By Akira MORI

(Communicated by Y. Komatu)

Let w=f(z) be meromorphic in $1 \le |z| < \infty$ with an essential singularity at $z^{\pm\infty}$. For any $-\pi \le 0 < \pi$, $-\infty < k < +\infty$, we denote by $\Lambda(k, 0)$ the logarithmic spiral

 $z(t) = e^{i\xi} t^{1+ik}$ (15t < ∞ , $z(1)=e^{i\xi}$).

For any z, and $\varepsilon > 0$, let $\Gamma(z_0, \varepsilon)$ denote the disc $|z - z_0| \le \varepsilon |z_0|$, and let $\Delta(k, 0, \varepsilon)$ be the part of $1 \le |z| < \infty$, which is covered by the discs $\Gamma(z(t), \varepsilon)$ ($1 \le t < \infty$). Then Valiron proved ":

There exists in $-\infty < k < +\infty$ a set E of measure zero, such that for any k E and for any δ and ε , f(z) takes any value, with two possible exceptions, infinitely often in $\Delta(k, \delta, \varepsilon)$.

Let $\sigma_n \to \infty$ (n=1, 2, ...) be a sequence of points on z-plane. If the family of functions {f($\sigma_n z$)} is normal in 0< |z|< ∞ for any sequence { σ_n }, then we call f(z) a Julia's exceptional function or J-exceptional⁴. If f(z) is not Jexceptional, there exists a sequence { σ_n } and a point z, in 0<|z|< ∞ , such that {f($\sigma_n z$)} is not normal at z_0 .

We will prove:

<u>Theorem 1.</u> Let w=f(z) be meromorphic in $1 \le |z| < \infty$ with an essential singularity at $z=\infty$. If f(z) is not J-exceptional, there exists in $-\infty < k < +\infty$ a set E of measure zero, such that,

(1) if D_1 ; D_2 , D_3 are three simply connected closed domains on w-plane lying outside each others, then, for a certain (one D'among these three, $\Delta(k,$ δ, ϵ) contains infinitely many simply connected islands above D for any $k \notin E$ and for any δ and ϵ ; and

(11) if D_1 ; ..., D_5 are five domains of mentioned sort, then, for a certain one D among these five, $\Delta(k,$ δ , s) contains infinitely many schlicht islands above D for any k \in and for any δ and s.

<u>Theorem 2.</u> Let w=f(z) be meromorphic in $1 \le |z| < \infty$ with an essential singularity at $z = \infty$. Then there exists in $-\infty < k < +\infty$ a set E of measure zero, such that,

(i) if a is any point on w-plane other than certain exceptional values a_i which are at most two in number, then $\Delta(k, \delta, \epsilon)$ contains infinitely many a-points of f(z) for any $k \in E$ and for any δ and ϵ_j and (ii) if: a is any point other than certain exceptional values a_k whichare at most four in number, then A(k, δ, ϵ) contains infinitely many simple a-points of f(z) for any $k \in \mathbb{R}$ and for any δ and ϵ .

The first part of Theorem 2. contains Valiron's theorem. We remark that Theorem 1 does not hold for Jexceptional functions. In fact, if there exists a sequence of islands. Δ_n (n=1, 2,...) above a closed domain D, which are contained in $\Delta(k, \delta, 1/n)$ respectively, it is easily seen that f(z) can not be J-exceptional.

First we will prove the following

Lemma 1. Let E be a set of positive measure in $-\infty < k < +\infty$. Then, for any 6 and 8, the sum of all $\Delta(k, 0, 0)$ 8) for k \in covers a certain neighbourhood of $z = \infty$.

<u>Proof.</u> Without loss of generality we can assume $\delta=0$. By $\zeta=\log z$ we map $1 \leq |z| < \infty$ on the right half of $\zeta =$ $\xi + i\eta$ -plane. Then $\Lambda(k, 0)$ is mapped on a countable number of parallel half straight-lines: $\eta \leq k\xi$ (mod. $2\pi)$, $0 \leq \xi < \infty$. It suffices to prove that the sum of all the strips: $k\xi + 2n\pi - \epsilon$ $< \eta < k\xi + 2n\pi + \epsilon$, $0 < \xi < \infty$, for $k \in E$ and $n=0, \pm 1, \pm 2,...,$ covers a certain half-plane $\xi > \xi_0(2)$.

Suppose that this were false, then we could find a sequence of points $\xi_{\nu} + i\eta_{\nu}$ ($\nu = 1, 2, \dots; 0 < \xi_{\nu} < \xi_{\nu} < \dots$ mod. 2π does not fall in the interval $I_{\nu} = (\eta_{\nu} - \varepsilon, \eta_{\nu} + \varepsilon)$ for any k ϵE . Let η^{ν} be one of the limiting values of η_{ν} , then, by taking suitable subsequence, we can assume that η_{ν} ($\nu = 1$, $2,\dots$) are contained in the interval $I^{*} = (\eta^{*} - \varepsilon/2, \eta^{*} + \varepsilon/2)$ and further $\xi_{\nu+1} - \xi_{\nu} \ge \text{const.} > 0$. Then, since $I^{*} \subset I_{\nu}$, k ξ_{ν} mod. 2π does not fall in the interval I^{*} for any k ϵE and for any ν .

On the other hand, H. Weyl proved³⁾: if $\xi_{r+1} - \xi_r \ge \text{const.} > 0$, the sequence kg, kg₂,... mod. 2π is uniformly dense in the interval (0, 2π) for any k with exception of a set of measure zero. Hence E must be of measure zero, which contradicts the hypothesis.

From Lemma 1 follows

Lemma 1'. Let $z_n \rightarrow \infty$ (n=1, 2,...) be a sequence of points on z-plane. Then, there exists a set E of measure zero, such that $\Delta(k, \delta, \varepsilon)$ contains infinitely many points of $\{z_n\}$ for any k E and for any δ and ε .

Proof Let δ and ε be fixed. By Lemma 1 we see that, for any positive integer λ , the set $E_{\lambda}(\delta, \varepsilon)$ of values of k, such that $\Delta(k, \delta, \varepsilon)$ contains none of z_{λ} , $z_{\lambda+1}$, ..., is of measure zero. We put $E(\delta, \varepsilon) = \sum_{i=1}^{N} E_{\lambda}(\delta_{i}, \varepsilon)$, so that mE(δ , ε)=0. Then, for any k \in (δ, ε) , $\Delta(k, \delta, \varepsilon)$ contains infinitely many points of $\{z_{n}\}$.

Next, let $\{e^{i\varphi_{\mu}}\}$ $(\mu = 1, 2, ...)$ be a sequence of points, which are dense on |z| = 1. For each pair of positive integers μ and ν , we construct the exceptional set $\mathbb{E}\{0_{\mu}, 1/\nu\}$ and put

 $E = \sum_{\mu,\nu}^{\infty} E(\delta_{\mu}, 1/\nu).$ This E satisfies the condition of the lemma, since, for any δ and ε , $\Delta(k, \delta, \varepsilon)$ contains $\Delta(k, \delta_{\mu}, 1/\nu)$ for suitable values of u and ν .

Proof of Theorem 1.

(1). First, we will prove that there exists, for at least a certain one D among D_1 , D_2 , D_3 , a sequence of points $z_n \to \infty^-$ (n=1, 2;...), such that each disc $\Gamma(z_n, 1/n)$ contains a simply connected island above D. Suppose that this were false, then there would exist a certain n_0 , such that, for any point z_0 in $0 < |z| < \infty$ and for any sequence of points $|\sigma_{V} \to \infty|$, any one of $f(\sigma_V z)$ has in $\Gamma(z_0; 1/n)$ no simply connected islands above any one of D_1 , D_2 . Then, by Ahlfors' theorem⁴, the family $f(\sigma_V z)$ is normal in $\Gamma(z_0; 1/n_0)$. Since $\{\sigma_V\}$ and z_0 are arbitrary, it follows that f(z) is J-exceptional, which is a contradiction.

Let $E(D_1, D_2, D_3)$ be the exceptional set of Lemma 1' for the above sequence $\{z_n\}$. Then since, for any δ , ϵ and $k \in [D_1, D_2, D_3)$, $\Delta(k, \delta, \epsilon/2)$ contains infinitely many ones of z_n , $\Delta(k, \delta, \epsilon)$ contains infinitely many discs $\Gamma(z_n, 1/n)$ and consequently infinitely many simply connected islands above D.

Next, we construct the exceptional set $E(D_1, D_2, D_3)$ for every configuration D_1, D_2, D_3 , where D_i is a polygon on w-plane whose vertices are rational points. The set of all these configurations is enumerable, so that, if we put $E = \sum E(D_1, D_2, D_3)$, mE=0. Since any closed domain on w-plane can be enclosed and approximated by polygons with rational vertices as good as we please, we see easily that the set E satisfies the condition of the first part of Theorem 1. The second part can be proved similarly.

For the proof of Theorem 2, we use

Lemma 2. (Valiron⁴⁾). If f(z) is Jexceptional, then there exists a sequence of points $\sigma_n \to \infty$, such that $f(\sigma_n z)$ converges, uniformly in the wider sense in $0 < |z| < \infty$, to a non-constant function F(z) meromorphic' in $0 < |z| < \infty$.

<u>Proof.</u> By Ahlfors' theorem⁴, we can find on w-plane a disc D: $|\mathbf{w} - \mathbf{a}| \leq \rho$ such that there exist on z-plane infinitely many simply connected islands \mathcal{A}_n above D. Let σ_n be an a-point of f(z) in \mathcal{A}_n . Since \mathcal{A}_n is simply connected, any one of $f(\sigma_n z)$ takes a value lying on $|\mathbf{w} - \mathbf{a}| = \rho$ at a point on |z| = 1 and takes the value $\hat{\mathbf{a}}$ at z=1. Hence the limiting function of any convergent subsequence of $\{f(\sigma_n z)\}$ can not be a constant.

Proof of Theorem 2.

For f(z), which is not J-exceptional, Theorem 2 is contained in Theorem 1, so that we have only to prove the theorem for J-exceptional functions.

Let $f(\sigma_n z)$ be the sequence of Lemma 2, and $\{z^{(m)}\}$ ($\nu = 1, 2,...$) be a sequence of points, which are dense in $0 < |z| < \infty$. First we fix a value of ν . Then, for any ε , $f(\sigma_n z)$ converges to F(z) uniformly in $\Gamma(z^{(m)}, \varepsilon/2)$, so that, for sufficiently large n, f(z)takes in $\Gamma(\sigma_n z^{(m)}, \varepsilon/2)$ any value, which is taken by F(z) in $\Gamma(z^{(m)}, \varepsilon/4)$, with the same or less multiplicity as F(z):

Let E, be the exceptional set of Lemma 1' for the sequence $\{\sigma, z^{(m)}\}$ $(n=1, 2, \ldots)$, and we put $E = \sum_{i=1}^{m} E_{i}$, so that mE=0. Then, for any kiE, and for, any δ , e and ν_{i} , $\Delta(k, \beta, \delta' \ell^{2})$ contains infinitely many points of $\{\sigma, z^{(m)}\}$ $(n=1, 2, \ldots)$, so that $\Delta(k, \delta, \epsilon)$ contains infinitely many ones of $(\neg(\sigma_{n} z^{(m)}, \delta'/2))$ $(n=1, 2, \ldots)$ for any ν . Since the sum of $(\neg(z^{(m)}, \delta/4))$ for $\nu = 1, 2, \ldots$ covers the whole $0 < |z| < \infty$, we see) that f(z) takes any value, which is taken by F(z) in $0 < |z| < \infty$, infinitely often in $\Delta(k, \delta, \epsilon)$ with the same or less multiplicity as F(z).

On the other hand, since $\Phi(\xi) = F(e^{\xi})$ ($\xi = \log z$) is meromorphic on the whole finite ξ -plane and $\xi = \infty$ is its essential singularity, $\Phi(\xi)$ takes, by Nevanlinna's theorem", any value except at most two and takes any value simply except at most four. This holds also for F(z), since the mapping $z=e^{\xi}$ is locally schlicht.

Thus Theorem 2 is proved.

(*) Received November 7, 1950.

(1) G.Valiron: Le théorème de M.
Picard et le complément de M. Julia.
Journ. de math. pur. et app. 9ième
série, t. 7 (1928).
(2) A.Ostrowski: Über Folgen analytischer Funktionen und einige Versch-

tischer Funktionen und einige Versch-Arfungen des Picardschen Satzes. Math. Zeits. 24 (1926). (3) H.Weyl: Über die Gleichver-teilung von Zahlen mod. Eins. Math. Ann. Ed. 77 (1916). Cf. especially Satz 21, which is more general than mentioned above.

(4) L.V.Ahlfors: Sur les domaines dans lesquels une fonction méromorphe prend des valeurs appartenant à une région donnée. Acta Soc. sci. fenn., N. s. 2, Nr. 2 (1933). (5) G.Valiron: loc. cit. (6) L.V.Ahlfors: Zur Theorie der

Überlagerungsflächen. Acta math. 65

(1935). (7) R.Nevanlinna: Eindeutige analytische Funktionen, Berlin 1936.

Mathematical Institute, Tokyo Univ.