NON-DISCRETE LINEARLY ORDERED GROUPS

By Takesi ISIWATA

(Communicated by Y. Komatu)

A group 6 1s called a linearly
ordered group if & satisfies the
following conditions:

(1) & is a linearly ordered setj

(2) ¢ 1s homogeneous; a2
implies cad Z c4d for arbi-
trary elements ¢ , 4 in

G o

In a linearly ordered set, the 1n-
trinsic topology (i.e. the one defined
by taking the open intervals, consist-
ing of x such that a<2x , x<a
or a<x<4% , where @ , & are
elements in ¢ , as a base for the
open set of the space) 1s equivalent to
the topology by the Moore-Smith conver-
gence or interval tovology and it is a
T: -normal space. Moreover, G 18 a
topological group in this topology.

But, we did not know about relations
between the structures of groups and
their topologles, We study about these
polnts. Throughout this paper the let-
ter €r will denote & linearly ordered
group (abbreviation: l.0.g.). In §1
we show that 6 1s a topological group
and classify it into two types accord-
ing to be locally archimedean or not.
We then show that the topological pro-
perties exert an influence upon the
structures of groups, i.e, if & 1is
connected, then & 1is locally compact,
and if locally compact, then locally
srchimedean. In § 2 we show that if

64 1s locally archimedean, all sub~
groups of ¢ are open; l.e. the struc-
tures of groups exerts an influence
upon 1ts topologles. We 1nvestigate
its speclal subgroups when € is non-
locelly archimedean. 1ln § 3 we show
that zero-dimensionality and totally
disconnectedness are equivalent, and
one-dimensionality and locally com-
pactness so 1s also., Consequently, if
Gr is one-dimenslonal then & has the
component homsomorphic to the additive
group of real numbers. In 8 4 we
consider the problem of completion.

If 6 1s locally archimedean, it is
imbeded densely in one-dimensional
l.0.g. If € 1s non-locally archi-
medean, then, even when & 1is com-
plete, G 18 still zero-dimensional.
In § 5 we show that, if 6 1s locally
archimedean, its dimension is equiva-
lent in both Urysohn-Menger’s and
Lebesgue’s senses., In § 6 we see uni~
formities of one-~dimenslonal group
under inner-asutomorphisms.

§1. We assume always that the to-
pology in G 1s intrinsic topology.
We set

Up@y={t ; o4t <ok , B>el,

then {U,,(a.) , befr} is the basis

of the neighbourhood (abbreviation:
n.b.d.) about @ . Now we assume
that ¢ 1s non-discrete, i.e, 1if p>€
there exists ¢ such that Pp>v>e.,
then we can easily prove the following
theorem,

Theorem 1.1, € has the equivalent
following properties:
1) e< —> 38 ;5 e<h<ca ;

2) €<0 —>3fc; echcc<cBb<a;
3) e<a—>3 &% ; e<hb¢ca
4) o= aup(n; x<e) e=uwnf(x;25€)5
5 = (3t xKe) e=inf (2 X)),

From sbove theorem & 1s a topolo-
glcal group., Next we define some ter-
minologies. All G considered in this
paper are non-discrete even if they are
not explicity stated.

Definition. & 1s called locally
archimedean (abbreviation l.a.,) if there-
exists a n.b.d. Ug(€) such that 1fe<cds
there are some integer wm = m(c¢,4) for
which C*>4% . The n.b.d. having
this property is called locally archi-
medean neighbourhood (abbrevistion l.a.
n.b.de)s A subgroup of & is non-
discrete closed. € 1s called connec-
ted or totally disconnected 1f the com-
ponent of ¢ is & or e

Theorem 1.2. If € 1s locally com-
pact, € 1is l.a.

Proof. Let €r be not l.a., we can
take Ug.(e) as a l.a.n.b.d., for which
Use) 1s compact; i.e. =3 &3
e<p<asr Vs H<a . We consi-
der {gmy , then by assumption there
exists a point P € UalCe) such that p

ls accumulation point of { ™} .
Therefore U.(P) , e<c< 4 , contains
some 4" 1.e, el $mcpc o However
we have $ < L*c < 4™ , hence if

m = m~+1 » m « This 1s
a contradiction?dp) i
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Theorem 1.3, If & 18 l.a., then
Gr satisfy the firat counteble axiom.

Proof. We can take UaCe) as a
l.a.n.b.d. and classify elements & ,
e< &<a  into classes { Any such
that

An={1; a>t>e.t"sa, t7¢ m}.

We take an element *xn from each Aw ,
then { Ug.(€)} 1s the basis of e

Corollary 1. If € 1is l.a. € is
metrisable.

Corollary 2, If G 1is locally com-
pact, €r is locally
bicompact,

Theorem l.4. A necessary and suffi-
cient condition (abbreviation: n.a.s.c.)
in order that Cr 1s locally compact 1is
that there is a n.bede U(E) such
that arbitrary subset V cU(e) has auwpV

and WnfpV .

Proof. We can assume that uUc(e) 1is
compact and if v < vU(e) , so is T
also, Let P Dbelong to V¥ and put
CPY ={x3 xeV pax) o Next take
metzj and make £e¢l , and 80 on.

Then the family of closed sets {CLP3I} has
the finite-intersection property, there-
fore TJTLPI O o It 1s easy to see
that the intersection is only a point
which is awp Vv « About inpv the
argument 1s similarly. The inverse 1is
obvious,

Theorem l.5. If & 1is connected,
Gr 1s locally compact.

Proof. If G 1s not locally com-~
pact, we can take from above theorem
some n.sb.d. V in some uU(€) such
that there does not exist wwpV  (or

wmy v (. Consider the following
sets
Cr, = {x; x<t, tevy,

& ={zivttis arbitrary in .

Then G =6Cr,Y €&z , EriA€a=0 and

Gy, » Gra are both open sets, but this
is a contradiction.

§ 2. Definition. For an arbitrary
element & we denote Max(b,8') by
\ B\ « D meens |&|M < la|
for all integer m , and we define
the following symbols:

Aw={ 4 ; »Qa},
A)={A) ; aef),
C(u):{ a group generated by A(q)} s
c(&)={a group generated by A(er)},
[N} ={Y5 191<ix| for some xeN}.

Theorem 2,1, If Cr 1s l.a,, arbi-
trary subgroups are open,

Proof. Let subgroup N be not open,
then there is a point a such that
N3a, &-N>a, We show that this 1is a
contradiction., In general, we can as=-
sume a=¢€& , Since Cr has the first
countable axiom, there are {d .} e N,
{4} er—n such that {d«}—e , {4ay—>¢€
and dysda>eeeee » By > Ba>eceenn "

Now we can take Uy,.(e€2 as a l.a.n.
bede For Udu(ed = m=nldn) 3 m>m,
Bm € Udnle) , since er—~ 1s open
2 de = de(Bwm) i ode < dm .
Ud,(bm)aN=0s &nd hence Uy, (8m)dg does
not contain elements of N , for 1if it
contains an element ¢ of ~ , then
Udg(8m ) > Pdy € N - This 1is
impossible, therefore N does not con-
tain % such that Bmdi™<t <bmdz*"
M=1,2500 - « But by assumption =m }
Al > Bm 1.6¢ Smdit<e< Bmdz™™ ,
een o This is a contradiction.

Corollary l. If G 1s connected
there are no subgroups.

Proof. From the above theorem,
Theorem 1.5 and Theorem 1.2 in § 1.

We can easily prove the following
theorem

Theorenm 2.2, C(&) 1s an open sub-
group and C(a)=]cca) | .

Theorem 2.3, A n.,a.s.c., in order
that C(a) =¢(4#) 1is that if a < & ,
there exists an integer W § a™> & .

Proof. Since a< 4, C@)c C(&) .
Now, let C(a)$ ¢ , then = m
pm>a 1l.,e. pm™m>an> 4 o This
shows c(4) c (@) « The necessarity
1s obvious from a & C(a) »

Corollary 2. Clerd>=3{,C00) = ||
and 1t 1s an open normal subgroupe.

Corollary 3. €y 1s archimedean 1if
and only 1f (C(&Hy=¢€

Theorem 2.4 C(€r) 1s only one
subgroup such that the factor group of
Gr by its normal subgroup is archi-
medean l.0.g. (where er/c(&) 1s dis-
crete).,

Proof. From the above corollary 2
and theorem about ordered groups we
see that 1f €r /A 18 l.048e, INI=N »

8 3. In this section, we consider
the dimension in the sense of Uryshon=~
Menger. For arbitrary n.b.d. Uced ,

Ule) — utey at most consists of
u(e) and img Ule) . Hence we have
the following theorem.

Theorem 3,1. Sr 1a at most one=di-
mensional.
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In general, if a metric space X
13 zero-dimensional, then X 18 total~
ly disconnected. But the inverse is
not true and there are a topological
groups which are zero-dimenslional and
locally compact. On the other hand
there are one-dimensional totally dis-
connected topologlcal groups. However,
in l.0.8., We have the following spesr
clal theorem,

Theorem 3+2. A N.Re8+Co in order
that €r 1is one-dimensional is that &
is locally compact.

Proof. If Er 18 not locally com-
pact, then from Theorem l.Z end the
homogenity of groups, €& 18 not one-
dimensional., Conversely, let us sup-
pose that € 1s locally compact and
zero-dimensional, 1,6, there exlsts a
n.b.d. U(e) such that T(e) —u(e)=0 -«
But we can assume that TUl€) 1is bi-
compact, hence u(e) >aupute) , Wy vee) o
This contradicts to Ule) being open
and closed. Consequently, if er 1s
locally compact, Gy 1s one-dimensional.

Corollary 1. If € 1s connected
then Gy 1s one-dlmensional.

Theorem 3.3, If Gr 1s connected
then € 1s homeomorphic to the addi-
tive group of real numbers,

Proof. From (1) we know that one-
dimensional metric separable connected
locally compact and not compact topo-
logical groups are homeomorphic to the
additive group of real numbers, Since

Gr 1s locally compact, Cr is metris-
able., Hence Cr has the star-finite
property, therefore €r has the Lind-
elsf-property. (This follows from
(2): for a connected regular space the
star-finite property 1is equivalent to
the Lindelof property.) It 1s easily
proved that G 1s separable by the
Lindeldf-property, 1.e. G satisfies
assumptions of above theorem.

Theorem 3.4, A N.@.S.¢. in order
that Gr 1s zero-dimensional is that
Gr is totally dlsconnected.

Proof. Let € be zero-dimensional.
If the component is not € , 1t con-
tradicts to corollary 1. Next, we as-
sume that G 1s totally dlsccnnected
and locally compact, Then we can take
u(e) such that uUle) has the pro-
perty in Theorem l.4. Now, we take
some qeUlR), a>€ then there exist
two open sets w and Vv  such that

UEI=WVy, WaV=0, W,vCUle), W3¢e V3,

Ne put wier={t ; tEW.tLaly, then
there exlists .awp wite®) which 1s con-
talned in y end w . This i3 a con~-
tradictlion,
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Corollasry 2, If Er 1is one~dimen-
sional then the component of € 1is
homeomorphic to the additive group of
real numbers.,

$ 4, Theérem 4,1. If €r 1s l.a.,
6 is densely imbeded in one-dimen-’
sional l.0.8+ G* »

Proof. Since Cr 1s locally total-
1y bounded we can complete it to be
locally compact, therefore we show
that Gr* 1s a 1,0.8., with topology:
homeomorphic to the topology by comple-
tion. Let &*34% 3%, p* are pairs of
foundamental sequence:and P¥* 1is a
convergent sequence and 5%, $* are
not, then we give for p* the same order
In ¢ . et F*={fq), Fa=1xna},
and give them the order in the follow-
ing manner. For an arbitrary element

P in ¢ eand for {xu} , If there
exists a cofinal subsequence { X<} of
1xXn} such that (=i} 1is monotone.
decreasing and for all m , xa < P
(i >P) s then we put F*¥<p¥(5¥> p¥)e
If there does not exist such subsequ-
ence, then we do the above process for
monotone increasing subsequence. Then
we can see that 1f 5% contains both
sequence, from the property of fundaw-
mental sequences, their relations are
same for p* . Moreover, for F¥% ,
3% there exlsts some ¥P* between
them., Thus ¢* 1s linearly ordered
set. The remainders about group opera-
tlon and topology easily follow from
the above process, .

Corollary l. Let €y 1s non-l.s.,
then even 1f €r can be complete, ¢y
is atill non-l.a..

Proof, From above theorem.

We can give an example by the fol-
lowing theorem.

Theorem 4.2, If €r 1s non-l,.a.
abellian, then €r is complete,

Proof. From assumption Tleq(Cl0)=€,
From (3) Gr=[P,Ra where each R«
is isomorphic to the subgroup of the
additive group of real numbers, A={«Y
are well-ordered and @y 1s "lexicogra-
phycally” ordered. We can take inatead
Of Cla) , Ca =15 -, €, Qeets - llp, -}
and this 1s the basis of n.b.d. Le‘i
{xa}y Dbe a fundamental direct set, (4
be an arbitrary n.b.d. Then there
exists a polnt $~{pay and an index

¥ such that B >7¥ 1implies Xp €PC;
Iis shows that s> , =g has
as o =-coordinate, Thus we can see
that { x4y converges to a point ¢
which has o -coordinates determined
by above method for each & .

8§ 5. We consider the relation be-
tween Urysohn-Menger’s and Lebesgue’s
dimension. If Gp 1s l.a, we can con-
sider that & 1is one-dimensional
(Theorem 4.1.), 1In this case, from
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corollary 2 in % 3, the component of

is a open normal subgroup and the
theorem cof dimension (in metric sepa-
rable space, both Urysohn-Menger’s
and Lebesque’s dimension coincides)
we have the following theorem.

Theorem 5,1, If & 1is l.a., then
the dimension of er colncides in
both senses,

But, if €r 1is non-l.a. we can not
still known about their relation.

§ 6. One-dimensional l.o0.g. G heas
the normal subgroup ¢ homeomorphic
to the additive group of real numbers
as component., T8 each element of C
commutative to each element of G or
not?. We shall study about this point
using the characteristic property of
linearly order and one-dimensionality.

Now we put rLa,83= &'47'ad , then
we have B,H.Neumann s Lemma (4), i.e.

let m , m be integers, then
[xXT91=€ implies =xy=yx ,
[("4"]=¢ implies xy=4Yx.

We put Sa {x35 xm=a’, xebr,m, <
are arbitrary integers} .

Lemma 1, In l.0.8. € , Sa form
an abelian subgroup homeomorphic to
the subgroup of the additive group of
rational numbers,

Proof. If .Sa ™ X ,Y. there are
some integers m , m , and §
suck that =x™=a¢, 4"=q¢ . Hence
(XM= ot implies =~ ¢ Sa ,

by the above lerma ™ = 4™¢ implies

and each element is cormu-

AY= ¥xX ¢
tative, (xyy™m™M . xX™rymn  gineIm
implies x4y € Sa . Thus Sa form

an abelian group. Next if Q' =x™ ,
we corresponds to x & symbol (%) .
From this the latter part 1s obviously.

Theorem 6.1. A n.a.s.c. in order
that 6f has a solution x€¢& for
x™= @l where a 1s an arbitrary
element of & and m, L are arbitrary
integers, 1s that & 1s a union, in
the sense of set, of disjoint (except
e ) abelian subgroups isomorphic to
the additive group of rational numbers.

Proof. The sufficlency is obvious.
Conversely, from assumption, Sa form
a group isomorphic to the additive
group of rational numbers., If &—~Sa%0,
take. & € &r—Sa and meke S , then
we can easily see that S, ,S¢ =1{eY -
Therefore, by Zorn s lemms, our asser-
tion can be proved,

Lerma 2. In l.0.8. & , if {a"}
is normal, .S, is so and a Dbelongs
to center Z and Sa 1s so0.
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Proof. Let Sa3x,xX™=a", 3 a*g=a?,
then (§-'x3)™=9g-tx"g3=9"a'9=a¥ 1i.e,
8, 1is normal., Next, for arbitrary
element 4 ¢ ¢r we put g9-lag=a™.
If m=1 , x€%Z , If m «=-) , this
is impossible to the homogenity of 1.
0egs If m=2 , we show which is
contradictory, but it is sufficient to
gee for M=2 . in thils case
9 faygd{m, #iam1gz{eny l.e.
@3z 6 » This 1s contradictory.
(This method 1s useful for only dis-
crete case). erefore a &2 ., The
latter part 1s obvious.

In general, if Cr 1is connected,
discrete normal subgroup is contained
in center. Moreover, ‘n l.0.g. we have
the following theorem,

Theorem 6.2, A n.a.s.c. in order
that the componentCof € 1s contained
in center & , is that ¢ has a point
a belongs to Z .

Proof. This follows from Theorem
6,1, Lemma 2 and XFq =C o

Definition. For 9 &€ €r we define
3 (xY=9"1x & y then 3>« im-
plies g x-') < x~! . We denote by

q)>X ( '«x) that if x>e ,
30>x (¢x), therefore gex-4<x~! (>x™),
R be a set, we denote by g(RIDR
that for every element x of R , ex-
cept e s 3¢x) 3» X , and by 3(R=R
that for every element . of R ,
3(xd)= % - Then we have some unifor-
mities for the component of one-dimen-
sional G o

Theorem 6.3, Let ¢ be an arbitrary
element of &¢ , 9x%e and xx€ 1is
an element of ¢ , 1if 3(1)2 x

HUH2 ¢ o «
<<

Proof, If X €C and 4@d>=x ,

3(RY= R follows from Jx=C(.

Hence if for an element x of ¢ ,
gGx) > X then there are no ele-
ment such that g% =% There-
fore we can divide C 1into twc ssats

in the following (except e ).

Bi={x; xel g >V,
Sa={x; 2el gmgxy.

Wg assume that &, and .§. are not em-
pty. We shall show that they are open.
From the definition 8, 3x implies

[, » x~' , Next, we show that .&,
18 open., Let x .8, 5 gxd>=xC ,

x, ¢ >€ , then since g(wm)> g
=XC » () >2 for x<w < x¢ «
Now, we take some d >€ , then

g(=z)y >z 3 xXd-'« =z <X s For
if 1t 1s not true, there exists {P&.Y\
such that PreS2 , Pn-——>x,
PiPald X 9 FCPMY < Pn o But this
contradicts to the continulty of §(x
i.6e. 8, is open, Similarly, €= is
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also open. If we put A ={x:x>e,x&C}
is connected and open. Then we
can decompose A into the form: A=
(BinMY(S:nA), (AnfNand (AnS8z)  are
disjoint and both open, what is contra-

dictory.

Theorem 6.4, If 3Cx>BX («X) x6C,
§00 = Ax X, 0> (0ce) » then ax (ax')
i{s monotone decreasing (decreasing),
non-bounded and for arbitrary elements

4>¢ , there exist elements +# such

that g >ap >€

Proof. Let x>4>e , =, 4% €8,
x=44 » $>€ , then g () =
3(3)3(8) o It 1s sufficient to show

that g(9)3(4)4 187 >31y) 9~} » 1.0,
34 > e s 36) >4 « This
is obvious from above theorem: g(¢)>C.
Now let AMp, o0«=d and g(d) = pd,
$>e , we take some such that
+>9 > » then there exists a
point o¢ such that §@) >dyix , 1.6.
Flxd) > dxd « This is a contra-
diction. The remaining properties 1is
obvious from the continuity of §x) o

(*) Received October 9, 1950.
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