ON UNIFORMIZING FUNCTIONS

By Kihachiro ARIMA
(Communicated by $Y_{\text {. Komatu) }}$
§1. Let S be a closed Riemann surface with genus $g \geq 2$, whose equation is given by $S(x, y)=0$, $S(x, y)$ being an irreducible polynomial of degree n in x and m in y. Let $f(t)$ and $g(t)$ be meromorphic functions in the circle
$|t|<R$. If $S(f(t), g(t)) \equiv 0$, we say that $f(t)$ and $g(t)$ are uniformizing functions. In this note we will prove the following theorem:

$$
\begin{aligned}
& \lim _{x \rightarrow R} \frac{T(x, f)}{\log \delta \frac{1}{R-x}} \leqq \frac{m}{2 g-2}, \\
& \overline{\lim }_{x \rightarrow R} \frac{T(x, g)}{\log \frac{1}{R-x}} \leqq \frac{n}{2 g-2},
\end{aligned}
$$

where, $T(x, f)$ and $T(x, g)$ are Nevanlinna's characteristic functions.

§2. The algebraic function can

 be uniformized by means of Fuchsian functions $x=x(z), y=y(z)$, in such a manner that in a sufficjently small neighbourhood of a point z in the principal circle of the group the correspondence between the points of the plans and the points of S is one to one.Putting $z=z(x, y)$ and $u=\log \frac{\left|\frac{d z}{d x}\right|}{1-|z|^{2}}$ 。 then $\Delta_{x} u=4 e^{2 u}$, where $\Delta_{x} u=\frac{\partial^{2} u}{\partial \xi^{2}}$ $+\frac{\partial^{2} u}{\partial \eta^{2}}$ and $x=\xi+i \eta$ - Putting

$$
z(t)=Z(f(t), g(t)) \text { and } u(t)
$$

$$
\begin{aligned}
& =\log \frac{\left|\frac{d z}{d x}\right|\left|\frac{d x}{d t}\right|}{1-|z|^{2}}=\log w, \quad \text {, then } u(t)=u+\log \left|\frac{d x}{d t}\right| \\
& \text { and } \Delta u(t)=4 e^{2 u(t)} \quad \text { : }
\end{aligned}
$$

In this note, by infinity points on S we mean points where $x=\infty$. We suppose that infinity points on S are not branch points.
(I). At a branch point $(x, y)=(a, b)$ of order $m-1 / 8:$
$y-b=a_{p}(x-a)^{p / m}+a_{p+1}(x-a)^{(p+i) / m}+\cdots .$,
where $a_{p} \neq 0$;

$$
\begin{equation*}
u=(1-m) / m \log |x-a|+v(x), \tag{1}
\end{equation*}
$$

where $V(x)$ is bounded function in a neighborhood of the point (a, b) Since $f(t)$ and $g(t)$ are singlevalued functions,
(2) $f(t)-a=a_{k m}\left(k-t_{0}\right)^{k m}+a_{k m+1}\left(k-t_{0}\right)^{k m+1} \cdots$,

$$
g(t)-b=b_{k p}\left(t-t_{0}\right)^{k p}+b_{k p+1}\left(t-t_{0}\right)^{k p+1} \cdots,
$$

Where $f\left(t_{0}\right)=a \quad, \quad g\left(t_{0}\right)=b \quad{ }_{\text {From }}(1)$
and (2) wé $\operatorname{aget}^{b_{k p}} \underset{w}{\neq 0}=\left|t-t_{0}\right|^{\text {Fr-1 }} S(t)$
where $S(t)$ is a bounded function in a neighbourhood of $t=t$ 。.
(II). At an infinity point on S :

$$
\begin{align*}
& u=-2 \log |x|+v(x), \tag{3}\\
& \text { (4) } \quad f(t)=\frac{c_{-k}}{\left(t-t_{0}\right)^{k}}+\frac{c_{-k+1}}{\left(t-t_{0}\right)^{k-1}}+\cdots,
\end{align*}
$$

where $c_{k} \neq 0$. From (3) and (4) we get

$$
w=\left|t-t_{0}\right|^{k-1} S(t) .
$$

By Ahlfors' theorem (An extension of Schwarz's lemma, Trans. of Amer. Math. Soc. 43, 1938) we get the following theorem:

Theorem l. We suppose that infinity points on S are not branch points. If we put $z(t)=Z(f(t), g(t))$, then

$$
\frac{\left|\frac{d z}{d x}\right|\left|\frac{d x}{d t}\right|}{1-|z|^{2}} \leqq \frac{R^{2}}{R^{2}-|t|^{2}}
$$

§ x_{0} Let $G\left(x, y, \Gamma_{1}, \Gamma_{2}\right)$ be harmonic on S, except two logarithmic singuiar points at Γ_{1} and Γ_{2} and let $\Gamma_{1}\left(c_{1}, d_{1}\right)$ and $\Gamma_{2}\left(c_{2}, d_{2}\right)$ be branch points of order $k_{1}-1$ and $k_{2}-1$. respectively;

$$
G\left(x, y, \Gamma_{1}, \Gamma_{2}\right)=\left\{\begin{array}{l}
\frac{1}{R_{1}} \log \frac{1}{\left|x-c_{1}\right|}+\text { bounded harmonic } \\
\text { function at } \Gamma_{1}, \\
\frac{1}{R_{2}} \log \left|x-C_{2}\right|+\text { bounded harmonic } \\
\text { function at } \Gamma_{2} .
\end{array}\right.
$$

We put $G(t, \alpha, \Gamma)=G(f(t), g(t) ; \alpha, \Gamma)$
and $\left.\bar{m}(r, \alpha, \Gamma)=\frac{1}{2 \pi}\right)^{2 \pi} G^{+}(t, \alpha, \Gamma) d \theta$,
where $t=r_{e^{i e^{2}}}{ }^{2 \pi}$ - Putting
$G\left(t ; \alpha_{1}, \alpha_{2}\right)=G^{+}\left(t ; \alpha_{1}, \Gamma\right)-G^{+}\left(t ; \alpha_{2}, \Gamma\right)+U\left(t, \alpha_{1}, \alpha_{2}, \Gamma\right)$,
$G^{+}\left(t ; \alpha, \Gamma_{1}\right)-G^{t}\left(t ; \alpha, \Gamma_{2}\right)=U\left(t, \alpha, \Gamma_{1}, \Gamma_{2}\right)$,
then $U\left(t, \alpha_{1}, \alpha_{2}, \Gamma\right)$ and $U\left(t ; \alpha, \Gamma_{1}^{1}, \Gamma_{2}\right)$ are bounded functions in the circle $|\Sigma|<R$. Hence we get
(1) $\frac{1}{2 \pi} \int_{0}^{2 \pi} G\left(x ; \alpha_{1}, \alpha_{2}\right) d \theta=\bar{m}\left(x ; \alpha_{1}, \Gamma\right)-\bar{m}\left(r, \alpha_{2}, \Gamma\right)+O(1)$, and
(2) $\bar{m}\left(r ; \alpha, \Gamma_{1}\right)=\bar{m}\left(r ; \alpha, \Gamma_{2}\right)+o(1)$.

Let $\alpha(a, b)$ be a branch point of order $k-1$:

$$
y-b=a_{p}(x-a)^{p / 2}+a_{p+1}(x-a)^{(p+1) / 2}+\cdots,
$$

$$
\text { where } a_{p} \neq 0
$$

$$
f(t)-a=A\left(t-t_{0}\right)^{k \bar{n}}+\cdots,
$$

$$
g(t)-b=B\left(t-t_{0}\right)^{p \bar{n}}+\cdots,
$$

where $A \neq 0, B \neq 0$ - Then we say that $(f(t), g(t))$ takes $\alpha(a, b)$ at $t=t_{0}$ and \bar{n} is the order at t_{0}, and we denote by $\bar{n}(r, \alpha)$ the total sum of orders which $(f(t), g(t))$ takes α in the circle $|t| \leqq r$. We put

$$
\bar{N}(x, \alpha)=\int_{0}^{x} \frac{\bar{n}(x, \alpha)-\bar{n}(0, \alpha)}{x} d x+\bar{n}(0, \alpha) \log x
$$

and
$T(x, \alpha, \Gamma)=T(x, f, g, \alpha, \Gamma)=\bar{m}(x, \alpha, \Gamma)+\bar{N}(x, \alpha)$.
spplying Green s formule to $G\left(t ; \alpha_{1}, \alpha_{2}\right)$, we get
(3) $\frac{1}{2 \pi} \int_{0}^{2 \pi} G\left(t ; \alpha_{1}, \alpha_{2}\right) d \theta+\bar{N}\left(x, \alpha_{1}\right)-N\left(x, \alpha_{2}\right)=C$.
where G is a constant. From (1) and (3) we get

$$
T\left(x, \alpha_{1}, \Gamma\right)=T\left(x, \alpha_{2}, \Gamma\right)+O(1)
$$

From (2) we get

$$
T\left(x, \alpha, \Gamma_{1}\right)=T\left(x, \alpha, \Gamma_{2}\right)+O(1)
$$

Therefore we may use the notation $\bar{T}(r, \alpha)=T(r, f, g, \alpha) \quad$ In the place
of $T(r, f, g, \alpha, \Gamma) \quad$ Then we have the following theorem:

Theorem 2.

$$
\bar{\Gamma}\left(x, \alpha_{1}\right)=\bar{T}\left(x, \alpha_{2}\right)+o(1)
$$

Let $\alpha_{i}^{\prime}\left(a, b_{i}\right)(\alpha=1,2, \cdots s) \quad b e$ points on S where $x=a$, and at α_{i} let k_{*} sheets hang together:

$$
\sum_{i=1}^{s} k_{i}=m
$$

From Theorem 2

$$
\begin{gathered}
T\left(r, \frac{1}{f-a}\right)=\sum_{i=1}^{S} k_{i} \bar{T}\left(x, \alpha_{i}\right)+O(1) \\
=m \bar{T}(x, \alpha)+O(1)
\end{gathered}
$$

Theorem 3.

$$
\begin{aligned}
\bar{T}(x, \alpha) & =\frac{1}{m} T(x, f)+o(1) \\
& =\frac{1}{n} T(x, g)+o(1)
\end{aligned}
$$

§4. Let $X=\varphi(x, y), Y=\psi(x, y)$ be a birational transformation where $\varphi(x, y)$ has μ simple poles on S and $\psi(x, y)$ has ν simple poles. Then we get $G(X, Y)=0$, where $G(X, Y)$ is an irreducinle polynomial of degree ν in X and μ in Y. We suppose that the following conditions are satisfied:
(I) $\mathrm{X}=\varphi(x, y)$ has μ simple poles which are not branch points on S;
(II) Infinity points on S are not branch points and the m values of X at infinity points are represented by m distinct expansions

$$
X^{i}=a_{0}^{i}+a_{1}^{i} \frac{1}{x}+a_{2}^{i} \frac{1}{x^{2}}+\cdots+a_{k}^{i} \frac{1}{x^{k}}+\cdots
$$

where $i=1,2,3, \cdots, m$ and $a_{1}^{i} \neq 0$
On the condition (I). We choose $X_{\text {。 }}$ so that $\varphi(x, y)=X$. has simple roots $\alpha_{i}(i=1,2, \cdots)$ on S. We put

$$
X_{1}=\frac{1}{X-X_{0}}, \quad Y_{1}=Y
$$

$$
\vec{F}(t)=\varphi(f(t), g(t)), \quad G(t)=\psi(f(t), g(t)) ;
$$

$$
F_{1}(t)=\frac{1}{F(t)-X_{0}}, \quad G_{1}(t)=G(t)
$$

Let α on S betransformed into A by $X=\varphi(x, y), Y=\psi(x, y)$ and let A be tronsformed into A_{1} by $X_{1}=\frac{1}{X-X_{0}}$, $Y_{1}=Y$. If we consider (X_{1}, Y_{1}) in place of (X, Y), then the condition (I) is satisfied and $T(r, F, G, A)=T\left(r, F_{1}, G_{1}, A_{1}\right)+o(1)$.

> On the condition (II). We choose x_{0} so that $S\left(x_{0}, y\right)=0$ has m simple roots $y_{i}(i=1,2, \cdots, m)$ and $X_{i}=\varphi\left(x_{0}, y_{i}\right) \neq X_{j}=\varphi\left(x_{0}, y_{j}\right)(i \neq j)$ and

$$
X_{j}=a_{0}^{i}+a_{1}^{i}\left(x-x_{0}\right)+\cdots+a_{k}^{i}\left(x-x_{0}\right)^{k}+\cdots,
$$

$$
\text { where } a_{1}^{1} \neq 0
$$

$$
x_{1}=\frac{1}{x-x_{0}}, y_{1}=y ;
$$

$$
f_{1}(t)=\frac{1}{f(t)-x_{0}}, g_{1}(t)=g(t)
$$

[^0](a) poles of $X(x, y)$:
(b) infinity points:
(c) branch points;
(d) points which are neither brench points nor intianty points.

Now,

$F(t)=\varphi(f(t), g(t)), G(t)=\psi(f(t), g(t))$.

Let α be transformed into A by the birational transformation then

$$
T(r, f, g, x)=T(r, F, G, A)+O(1) .
$$

In all cases this proposition can be oasily proved. We will give the proof only in the case (c).

Let $\alpha(a, b)$ be a branch point of order k-1 。 Let

$$
X=X_{0}+c_{p}(x-a)^{p / 2}+c_{p+1}(x-a)^{(p+1) / k}+\cdots
$$

where $i_{p} \neq 0$ and by the condition (I) p is a positive integer.
(1) $\left(X-X_{0}\right)^{1 / p}=(x-a)^{1 / 2}\left(c_{p}+c_{p+1}(x-a)^{1 / 4} \ldots\right)^{1 / p}$

By inversion $(x-a)^{1 / 2}=P\left(\left(X-x_{0}\right)^{1 / p}\right)$: As $y-b)^{1 / k}$ ia a regular function of
$(x-a)^{\text {, we nave }}$

$$
\left.y-b=0,\left(x \cdots x_{0}\right)^{1 / v}\right)
$$

(2) $\left.\quad Y=\psi(x, y)=R!\left(X-X_{0}\right)^{1 / c}\right)$

$$
=Y_{0}+d_{s}\left(x-X_{0}\right)^{5 / p}+\cdots
$$

where $F(x, Q(t)$, and $R(x)$ are regular at $t=0$ and by the property of the birational transiormation $5 / p$ is an irreductble rationel number. Let $\%$ be wanaromad into $A\left(X_{0}, Y_{0}\right)$: then A is at mon point of order p-1 - We n_{1}.
(3) $\quad f(t)-a=a_{k \bar{m}}\left(t-t_{0}\right)^{k \bar{m}}-a_{p, \bar{m}+1}^{\left(x-t_{0}\right)^{k \bar{n}+1}+\cdots,}$
(4) $\quad F(t)-X_{0}=A_{p \bar{n}}\left(t-\cdots t_{0}\right)^{p \bar{n}}+A_{p \bar{n}+1}\left(t-t_{0}\right)^{p \bar{n}+1}+\cdots$.

From (2), (2) (3) and (4), we get,
by the definition of Tr x ! of o
$T(r, f, g, \alpha)=T(r, P, G, A)+c(1)$.

5. We suppose that infinity points

 are not branch points. let $\alpha_{i}(l=1,2, \cdots, k)$ be a branch point of order $m_{i}-1$ and $\beta_{i}(i=1,2, \cdots, m)$ be an insinity point. Applying Green's formula to $u(t)$ steted in § 2, we have$$
\begin{gathered}
\sum_{i=1}^{k}\left(m_{2}-1\right) \mathrm{T}\left(r, \alpha_{i}\right)-2 \sum_{i=1}^{m} \prod_{1}\left(x, \beta_{i}\right) \\
\left.=\int_{0}^{2} \frac{A(r)}{r} d r+\geqslant, t\right),
\end{gathered}
$$

where

$$
\begin{aligned}
A(r)= & \frac{2}{\pi} \int_{0}^{r} \int_{0}^{2 \pi} \frac{\left(\left|\frac{d z}{d x}\right|\left|\frac{d x}{d t}\right|\right)^{2}}{\left(1-|z|^{2}\right)^{2}} r d r d \theta . \\
t & =x e^{i \theta} .
\end{aligned}
$$

By Theorem 2
(1) $\left(\sum_{i=1}^{k}\left(m_{i}-1\right)-2 m\right) \bar{T}(r, \alpha)=\int_{0}^{x} \frac{A(x)}{x} d x+0(1)$,
(2) $\sum_{i=1}^{K_{n}}\left(m_{i}-1\right)-2 m=2 g-2$,

Where g is genus. From Theorem L 426 have $A(x) \leqq \frac{2}{\pi} \int_{0}^{r} \int_{0}^{2 \pi} \frac{R^{2} r}{\left(R^{2}-x^{2}\right)^{2}} d x d \theta=\frac{2 x^{2}}{R^{2}-r^{2}}$,

$$
\text { (3: } \begin{aligned}
\int_{0}^{x}-\frac{A(x)}{x} d x & \leqq \int_{0}^{x} \frac{2 x}{R^{2}-x^{2}} d x \\
& =\log \frac{1}{R-x}+O(1)
\end{aligned}
$$

Hom (1), (2) and (3), we have

$$
\bar{\Gamma}(x, \alpha) \leqq \frac{1}{2 g-2} \log \frac{1}{R-x}+O(1) .
$$

Applying the birational transformation, mom the result of § 4, we have the pollowing theorem.

Theonem s.

$$
\bar{T}(r, \alpha) \leqq \frac{1}{2 g-2} \log \frac{1}{R-r}+O(1)
$$

trom theorems 3 and 4 we have the fod lowing theorem

Theorsin 5.

$$
\left[(x f)=\frac{m}{2 g-2} \log \frac{1}{R-x}+o(1)\right.
$$

$$
\text { mollary. If } \overline{\lim _{x \rightarrow R}} \frac{T(x, f)}{\log \frac{1}{R-x}}=\infty
$$

*) Recefved October 10, 2950.
Figgoshima University。

[^0]: Let α_{1} be transformed into α_{1} by $x_{1}=\frac{1}{x-x_{0}}, y_{1}=y$. If we consider $\left(x_{1}, y_{1}\right)$ in place of (x, y), then the condition (II) is satisfied and $T(x, f, g, \alpha)=T\left(r, f_{1}, g_{1}, \alpha_{1}\right)+O(1) \quad$ 。

 Under the conditions (I) and (II) we classify points on S in the following four cases:
 lowing four cases:

