ON A MEROMORPHIC FUNGTION IN THE UNIT CIRCLE WHOSE NEVANLINNA'S CHARACTERISTIC FUNCTION IS BOUNDED

By Kihachiro ARIMA

(Communicated by Y. Komatu)

Let E be a Borel set on the unit circle $|Z|=1$, and let its capacity be positive. Then there exists a mass distribution $\mu(a)$ on E so that

$$
u(z)=\int_{E} \log \frac{1}{|z-a|} d \mu(a)
$$

is harmonic and bounded in the unit circles

$$
|u(z)|<K
$$

We suppose that $f(Z)$ is a meromorphic function in the unit circie and its characteristic function $T(x, f)$ is bounded. Let a_{i} be a pole of order $m\left(a_{j}\right)$. Applying Green's formula to $\log \left(1+|f(z)|^{2}\right)$ and $u(z)$. we have
$4 \int_{0}^{x} \int_{0}^{2 \pi} u(z) \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} x d x d \theta$
$=x \int_{0}^{2 \pi} \frac{\partial}{\partial x}\left(\log \left(1+|f(z)|^{2}\right)\right) \cdot u(z) d \theta$
$-r \int_{0}^{0} \frac{\partial u}{\partial r} \log \left(1+|f(z)|^{2}\right) d \theta+4 \pi \sum_{\left|a_{i}\right|<r} u\left(a_{i}\right) m\left(a_{i}\right)$, where $z=r e^{i \theta}$, Dividing by $4 \pi r$ and then integrating, we have

$$
\left|\int_{0}^{x} \frac{d r}{x}\left(\sum_{\left|a_{i}\right|<r} u\left(a_{i}\right) m\left(a_{i}\right)\right)\right| \leqq \int_{0}^{r} \frac{d r}{r} K \sum_{\left|a_{i}\right|<x} m\left(a_{i}\right)
$$

$$
\leqq K \int_{0}^{r} \frac{n(r, \infty)}{r} d r=K N(x, \infty)
$$

$$
\leqq K T(r, f)
$$

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{x} \frac{1}{r} d r\left[\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} r d r d \theta\right] \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \left(1+|f(z)|^{2}\right) u(z) d \theta-\frac{2}{4 \pi} \int_{0}^{x} \frac{d x}{x} \int_{0}^{2 \pi} \log \left(1+|f(z)|^{2}\right) \frac{\partial u(z)}{\partial r} d \theta \\
& +\int_{0}^{x} \frac{1}{x}\left[\sum_{\left|\alpha_{i}\right|<r} u\left(a_{i}\right) m\left(a_{i}\right)\right] d x+o(1), \\
& \left|\frac{1}{\pi} \int_{0}^{r} \frac{d r}{r}\left[\int_{0}^{r} \int_{0}^{2 \pi} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} u(z) x d x d \theta\right]\right| \\
& \leqq K T(r, f)+o(1), \\
& \left|\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \left(1+|f(z)|^{2}\right) u(z) d \theta\right| \\
& \leqq \frac{K}{4 \pi} \int_{0}^{2 \pi} \log \left(1+|f(z)|^{2}\right) d \theta \\
& \leqq K m(x, f)+O(1) \leqq K T(r, f)+O(1),
\end{aligned}
$$

Hence

$$
\left\lvert\, \int_{0}^{x} \frac{d x}{x} \int_{0}^{2 \pi} \log \left(1+\left.1 f(z)\right|^{2}\right) \frac{\partial u(z)}{\partial x} d \theta\right.
$$

is bounded. Thus we get the following theorem:

Theorem 1. Let $f(z)$ be a meromorphic function whose characteristic function is bounded, then

$$
\int_{0}^{x} \int_{0}^{2 \pi} \log g^{+}|f(z)| \frac{\partial u(z)}{\partial x} x d x d \theta
$$

is bounded.
$L(\varphi)=\int_{\left|z-\frac{3}{4} e^{i \varphi}\right|<\frac{1}{4}}^{\text {We put }} \cos \psi d \psi \int_{0}^{\cos \frac{\psi}{2}} \log _{0}^{+} \frac{1}{|f-a|} d t$,
where $z=r e^{i \theta}=e^{i \varphi}-t e^{-i \psi}, 0<x<1$
and $t=\left|e^{i \varphi}-z\right|$. Then applying Tujji's method? from Theorem 1, we have the following theorem:

$$
\begin{aligned}
& \text { Theorem 2. The set of } e^{i \varphi} \text { where } \\
& L(\varphi)=\infty \text {, is of capacity } 0 \text {. } \\
& \text { In this note we denote by } g(t) \text { a } \\
& \text { positive function of } t \text { such that } \\
& \lim _{t \rightarrow 0} \int_{t}^{1} g(t) d t=\infty .
\end{aligned}
$$

Then we tet the following theorem.
Theorem 3. Let $f(x)$ be a meromorphic function whose characteristic function is bounded. We suppose that. E is a Borel set on the unit circle $|z|=1$ and E is of capacity positive. If at each point $P\left(z=e^{i \varphi}\right)$ belonging to E, there exists an angular domain with vertex at P in which

$$
\log ^{+} \frac{1}{|f(z)-a|} \geqq g(t) \text {, where } t=\left|e^{i \varphi}-z\right|
$$

then $\quad f(z) \equiv a \quad$.
Corollary. We suppose that $f(z)$ is regular in the unit circle and $|f(z)|<1$. We put

$$
\sigma(\varphi)=\lim _{x \rightarrow 1} \int_{0}^{\varphi} \log \left|\frac{1-\bar{a} f(x)}{f(x)-a}\right| d \theta
$$

Where $z=r e^{i \theta}$, We suppose thot, for
$e^{i \varphi}$ belonging to a Borel set E on the unit circle, as $Z_{i} \rightarrow e^{i \varphi}$ in an angular domain with vertex at $e^{i \varphi}$.

$$
\int_{0}^{2 \pi} R\left(\frac{e^{i \varphi}+z}{e^{i \varphi}-z}\right) d \sigma(\varphi)>g(t),
$$

where $t=\left|e^{i \varphi}-z\right|$, and we denote by $R(w)$ the real part of w o If E is of capacity positive, $f(z) \equiv a \quad$ -

Corollary. Let $u(z)$ be a positive harmonic function in the unit circle。 Let E be a set of $P\left(z=e^{i \varphi}\right)$ where $u(z\}>g(z)$ as $z \rightarrow e^{i q}$ in an angular domain with vertex at P, where $t=\left|e^{i \varphi}-z\right|$ - If E is of capacity positive, then $u(z) \equiv \infty \quad$ 。
(*) Keceived October 10, 1950.
(1) M.Tuj1. Beurling's theorem on exceptional sets. (To appear shortlyo)

Kagoshima University.

