m}(x)\right| \leqq 1$ for $z \in D$. Hence, we have
(II) $\lim _{z \rightarrow 0}\left|\frac{f_{m L}(z)}{z}\right| \leq \alpha(0)$.

Theorem 6. The conditions (I), (II) and $(m), \quad m=3,4,0 \ldots$ are necessary for the boundedness of single-valued regular function $f(z)$ in D, having the expansion $f(z)=c_{4}+c_{1} z+c_{1} z^{x}+\cdots$ about the origin. In multiply-connected case the equality signs in (m). $m=3,4, \ldots$, may be excluded.

Remarks. I. The conditions in the Theorem 6, the equality signs being preserved, reduce to the Schur's, if the basic domain D is the unit circle. Moreover, if D is simply-connected, the total system of these conditions becomes perfect.
II. Some analogous necessary condi-tions for functions singlemalued, regular except the fixed poles a_{μ}^{∞} ($\mu=1, \cdot$, , $)$, and bounded on the boundary, that is, $|f(z)| \equiv 1$ for $\mathcal{Z}[\Gamma$, can be established by the similar weys based on (S).
III. We may replace $|f(z)| \leqq 1$
by the other conditions, for example
$0 \leqq R_{R} f(z) \equiv 1$
IV. What phenomena can one expect when one deletes the single-valuedness of $f(z)$? If we delete the singlevaluedness, the results will become looser, but the best possible extromal function in such class of functions can easily be given, in feneral. Painlevt problem without the restriction of single-valuedness is nonsense, but Schur problem without such restriction will not be nonsense. The last problem for the analytic function $f(z)$ with the expansion $\varepsilon_{0}+c_{1} z+c_{2} z^{2}+\cdots$ is easy to investigate, that is, we may roplace $F_{0}(z)$ by the function $\operatorname{axp}(-G(z, 0))$, and the resuting inequalities in overy step are best possible. In the theory of functions, to delete the single-valuedness obliges us to make the systematic errors, investigated by Tefchmililer [6] , Grunsky [3], Robinson [5], Heins [9] and Ahlfors [1] . For Schur problem these phenomens do happen.
5. Some distortion theorems.

Considering the fact $-\frac{\partial}{\partial n} \omega_{v}(z) \leqq 0$ for $z \in \Gamma_{v}$ and 20 for $z \in \Gamma_{\mu}, ~$ Y. KOMATU's theorems [10] explaining the Aistortion of functions analytic in the concentric circular ring: $q<i x \mid k i$ by making use of his so-called monodromy conditions".

Theorem 7. Suppose that $f(z)$ is a single-valued analytic function, regular and non-vanishing in D except eventual poles $a_{i}^{*}(\mu=1, \cdots, \ell)$, and zeros $a_{\mu}^{\circ}(\mu=1, \cdots, m)$ and that it satisfien the conditions $m_{v} \leqq|f(z)| \leqq M_{v}$, for $z \in \Gamma_{v}$.

Therl. we have the inequalities:

$$
\begin{aligned}
& -P_{v v} l_{q} m_{v}-\frac{S_{j}^{2}}{j!!} P_{j v} l_{\delta} M_{j} \\
& \equiv \sum_{\mu=1}^{m}\left(\omega_{v}\left(a_{\mu}^{o}\right)-\omega_{\nu}\left(b_{\mu}^{c}\right)\right)-\sum_{\mu=1}^{i}\left(\omega_{v}\left(a_{\mu}^{\infty}\right)-\omega_{\nu}\left(b_{\mu}^{\infty}\right)\right) \\
& \equiv-p_{v} \lg M_{v}-\sum_{\substack{m=1 \\
* v y}}^{n} p_{j v} l_{g} m_{j}, \\
& x=1 ., n,
\end{aligned}
$$

where $b_{\mu}^{\circ}, l_{\mu}^{\infty}$ are defined as in the proof of Theorem 1.

Proof. We make use of the same terminologles as in the Theorem 1. Now we consider the integral.

$$
\left[=\frac{1}{2 \pi i} \int_{\Gamma+\Delta} l f f(x) w_{v}^{\prime}(x) d z\right.
$$

which vanishes by the residue theorem. On the other hand, from the same reason as in the Iheorem 1, we obtain

$$
\begin{aligned}
& \left.\frac{1}{2 \pi} \int_{\Gamma}\right|_{\delta}|f(x)| \frac{\partial}{m} \omega_{v}(z) d d \\
= & \sum\left(\omega_{v}\left(\alpha_{\mu}^{\prime}\right)-\omega_{\phi}\left(b_{m}^{\prime}\right)\right)-\sum\left(\omega_{k}\left(a_{\mu}^{m}\right)-\omega_{i}^{\prime}\left(b_{p}^{\prime}\right)\right) .
\end{aligned}
$$

Making use of the assumptions $m_{y} \dot{x}|f(x)|$ $\equiv M_{i}$ for zer and the definition of che periodicity moduli $P_{\mu \nu}$, we ootain the desired results.

Now, we shall explain an application of Theorem 1 and 7. - As the basic domain D we adopt a disc cut along the concentric circulan silts; and denote the outer cirdumference by T_{1} and others by $\Gamma_{2}, \cdots, \Gamma_{m}$, whose distances from the origimaxe Ris Riz, \ldots, R_{n}, mespectively. Let f(z) be a runction, regular, single-valued, $f(0)=0$ and $f^{\prime}(0)=1$. If we epply the theorem:l and 7 for the function $f(z) / z^{\prime}$, we obtein some distiortion fin.equalities. In the first place, we restriet D as doubly-connected in order to atitain the exect formulae. Then we obtain the followlng distortion inequa11ties from the Theorem 1 , and 7 .

$$
\begin{aligned}
& \left(\frac{M_{1}}{R_{1}}\right)^{18 \frac{R_{1}}{R_{2}}} \geq\left(\frac{M_{2}}{R_{2}}\right)^{18 q+1 \delta \frac{R_{1}}{R_{2}}},\left(\frac{m_{1}}{R_{1}}\right)^{1 \delta \frac{R_{1}}{R_{2}}} \leqq\left(\frac{m_{2}}{R_{2}}\right)^{1 / q+18 \frac{R_{1}}{R_{2}}} \\
& \frac{M_{1}}{R_{1}} \geq \frac{m_{2}}{R_{1}} \quad \text { and } \quad \frac{m_{1}}{R_{1}} \leqq \frac{M_{2}}{R_{2}} .
\end{aligned}
$$

where, $M_{i}=\max _{j}|f(z)|, m_{i}=\min _{z \in \Gamma_{2}}|f(z)|$ and $T \mathrm{~s}$ on the invariant module of D, For in-ply connected case, we obtain

$$
\begin{aligned}
& \left(\frac{M_{i}}{R_{1}}\right)^{i 8 \frac{R_{1}}{R_{2}}} \geq \prod_{j=2}^{n}\left(\frac{M_{j}}{R_{j}}\right)^{\delta_{8} q_{j}+l_{g} \frac{R_{1}}{R_{i}}} \\
& \left(\frac{m_{1}}{R_{1}}\right)^{\lg \frac{R_{1}}{R_{2}}} \leqq \prod_{j=2}^{n}\left(\frac{m_{j}}{R_{j}}\right)^{\lg q_{j}+1 \delta \frac{R_{1}}{R_{j}}}, \\
& -p_{j j} \lg \frac{M_{i}}{R_{i}} \geq \max _{1=v}\left(-p_{v j=n}\right) \sum_{v_{i j}}^{m}\left(g \frac{m_{v}}{R_{v}}\right.
\end{aligned}
$$

where-is q_{i} are the invariant module of the comain which has only two boundaries Γ_{1} and Γ_{j} of the domain
D, that is, the domain fllling up the slits " $\Gamma_{\mu}(\mu \neq 1, j)$ of D -

Moreover, we can recognize some extremel properties of functions which

1. maps D onto the schlicht full plane cut along the n circular or radial slits;
2. maps D onto the schlicht annulus cut along the $n-2$ circular silts;
3. maps D onto the schlicht circular disc cut along the $n-1$ oircular slits;
4. maps D onto the m-times cover. od disc out along the some number of circuler sizts:

In (1) radial sifts may be infinite, zero, infinite-zero or finite. (See [12 5):

Treoren 1 shows the distortion of the function tteelfy but Theorem 7 corresporde the so-dalied monodromy conditions ${ }^{\text {t }}$ (see [13]).

If we discuss the problem under the assumptions $m_{v} \triangleq \kappa_{\alpha} f(\alpha)=M_{v}$ or m_{v} $\geqq N_{m} f(z) \leq M_{v}$ for $z \in \Gamma_{v} \quad$ we oan establish the similar distortion inequalitios as in the Theorem 7.

Some equalities in the GarabedianSchiffer s paper $[11]^{\text {cean be regarded }}$ as axtremal cases of the alstortion inequalities for our more general fami1y, by Theorem 1, 7 and the related Theorems.

> 6. A special character of triply-connected domain.

With regard to the function in (1) of the last section, we offer the following problem: When cen we errange the shlts on the same drcumference or stralght Ine?

We shail now explain that treplyconnected comain is special in charac. ter with respect to this problem.

Definition. Let $\bar{F}_{v}^{(\ell)}$ be the reflected curve of Γ_{ν} mith reapect to a atraight line l. When $\Gamma_{\nu}^{(H}$ coincides with Γ_{k} as a point-set for each v and a fixed l, wo call D a domain symmetric with respect to l. Moreover the conformal fanges of such a domain D are also called to be symmetric: The line l and tits conformal images are called symmetric line.

This defintition obliges us to distinguish the triply-connected domains from the ones of higher connectivity. For the connectivity $n=1$; 2 every domain is evidently symmetric and there are infinitely many symmetric ilnes. For $n=3$, any domains are elso always but there is only one symmetric line. ${ }^{\text {F For }} n \geq 4$, any domains are not symmetric except special ones. Moreover, for $n=1$, every point of the domain are the center of the symmetri, that is, every direction of that point become a symmetric line. For symetric domains, if we take, for a given Z, a point r suitably, there happens remarkable relations:

$$
\omega_{v}(z)=\omega_{v}(s), \quad v=1, \cdots, n
$$

and $\zeta \neq 2$ provided z does not belong to a symmetric line.

Lemma．Any symmetric domain can be mapped onto a circular slit domain or a radial slit domain whose．silts lie on the same circumference or the same $s t$－ ralght line，respectively．

Proof．This lerma follows evidentiy also from other considerations，but we shall give here a proof based on our view－point．First，we consider the cir－ cular slits mapping．In the Theorem 1 ， we can choose all the $c y$ are equal and $l=1, m=1$ ，and hence we have the mapping function

$$
f(z)=\exp \left(-G\left(z ; a_{i}^{0}\right)+G\left(z ; a_{1}^{\infty}\right)\right)
$$

with its monodromy conditions
$\omega_{v}\left(a_{r}^{\infty}\right)=\omega_{v}\left(a_{i}^{0}\right), \quad v=1, \cdots, n \quad D$ being of symmetric，these conditions are sa－ tisfied，and hence：we have the desired results．

For the radial slit mapping，we can use of the similar relations for the with respect to D ，that is，there is the point satisfying the relations $\tilde{\omega}_{v}\left(\alpha_{1}^{\infty}\right)=\tilde{\omega}_{v}\left(a_{i}{ }^{0}\right) ; v=1, \cdots, n$, for a given a_{1}^{∞} ，lying on the symmetric line．On the other hand， for radial slit mapping the above rela－ tions correspond to the monodromy con－ ditions in the circular silt mapping．

Garabedian considered an extremal problem stated as follows：

Let $f(z)$ be regular in D savo at only one pole a_{1}^{∞} such as $f(z)=r_{f} /\left(z-a_{1}^{\infty}\right)+\alpha_{0}+\alpha_{1}^{\prime}\left(z-a_{1}^{\infty}\right)+\cdots$ about a_{i}^{∞} and $f f(z) \mid \leq 1$ for $z \in \Gamma$ ．What is the range of $\left|r_{f}\right|$ ？for this pro－ blem he answered in his thesis［2］as follows：

Let $f_{0}(z)$ realize the maximum of $1 T_{f}$ ，points then $f_{0}(r)$ has at most $n-1$ zero points．If we assume $f(z)$ has just $n-i$ zero points，the extremal function $f_{0}(z)$ is uniquely determi－ ned and can be expressed in the form
$f_{0}(z)=\exp \left(-\sum_{k=1}^{n-G}\left(z ; a_{i}\right)+\hat{G}_{n=1}^{\left(z ; a_{i}^{-}\right)}\right)$
with $\max \left|x_{f}\right|=\exp \left(\gamma\left(a_{1}-\right)-\sum_{\mu=1} g\left(a_{i}^{*} ; a_{\mu}^{\prime}\right)\right)$ ．
We shall treat this problem under the assumption that D is symmetric and one zero a_{1}° ．We remark here that if $|f(z)| \equiv 1$ for $z \in \Gamma$ and a_{1}^{∞} belongs to the symmetric line ℓ of symmetric domain D ，then $f(z)=1$ for $z \in D$ and if $|f(z)| \equiv 1$ for $z \in \Gamma$ and $n \geq 2$ then $f(z)$ has at least one zero point．We now state our theorem in the following manner：

Theorem 8．In our problem for the symmetric domain D ，the function stated in Lemma is the unique extremel function under the following conditions：
（i1）a^{∞} does not belong to a symetric line；
（111）$f(z)$ has at most one zero point and at most one pole a_{1}^{∞} ．

If D is simply－connected，then the extremal．function coincides with the Riemann ${ }^{\text {s }}$ mapping function，that is， 1t maps D onto the dise $|z|>1$ 。I a；belones to a symmetric line，th－ ere is no non－constant extremal func－ tion，provided $n \geq 3$ ．

Proof If extremal case happens， then $f_{0}(m)$ must have the form
$f_{0}(z)=\exp \left(-G\left(z ; a_{1}^{*}\right)+G\left(x ; a_{i}^{*}\right)\right)$ ．Since
D is symmetric，this function sure－ ly exists by the Lemma．

Thus，we have obtained differencea for the essential different characters， especially from the view－point．of con－ formal mapping，among the cases $n=1$ ， $n=2, \quad 3 \leqslant n<\infty \quad$ and $n=\infty$ ，we． have only few knowledges of the special character of triply－connected case． above mentioned Lemma and Theorem 8 show a speciality of $n=3$ 。
（＊）November 10， 1950.
（7）M．Ozawa：On bounded analytic functions and conformal mapping，I_{0} These Reports，1950，Nos．1，2．
（8）I．Schur：Ober Potenzreinen，die im Innern des Einheitskreises besch－ ränkt sind，I．Crelles Journ． 147 （1917）205－232；II．Crelles Journo 148 （1918），122－145。
（9） K_{0} Heins：Extremal problems for functions analytic and single－valued in a doubly－connected region．Amer． Journ。Math．62（1940）．91－106．
（10）Y。Komatu：Zur konformen Ab－ bilcung zusammenhängender Gebiete． Proc，Imp．Acad．Tokyo， 21 （1945）I． 285－295；II．296－309；III．337－339； IV．372－377；V．401－406。
（11）P． K_{0} Garabedian－M．Schiffer： Identities in the theory of conformal mapping。 Trans．Amer．Math．Soc． 65 （1949），pp．187－235．
（12） M_{o} Ozawa：Some canonical confor－ mal maps and representations．These Reports，（1950），No．3．
（13）M．Ozawa：Some Remarks on con－ formal mapping of multiply－connected domains．These Reports（1950），Nos． 1 and 2 ．

Tokyo ingtitute of Technolopy．

