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Let waf(z) bé meromopphic in 1 & |zl<e

with an essential singularity at ze® ,
For any -ngd<n, -~u<k<+o , we do~
note by Alk, 8) the logarithmic. spiral
2(t) = ¢ ™ (1gt <o, z(1)mef),
For any z, and & >0, et 1 (z,, &) ds-
note the dtsc |2 - z,|'% &(z.| , -and- let
A(k, 6, &) be the part of 1glzi<o ,
which 1s covered by the discs T (z(t),
$) (Lst <o), Then Valiron proved?

There exists in -w< k< +e0 g set
E of measure zero, such that for eany
k §E and for any 6 and & , f(z) takes
any value, with two possible exceptlons,
infinitely often in A(k, 6, &).

Let o3-+® (n=1, 2, ...) be a sequence
of points on z-plane, If the family
of functions {f{&.2z)} 1s normal in 0<
Jzt<w for any sequence {aw}, then we
call f(z) a Julia’ssexceptional function
or J-gxceptional®, 'If f(z) is not J-
exceptional, there exigts a sequence {o
and a point 2z, In 0 <|z|{<w, such that
{r(eaz)} 1is not normal at z, »

We will prove:

sorenm: Let w=f{z) be meromor-
phic in 1€ 12l<w with an essentlal
singularity at z=e . If £(z) 1s not
J-sxceptional, there exists in -w<k<
+®w a set E of measure zero, such that,

(1)/%2f Dy; D2, Ps aré three simply
connected- cloded domains on w-plane
lying éutside each others, then, for a
certain lone D’among-these three, A(k,
8, &) contains infinitely many simply
connected 1slands above D for any k& E
and for any 6 and & ; and

(11) 4f Dy} weey Dg are five do-
mains of mentioned sort, then, for a
certalfi’ dhe U among these five,- Alk,
6, &) contains infinitely many.schlicht
islands above D -for any kq E and for
any b and & .

Theorem 2, Let w=f(z) be meromor-
phic in 1€ jz)< .with an essential
singularity at z= o', Then there exi-
sts in ~w< k< *® a set E of measure

zero, such that,

{%) 1f o 13 any point on w-plane
other than certaln exceptional values
¢ which are at most two 1n number,
then A(k, 8, &.) contains infinitely
many a-points of f(z) for any kK XE and
for any 80 and & ; and

(14) if° a is any point other than
cortain. exceptional values .ay which-
are ot most four-in number, then Alk,
8, &) contains infinitely:many -simple
a -points. of f(z) for any k 4 E and for
any- 8 and> £,

The first part of Theorem .2 con~
tains Valiron’s thedrem. - We remapk .
that Theorem 1 ddes not hold for J=-
exceptional functions. In.fact, if
there exlsts a sequence of lslands.

4, (n=1, 2,...) above a closed domaid
D, which are contained in A(k, 8, 1/n)
reogectively, it 1s easlly seen that
f(z) can not be J-exceptional.

First we will prove the following

lemma 1. Let E be a set of posltive
measure in ~eo <k < +% , fhen, for
any 6 and 8, the sum of all Ak, o,
&) for k €2 covers a certain nelgh-
bourhood of z=o00 ,

Proof, Without loss of generality
we can.assume 6=0, By 3.=log z we map
1 5 {2/ <» on the right half of 1§ =

5 + in-plane. Then Alk, 0) is map-
ped on & countable number of parallel
half straight-lines: n=k& (mod. 2u),
Ox & <o , It suffices to prove that
the sum of all the strips: kg + 2n7n =~¢

< n<kgE+2nw+e , 0<gELo, for
kek and n=0, * 1, £2,..., covers a
certain half-plane 2 >%,(8),

suppose that thls were false, then

we could find e sequence of points

Byt 17.. (v= 1, 250603 O < 2,2 54 <,40
<j+%0 , -T ¥ <+1), such that ki,
mod. 21 does not fall in the interval
Iy = (-6, W+E) for any k«E, Let
7" be one of the limiting values of
7. , then, by taking suitable subse~
quence, we can assume that n, (v=1,
2*...) are contalned In the interval
* = (n* -&/2, 0* + ¢/2) and further
£,y - ¥, & const,>0. Then, since
*C Iy, k8 mod, 2m does not fall in
the interval I* for any keE and for

any ¥ .

On the other hand, H. Weyl proved®:
if §yo — &, x const. > 0, the sequence
kg 5 K§i »ese mod. 2% 1s uniformly
dense in the interval (0, 2m) for any
k with exception of a set of measure
zero, Hence E must be of measure zero,
which contradicts the hypotheslis.
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From Lemma 1 follows

Lemma 1/, Let zpa—e (n=l, 2,..,)
be a sequence of points on z-plane,
Then, there exlsts a set E of measure
zero, such that 4(k, 6, £ ) conteins
infinitely meny points of {za} for
any X § £ and for any 6 and e .

Let 8 and £ be flxed. By
Lemma 1 we see that, for any positive
integer X , the set E,(8, & ) of values
of k;, such .that Ak, 8, & ) contains
none ‘of 25, Zxrsl poeey ig Of measure
gero., We put E(8, &)= 23Ex(08,- € ), so
that mE(6, & )=0., Then, for any k&E
{8, £), -Alk, '8, £) contains infini-
tely many psints of {z.} .

Next; let {o%]} (p=1, 2,...) be
a sequence of -points, which are dense
on £} = 1, Por each pair of positive
integers m-and v , we construct. the
exceptional set‘Ez O .1/v ) snd put

o0 v

E= Z.E(8:, 1/v). This E satisfles
the condition of the lemma, since, for
any 6 and &, A(k, 6, & 5 contains
Alk, 80y 1/v) for sultable .values of
w and VY o

Proof of Thedrem 1l.

(1). First, we will prove that thers
existd, for at least a certailn one D
among Dy, D2, D3, & sequence -of points
2z (n=1l, 2;...),-8uch that each
dise [(z., 1/n) contains a simply con-
nected 1sldnd above D. Suppose that
this were false, thenh thereé would exist
a certaln n,, such that, for 'any point
%2, In 0<|z{< w and for .any sequence-
of points "o+ , any oné of (o}, z)
has in (2,5, 1/n) no.simply connected
islands above any ones of Dy, Di, Dss -
Then, by Ahlfors® theorem*, the family

if(oy2)}- 1s normal in T (z,, 1/n,)%
Since {e,} and z, are arbitrary, it
follows that f{r) is J-exceptional,
which Is a contradiction.

Let E(Dy, Dz, Ds) be the exceptional
set of Lemma 1’ for the above sequence
{#.} + Then since, for any 6, ¢ and
k 4 E(Dy, D1, Ds), Ak, 8, £/2) conta-
ins infinitely many ones of z,, Alk,
8, &€ ) contains infinitely many discs
(zss 1/n) and consequently infinitely
many 8imply connected islands above D.

Next, we construct the sesxceptional
set E(D, , Dy, Dy ) for every configura-
tion Dy, Dy, D;, where D; 1s a polygon
on w-plane whose vertlces are pational
points. The set of all these configu-
rations 1s enumerable, so that, 1f we
put E = EE(D(, Da, Dsg), mE=0,’ Since
any closed domain on w-plane can be
enclosed and approximated by polygons
with rational vertices as good as we
please, we seo easlily that the set B
satisfles the condition of the filrst
part of Theorem 1.

The second part can be proved simi-
larly.

¥or the proof of Theorem 2, we use

Lemms 2, (Valiron®™). If f£(z) 1s J-
exceptional, then there exists a sequ-
ence of points o, - , such that
f(o,z) converges, uniformly in the wider
sense 1n 0<|zl<® , to a non-constant
function F(z) .mefomorphic’ in' 0 < (z{< o .

Proof. By Ahlfors’ theorem®, we can
£ind on w-plane a disc Dt |w-ajse
such that there exist on z-plane infi.
nitely many simply connected islands 4,
above D, Let .oy be gan a-polnt of
flz) 1n Ay » Since 4y 1s simply con=
nected, any one of f{ohz) takes a value
lying on |wr-al=¢ .  at a point on
rzl = 1 and. takes the value a at z=1,
Hence the limiting function of "'any con-
vergent subsequence of {f(oyz)} can
not be a conatant.

Proof of Theorem 2,

For £(z), which 1s not J-exceptional,
Theorem 2 is contalned In Theorem 1, so
that we -have only to prove the theorem
for J-exceptional functlons,

Let r(oyz) be the sequence of Lerma
2, and tZ“"} (1/: 1, zyoonv) be B; 8¢~
quence of polnts, which are dense in
O0<|z|<® , First we fix a value of
v . Then, for any &., f(o.z) conver-
ges to #lz) uniformly in (2", &/2),
80 that, for sufficlently large.n, f(z)
takes in [ ( onz® , &/2) any value,
which 1s taken by F(z) in T(2%, EA4),
with the same or less multiplicity as

F(z):

Let E, be the exceptional set of
Lemme 1’ for the sequence {ewz*’} (n=1,
2,44.), 4nA we'put E= BB, so that

=0, “Thepy- for any kK and for, any
5, 2 and vy . Alk, .8; &/2) contalns
infinitely 'many podrits, of {3z}

(n=1, 2y04+), 80 that Alk, 8, & )} con-
tains infinitely many ones of T (e2z¥ ,
2/2) (n=l, 2,...) for any v.. Since
the sum of [{z%, &/4) for V=1, 2,...
covers the:whole 0 < [zl @ ., we see)
that f(z) takes-any.valug,~which 1s .
taken by F(2).1in.0 < lz]<to0, infinite-
ly often in A(k; 8, &) with the same

or less multiplicity as F(z).

On the other hand, since d{3)=F(e*)
(3= 1log z) is-meromorphic on the whole
finite y-plane and ¥ = 1is its essen~
tial ssngularity, ®(y) takes, by Nevan-
linna®s” theorem®, any value except at
most two and takes any velue simply ex-
cept at most four., This holds also for
F{z), 'since the mapping z=e® 1s local-
1y schlicht. :

Thus Theorem 2 1s proved.

(*) Received November: 7, 1950,
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