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4 Neceaaary conditions
for bσuπdθdnesw

In the fora^r part of our paper Γ*7],
which contains a,^ part oΓ references

f
 an

extension of Schwarz's lemma, which also
can be proved by making use of the maxi-
mum principle, has been studied by the

1

fact

- i s : *<*-*->>•<>•

The following statement is evident5

Let f(**) , f(z) be the functions
analytic, single-valued and satisfying
the conditionsί

(i) if (•*)I

(11) i(
%)
/f(*)

the zeros of
and the poles of
fSz) . Then

valid in P .

be regular, i.e.,
are those of §*(*)

f(z) are those of
| f(z)j S |J(a) | is

We shall refer the above statement
to (S) From (S) we obtain \^r\^\oL\
where f(z)*oC (z-α.M + •-• y §-(*>~^ίz-~4,

d
£ •••

about a zero
point αf of fc*) . Thus, for the
occurrence of max I <*'$ j the following
three conditions on £•<*•) are neces-
sary;

(1) On every point of Γ , IJ-^I
is the largest, as far as possible;

(2) the zero points are least pos-
sible in numberj

(3) the poles are largest possible
in number

 o

To explain a perfect condition for
the boundedness of single-valued regu-
lar function making use of the coeffi-
cients of the expansion at a given point
Is not yet met with success in the Ύh*
ply connected case. For simply con-
nected case Schur £8] established a
beautiful perfect condition for the pro-
blem. Garabedlan [2] attempted to es-
tablish a corresponding perfect condi-
tion, but he did not investigate with
respect to the geometry of the coeffi-
cient domain.

We shall attempt to establish a sys-
tem of necessary conditions* We use
the functions stated below.

Let Voί
%
) be a single-valued re-

gular function, mapping V onto a sen-
licht disc furnished with -on«l.. concen-
tric circular slits- and fixing the ori-
gin, and satisfying the σondifrΓori
ιϊT#n,lft<

β)ί
 1 , This function sure-

ly exists. Let F
β
ί3K have the expan-

sion ̂  fti %
ι
 about 2 - o , then
A t tf)

oCo) being the Rσαin'a constant and
e ̂

v
 denoting the distance of the

image of the v * th boundary component
Γv , and hence

We have the monodromy conditions

Σ: ω- (
β
) P.

λ being an index such that ?*, cor-
responds to the outer circumference of
the image-disc

Next, oC.CZ,.) , the Ahlfors
;
 const-

ant, is defined in the following man-
ner. Let ίl

 Zl
 be the class of analy-

tic functions f (z) satisfying
IP'ίϊjliί in J) and possessing the ajcpan-
3 Ions of the form F(*)=: <*p U-ZO + ̂ (Λ^
+ . - - about Z ~ Z) .

Then

Now, we consider a function.
with the expansion j-(z)- ̂

 c
-i ̂^

about the origin which is "single-valued,
regular and bounded in V , that Is, .
ifwl ̂  i Evidently we have

(tt 1

equality sign holla if and only If
fCL)Έ QλQ -in- "D •••-Hence, assum-

ing t h a t j Ca \< 1 , we put

Then we obtain JVC°')=o , J"<<0= - τ\
and |£Λ*M » 1 i ^ U

Remembering the Ahlfora' theorem [1]
one finds

(ID l
c
,l/fί-ιuM - °^

c<>)
 "

and moreover, from

(I')
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In (II) equality sign can hold, and
this has been thoroughly investigated
by Ahlfors C U and Garabedian [2] .
In III') or (II") equality sign can
occur only if D iβ a simply-connected
domain, and hence in multiply-connected
case we have always . lf|(*>l< iP.c*>l
except 1; ~ o . (Convexity of the
family in question is easily verified
and so (II") holds good, but shall not
discuss in this form.) Thus

*<•••(&-

satisfies the conditions J
iu
(.oV*»o and

lj*(
a
>l'1= 1 in D Hence we ob-

tain the Inequality

Easy calculation leads us to the rela-
tion ,

 Λ
 . / _

(HI)

By Induction we introduce the sequence
( f ί̂ f

 i n t n θ
 following manner;

then each fm,
 c z
) is single-valued

and regular in D , and f*> (z) = o ,
!ίm.Cfc>l ̂  i for H D . Hence,
we have

cβi)

Theorem 6. The conditions (I), {XL)
and {7fί)

9
 Wl ~ 3,4, oo , are necessary

for the boundedness of single-valued
regular function £(X) in P , hav-
ing the expansion* f(z)-^ c

#
 •«- c,x ̂ Cj.%%--

about the origin* In multiply-connec-
ted case the equality signs In (in),

/
fll = 3,4, , may be excluded.

III. We may replace ' f
 (z)
l = 1 by

the other conditions, for example
0 t VΛ ,f(Z) έ 1

IV. What phenomena can one expect
when one deletes the single-valuedness
of £(3>? If we delete the single-
valuβdnesa, the results will become
looser, but the best possible extremal
function in such class of functions
can easily be given, in general.
Painlevέ problem without the restric-
tion of single-valuedness is nonsense,
but Schur problem, without such restric-
tion will not be nonsense The last
problem for the analytic function
with the expansion e

o
i"C,z fCiZS --••

Is easy to investigate, that la, we
may replace F

o
Cz<) by the function

exp (- £r(τ.,o>) , and the rββuting in-
equalities in every step are best pos-
sible. In the theory of functions, to
delete the single-valuedness obliges
us to make the systematic errors, In-
vestigated by Teichmuller t6J , Grun-
sky 133 , Robinson Ϊ5J , Heins (9J
and Ahlfors [1] For Schur problem
these phenomena do hapρen<>

5o Some distortion theorems«

Considering the fact ~§i ̂
tf
 (*)-£* o

for % e F^ and Z o for *& e V^
 $

^ t^ , we can obtain extensions of
Y.KOMATU's theorems [10] explaining
the- distortion of functions analytic
In the concentric circular ring:
by making use of his so-called "mono-
dromy conditions".

Theorem 7. Suppose that f (2) ±a
a aingle-valued analytic function, re-
gular and non-vanishing in Ό except
eventual poles & £ ( ^ =''•••' I)

 rj
 and

zeros CLjί C/ι* ι,- , in) and that it' satis-
fies the conditions '"̂^ = if (*) ] = M

 v
 »

i. we have the Inequalities:

Remarks. I* The conditions in the
Theorem 6, the equality signs being
preserved, reduce to the Schur's, if
the basic domain P is the unit cir-
cle. Moreover, if Ό is simply-con-
nβcted, the total system of theae con-
ditions becomes perfect.

II. Some analogous necessary condi-
tions for functions single-valued,
regular excepb the fixed poles <X£"
(,/*•">/•• / i)

 f
 and bounded on the

boundary, that is, |JU)1 « 1 for
^ <= 17 , can be established by the

similar ways based on (S).

where t^ , ^ are defined as in
the proof of Theorem 1«

Proof. We make use of the same
terminologies as in the Tbeoren 1* Now
we consider the integral

p

which vanishes by the residue theorem.
On the other hand, from the same reason
as in the Theorem 1, we obtain
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Makings use of the assumptions m,a If(*>I
* M-̂ i**-"* *-e fV and -the definition

of the:periodicity moduli - t-Λ, , we
obtain the desired results*

Nowr ?WΘ shall explain &n application
of Theorem 1 and 7« -As the frasie -domain
D we adopt a disc cut along the

coneβπtrid ^circular s l i t s and denote
the outer oi#dumfίerβnβe by -ΐ\ and
others by f̂  , • •• > T\v- # whose
distances: froift'the "origin are' R.̂ f R£,
•.. # K .̂ * ff^spec^tlvely* Let j Xz) be
a function, regular, single-valued,
f(o**-;o-:.i and ?-ί"'C:o)..» i v•> 'If we .apply

the 'Pheαreiri rl ând 7 for the function
im,A£f, we obtain-some distortion £n- *

equalities^ -^In tΛriê f irs lt place, %e r e -
s t r i e t £> as doirbly-connec'ted in order
to atίtalίn »the exa-tffc Φσrmulae^ Then we
ob t a in th e f&tlowing' disit or t i on ΐiίe qua -
l i t ie s j from? the Theordπίl, and 7« u

-R,

wher-ê  ,̂ LΓ= ̂ J . ^ ...v»* « Kζ
arid Vί l έ V= • - iβ - fc^e- invar iant module
of X> 4Γ^ For L/a:-pϊyr connected case,,
we obtain

i

where - ̂ ί ΛΪ
 a r e

 ^ e invariant moduli
of the

5
domain which has only two boun-

daries Γ, and F£ ' of the domain

D V'
v
that is, the domain filling up

the silts"""'ΓV--C /«.""4
r
 i, γ) °t 15".

Moreover, we can recognize some, ex-
tremal properties of functions which

1. maps Ό onto the schlicht full
plane cut along the u circular or
radial slits;

2. maps X> onto the βchlicht annu-
lus cut along the <i\-Z circular sli-
ts;

3. maps Ό onto the schlicht circu-
lar disc cut along the ΎI -i circular
slits;

4
β
 maps

5
 V>' onto the /-m- times cover-

ed diec • -exit -along the -some number of
clrcαiaV slitsr

In (1) radial slit's may
7
 be Infinite,

zero, infinite-zero or finite* (See

[Esf
ί
>y

1 % how* the diatόrtlon of
ΐfittϊσtlόri It&βlt;

;
 butr Ίfoeorem 7 cor*

p tfte '86?-<ί*alled ^nbnodroay con-
ditioned (See [13̂ 1•-)*.'

If we discuss the problem under the
assumptions m

v
έ'Ra f(a)^M

v
 or w ^

iJ«fc*ϊsH
v
for - ze Γ

v
 we oan establi-

sh the similar distortion inequalities
as in the Theorem 7.

β
1
 equalities in thtf Oarabedian-
r

u
s paper ••

i
"ΐilΓ

:
 %an be 'regarded

f t i f i i
3chi?t^rs paper ΐilΓ %an be regar
as Extremal cases" of" tifê &is tort ion
inequalities for our more general fami-
ly, by Theorem 1, 7 and .the related
Theorems',

6 A 'special ̂ character of
" trIpljr-connected 'ddϊMin

vith regard
 :
to tthe f.uno 11 on' in (1)

of the last ŝ ectlony Wβi offβv the fol-
lowing

1
 problem's ϊ/Wien

 Ί
άάύ: wV arrange

the* ίlt£3
:
 on "the* έ'ame circumference or

straight 'line ?

We shall now βxpίstin that triply-
connected domain" Us Special^ iϊt cπarac-
ter with respect to this problem*

Definition. Let TJ
U
 be the re-

flected curve
1
 of Π, with resjpect to

a a'tralght line ί \ When -
:
,.Γ

V
 ' coin-

cides with Γ
v
 s-3 a point-set for

each v and a fixed I , we call D
a domain symmetric with respect to i

 β

Moreover, the conformal Images of such
a tfόmajζjΐ"

i
 ΐ> are also galled to be βym-

metr*lc
β
: The line I and'l'ts conformal

images; areί called' symmetric ΐlne.

This*definition obliges us to dis-
tinguish the

!
 trlply-CΌnnected domains

from the ones, of highdf connectivity
P

For the" connectivity Tt a I / ̂  every
domain Is evidently symmetric and there
are infinitely many symmetric lines <>
For nx,"= S , any domains are also al-
ways but there.ϊs

:
 όiίly one symmetric

line. ''For 'u 14- , ,̂ 'any domains are
not symmetric' except sp&clal ones*
Moreover, for <n -1 £ every point of
the domain are the center of the sym-
metry, that is, every direction of that
point become a symmetric line* For
symmetric domains/ If we take, for a
given 2. , a point % suitably, there
happens remarkable relations:

and ζ %-t- provided z
long to a symmetric line*

does not be-
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Lemma Any symmetric domain can be
mapped onto a circular alit domain or a
radial slit domain whose.slits lie on
the sane circumference or the same st-
raight line, respectively»

Proof. This leπna follows evidently
also from other considerations, but we
shall give here a proof based on our
view-point. First, we consider the cir-
cular slits .mappingβ In. the Theorem 1,,
we can choose all the c* are equal
and i«l , tn, = I , and hence we have
the mapping function

f U>.* e*f (- Gr (* < )"+ fa*
 ;
 O )

with Its monodromy conditions
vύ^(Λ.?y~cύ

Vί
L&.t)9 y

 = l
' *'/-'

Λ
 * I? b e i n g

of-symmetric, these conditions are sa-
tisfied, and hence, we have .the desired
results.

For the radial slit mapping, we can
use of the similar relations for the
with respect to D , that is, there
is the point satisfying the relations

for a &iven α,** , lying on the
symmetric line. On the other hand,
for radial.slit mapping- the above rela-
tions correspond to the monodromy con-
ditions in the circular slit mapping*,

Garabedlan considered an extremal
problem stated as follows;

Let f'(zV be regular in Γ> save
at only one ..pole α~ such as
f( z)* Γr/fe-α,**) tί<o ^((^-αΓ)*-- about &Γ ,
and . ίft*»l - 1 for zeΓ . What is
the range of I ocvj .? >'or this .pro-
blem he answered in his thesis [2] as
follows:

Let f
β
 (*) realize the maximum of

ITfΓl # then f
β
(*) has at most on-I

zero points. If we assume *f ĉ ) has
just Ύi-ί zero points, the extremal
function f

 o
 (*> is uniquely determi-

ned and can be^.expressed in the form

We shall treat this problem under
the assumption that I> is symmetric
and one zero α.

(

β
 . We remark here that

if If iz>l 2? ί for z« Γ and αΓ
belongs to the symmetric line i of
symmetric domain D , then ifc*> - t
for z e T> • and Jtf lj (̂ >is 1 for
Z t Γ and n. z I then f (ss) has

at least one zero point. We now state
our theorem in the following manner:

Theorem 8. In our problem for the
symmetric domain X) , the function
stated in Lemma is the unique extremal
function under the following conditions;

(31) Ck, does not belong to a
ayiKmetric line;

(ill) fU) has at most one zero
point and at most one pole α.,"

 o

If Ό is simply-connected, then the
extremal.function coincides with the
Riemann

;
s mapping function, that is,

it maps ΐ> onto the disc tel > i „ If
&Γ belongs to a symmetric line, th-

ere is no non-constant.extremal func-
tion, provided τι Ϊ 3

Pϋooft If extremal case happens,
then f*(*> must have the form
f
β
(χ) * e*f (

r
CτC^ ft, )*(τt*i-

Λ
Γ>) Since

X) is syirimetriCi this function sure ̂
ly exist9-Uy the Lemma

β

Thus, we have obtained differences
for the essential different characters,
especially from the view-point.of con-
formal mapping, among the cases n,= i,
τ\. ~ a , 3 i n < oo and Ύ\> =« <» , we
have only few knowledges of the special
character,of triply-connected case.
Above mentioned Lemma and Theorem 8
show a speciality of u = 3 o
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