ON HARMONIC MEASURE FUNCTIONS IN SOME REGIONS

By Kihachiro ARIMA

(Cormunicated by Y. Komatu)

Chapter I,

§1. Let S Dbe a region in the
unit circle bounded by analytic curves
(m=1y,2,3,- ) and by the unit
circle l'Ll—i « By ftmy= P, we
denote the distance to C, from Izlko ,
We suppose that if 2z (lzl<i) 1lles on
Cn Z 1s not a limiting point of
the point-set g:m Ce and that
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We explain notations used in this
note.

M Y): the greatest number of M
which satisfles 5’ (m)y < Y.
n

r(ﬁ—z_, Cy oy [ = ZCL

B the region bounded by [[¢x)
and by the unit circle 1zj=1 .

A(x) ¢ the region which is common
to E«ry and the circle |z|<T.

Axy : arcs of the circle lzi=
contained in § .

B ¢xry ¢ the boundary of E «r) con-
talned in the circle lzi<t -

A, r): the boundary arcs of £ .(r)
lying on the unit circle
1zl =4 B

We consider a region D whose boun-
dary consists of b, + b, .

By w (z. b, D) we denote the func-
tion which is harmenic in D and is
1 on b, and 1s 0 on b, . Let {r.}
be a sequence of positive numoers such
that

Tn < Thet , Lom To =4,

M- e

Putting W, (z) = w (2, A(Tq), A(Tn))

and Vg 2y = w(z, A, 0, Ecr),
then, by Harnack’s theorem, w,(z) and
Uy (2) convergs uniformly to har-
monic functions w«(z) and wv(z) , re-
spectively.

In § 2, we will prove that
W(Z) =U(2) o

If w@ = o , we say that § 1is a
positive-region, and otherwise we say
that § 1s a O -region. Myrberg (Uber
den fundamentale Berelch der automor-
phic Functionen, Saja Serles A Math=~
Physica) considered particular cases.

In thils note the following problem
will be researched:

What i1s a necessary or sufficlent
condition that should be a (-~
region

What properties has a harmonic func-
tion ina (Q -region S ?

§ 2, Let { %} and {4,} ve se-
quences of positive numbers such that

T, <Crer, bz < diey, lm x, =1, and
Lom d, =1 . A

i o
Putting U (2) = @ (2, ATy, A(TL)
and Up ) = @ (z,Adn), a(dn)),
then we can easily prove that if
famw Uptz) = UW(ZVE O » R UM (z)

=u() , and, 1f L. wuniso, U U, or=o,
Thus the fact that S 1is a 0 -region,
does not depend upon the choice of the
sequence | T,} . By (=, x.) we
denote the region which is common to
E (ro) and the circle iz1<t, ,
and by A(x:, ra) the arcs of lzl=T.
contained in & (7,) . Putting

Vp(z)= ) (2, A, T, ECra) and

Vp, )= W (Z, A («;,xn),li‘(n,fn)) , then
Vp(z) = L'm U (2D » Since, for .>mn,
Vn, . (2> > @, (o in  Acxny 5 we
have v, (z)= LM V. (2)Z L« wi(z) = W(ZY,
Hence v (2) = u., v,\\u 2 w2y o Since,
on the other hand, w.,(2)z v, (2) in
Ar,) , we have u(z>=q@§u~u.\u)2"{-'_~,«~un(nﬁmu,
Therefore we see that w(z)= v@ ,

N¢
§ 3. We put Awm = 27 A: (o

where A «r; 18 an arc of A@ vhose
length 1s x 6, ¢r) and A;(m and
A;m (<« +¢) have not a common part.
If the circle lzi=1~ is entirely con-
tained in § , then we put 6(m = o |
otherwise we put 8w < ma O:(m .

Theorem 1, Let uw(z) be a posi-
tive function which is harmonic in 4(R)
(R<1) and 1s o0 on B(r) . We put

\ 2 18

M (ry = = wz) 40 | whese 1z = e N
2w A

and . 2]

u(2) DU VM ldlgrde

D(r,mfl.)m:-l?ﬂ [(ns;’) "( 36 ) jdlgrde,
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Mathematical Soclety of Japan in 1949
and will appear in the Journal of the

m(T)-m T2 Dt
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This result was reported by the
author at the spring meeting of the

.

Math. Soc, of Japan, so we omit the
proof of this theorem.

Let

f ()

be an integral func-

tion, then applylng this theorem to
we have the same re-

wizy = Lo
sult as Pfluger’s.

+[f

We put

W (2) =

and

z) |

w (2, Alta), ALTR)

2
m, ur):l-f W, )" de
" T A

where

o

o el wne]

we have

7, =

L0
rett |

Since 0% Un(z)
w oA, (r) £4 "
nave

i>4 -

0T & T .

£1
From Theorem 1, we

(ry) > M (Y-

)

s 1t becomes

o)

{t

T ~
. 4t 27
2 Diro,un) f £ exp/‘ | 356
T, T

by

hence
Thercfore we have the next theorem:

S

t
&
Theorem 2, If 5 T

[T

=

ot

fim D
A
Wy (2)

(T,, wun) = o

Y

in

o

ls a O-reglon,

Now,
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z
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2y 2 D Un(2) 1] loa 1 ds
'uag'r *’('za ) dlyrds

dom, (21
Since 17;7' 20 , m,(x)>m,(z,) for
T, <T <, . Hence / (——’;—g"—‘z—’)zd,e
Ar)
z-JL am, (¥.) . Therefore

0 (r) r r
dm, r) 1 f 2m? /d.s
a2y 1 - L
dlog T 2w Tpys M s UM 2] et

3

By integrating, we have

m, (x)-m, (1,) Z x* m%(rd)/d:t}' B(S)"

T
-3

2 =2 _ds

=27 m,,,(n’! 08It .

o

Since m, () =1 »
LY b LY M (Zalomy (2,
m (z,) mo(z,) = Mo (L)
T
T -
P4 2-7|:.’,'-/ %—48
v 8(s) .
3
ds =
1 o.il;‘:: -L 6(3;" fad s then

M ()0 a8 m -, Hence
ke wpzy =0 on Acz,y -
m-~Hoe

i
i-s
m — iz oo
(heorem 3, If i ST ds = oo ,

S is a 0-reglon.

Let { Pul and {1.{ ve increasing
sequences of positive integers such
that Lo P, =coomd By =0 s By C, .
we denote the segment connecting '
/ﬁe*eni ,end 2= ef On. % R where
T, “l""f‘ and 6“,— *p (k=o, 1, Pn“-)t
et § ‘De a region bounded by 52 Car
and by the unit cirole, Then

5’“ S ;f“(zm ’77:"—}

L.
)

4
heorem 3, we have the next theorem:

I

By
o2l 1
Theorem 4. I1f o tilgr ~ g %)=,
S 1s a 0 -region. | ™ e

Corollery {Myrterg’s ‘theorem). 1f

Qi i S s § is & 0 -region.
Moo 1,,~
§ 4. By P (z) we denote the length
of A r) . Since B (r,) 1is a mono-
vone decreasing function of =™ , we

ut ) _ .
el paar=p

Theorem 5. If Pp=o, § isa 0~
region.

Proof. Without losas of generality,
we may assume that for sufficisently
small ¥, , the circle (Z[=7, is con~
Salned in the complementary set of § .
Putting v ()= w(z, AW, E7)) and ap-
plying (zreen ’s formala, we have

T (Tg)
&J‘Ioe———avk (=) / “‘tm d
2] 3m $
w= A\!.%,

5z (3(‘1”*)_



Given € , for sufficiently large &k, ,

(scr,,,)<e, for &2 %k, . We have
T [ 2 Vg (%)
2 Vg (%)
j (]m an 4 < &
1 L7 y
ij >0 amd 2 &(2) 20 fox 1zl <1
Ug(2)
Since C 1s an analytic curve, ?a: =0
on C, » where |z/<f<1 and ‘P isa

fixed number. Hence L, Vg (0 =0 in
S . Thus the theorsm has been proved.

Let P, be & region bounded by C;
and by the unit circle I2zi=1 , And
let of;- be the boundary arcs of ¥, on
the unit__circleo -We put

V(ry = w(z, P .

eorem 6. Suppose that B >0 and
j;:“"‘o%(l" 4s< K for all i -, where K
1s' a constant. If Zlegf is
finite, § 1is a positive-region.

Proof. Without loss of generality,
we may assume that, for sufficlently
small ¢, , the circle {zi=1, 1is
contained in the complementary set of

+ We put Ypiz)= c0(z,A0 1), E (%)) .
By Green’s formula, we get
'IL{Q tz) f 2 ‘

/ A _;Lf-d ?OK’—L ds
**' C, Iz 2 /{(1 %)

= F(r@_) 2 !fs >a,

We assume that %«M U},('L) = 0
and will prove that zhi Jmmmtmn
is sbsurd. Now,

mﬂim fo=1 and P 5., .

Given ¢ , for sufficiently large N,
5“', lgt/p:, < &. ., If is suffi-
ciently large, we have for 1 = N, ,

j 2 o g
¢ DM

Othervq}se at a point 2 on (. (4% N,)
m 2Ve® L, | hence b Uiy o,
is 1is inconsistent with our assumption

ﬂm v (z)= o o Now,

Yoo

No H,
2V () Y, o
Z[!Jizl am 48 <t ~',ld/fx<‘“z‘/
where

Sy v - L,

A=t

and
n(xs) f L | avp @)
2 1Tz a4
i= N+t C,
'n.orn ,{‘ ,a_u.k z

Z lo‘j /f;, , "““—(—)‘GSA
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'3’1&('1.)
Since Vpm) £ Y im s we get ds
ﬂ (z) ) 2Vp(z)
j ds< K Hence o Ll«}'-,;-‘?‘:—ds
P K g V3, < EK. :

4

Thus ‘£ K +&L.>p >0 . But, since £
is an arbltrary positive number, this
is absurd.

U (z
Corollary. If [?‘37“2“5 <K,
p>o and ‘,Z_;u_y,;xoo, then S
is a positive-region.

§ 5. In this paragraph we will
give some examples.

Exp.ls Let Su&) (4=e.l2,---) be
a linear transformation of a Fuchsoid
group G and let be a circle con-
tained in fundamental region. By S:(E)
we denote the set into which E
transformed by S; (=) , We put

(C)=C; and S.(0)~ a; Let S8 be
the reglon bounded by C,; and
by the unit circls, then a well known
theorem 1s stated as follows,

o
Theorem (I). If g:,; (1=10;) = 00,
then § 1is a O -region. (II) If

L (-1} then § 1s a positive-
reg‘on,

The second psrt of the theorem is a
simple result derived from the preced-
Lng, corollary. On the basis of this
thoorem we will say that in case (I)
{; is a PFuchsoid group of O -type and
in case (II} G 1= a PFuchsold group
ot P -type.

)

Epef, Lot 1‘1&:%2&6&} be a se~
of zomplex numbers such that

V"A 1y =1 » and let (. be
necting 9 and etk
the reglon bounded by
2 . and by the unit circls jzi=
iHen we have the tollowing theorem:

= Theorem {Myrberg’s thsorem), If
_(l-la) < e s S 1s a positive-
""‘gLOma

if & is s Fachsoid group of the
P-type, & 1s a positive-region. But
ihe suthor has not yet solved the fol-
lowing problemn: ,

1# G 1s a fuchsoid group of Oe
type, is § & O -reglon 7

We denote by S(r.d ) the sector in
which d<agz<p and “zl =T ; and by
mie, &, #) the number of o; which
are contained in S(r.x,p) . Then
we can easily prove the next theorem:

Ir S is a Q-reglon, [n(rora)dr oo
for any palr (o, p) o



Exp.3., Let L,- be a cirele which
is orthogonal to the unit cirecle iz|=1 ,
and let C; be a subarc of L; contain-
ed in lzl<1 o+ We suppose that C;
does not intersect C;(+}) 1in the
unit circle |zi<1 « Then we get next
theorem:

Theorem (Myrberg’s theorem), If
#=031s a 0 -reglon and, 1f g>0 , §
is a positive-reglone

8 6. We will consider the particu-
lar case such that all Cn are closed
analytic curves., If the following con-
ditions are satisfied, we will say that
a point P on the unit circle is a
normal point:

1, <OPA=O0PB+0 , where 0 1s the
originjg

2, there are finite number of Ca
which are entirely contained in :APB

3. PA and PB intersect finite
number of C, 3

4, PALOA ang PBLOB,

Theorem 7. Let B be a set of nor-
mal points. If linear measure (E) 1s
positive, § is a positive-region.

Proof. Let E ©be a set of normal
points. By N (r,« 0) we denote a
number of (C, which are contained in
(APB or intersect AT or BP? 4in the
circle iZzI< ¥ , where P: 2= ¢*® and
APB=o« o Since for fixed T and o ,
N(r,« 6) 18 a measurable function of
® and N@.« 9) 1s & monotone in-
creasing function of T , we see that
b N(r,x, 8) = N(x. 0) is a measurable

nction of & , By E(m,m) we de-
note the subset of £ such that at
Plz=e'®) e E(mm), N(R,8)="
Then £ (m,n) 1s a measurable set and

E(m,m)=FE . Since m(E)*o ,
thére exists a set E)('mo,‘r.ha) such
that, at PEE@m,,m,) , N(/m,,8)= 1,
and m(E(m,,Mm,)) ¥0 . We denote by
E (m,, m,, &) a subset of E (m,m,)
such that, if P € E(m.,m,, &) , there
exists no C. in the annulus 1-% <£{zj
<1 which is contained in AFB or
intersect AT or BE . For fixed k
we denote by M(Ym,, &, T.8) the
number of C, 4in the anmulus 1i-Y& 21z
<T<1 which are entirely contained
in ,A? B or intersect A® or BP ,
where <APB = Ym, P:z=e*®, Since for
fixed 2+ and & , n(Ym,.&,r, 0 ) is
a measurable function of € and iz a
monotone increasing function of «
we see that %_","." N (Vo R, T,0) = M (Yno, d, €)
i1s a measurable function. Therefore,
for a fixed %, E(m,n, &) _1s a mea-
surable set of e and Z E(m.m., &)
= Bl (m, m,) » Hence thers exists a set
Ew,m, %.) such that at PEE@.m., £)
N (Von,y, 8) = Mo and there is no C, in
the ennulus L-{4 <lzi<i which is en-
tirely contained in <APB or intersects

Af  or BF and m(Emm,m., ®))%+0

We put E(’"‘-o,"luﬁ.)= . Const-
ructing an angle APB=)m, at each point
of # , we get the region D bounded

by sides of these angles, we see that
there exist a finite number of Can
which are entirely contained in Dr or
intersect the boundary. Let D be
the region bounded by these Cn and by
the boundary of D¢ , Then U@ =

= w(z,FD)¥0, and If >~ Vg, , WO
have ug(z)> U (%) « Hence § 1is
a positive-region.

Theorem (Myrberg-Tuji-Yijébd)., Let
be a Fuchsoid group of 0 -type.
Let 2z* be an equivalent point of 2
which lies in the fundamental region
D « As 2z moves along the radius
(0,ei®) , z* moves on the set M(6)
in D « Then M(8) is everywhere
dense in D , except for & belong-
ing to a set of measure 0

Proof. Let Q be any rational
point in D , and let C(Q,m) be a
non-Euclidean circle with center at Q
and radius m , We suppose that C(Q,m)
is entirely contained in D for a
rational number m ., Let [(8) be
a set of 6 such that M(8) and C(Qm)
have no common part., We will prove
that m(F(6))=0 , Assuming that
m(F(8))+0 we will show that this
assumption is absurd. Let S be the
reglon bounded by %!S“(C(Q,m)) and
by the unit circle, then, by Theorem
6, S 1s a 0-reglon, If P(z= e<9)
belongs to ['(68) , we construct non-
Euclidean circle with radius +m and
center at sach point on OP . The re-
glon swept by these circles contains
the angle APB  such that there is no
C. contained in APB or intersected
by AP or BP , and (APB= k(m)=4o0
where %(m) 1is a constant depending
upon m . By Theorem 7 S 1is a
positive-region, This 1s absurd,
Thus m(F(@)) =0 ., Hence @ is a
limiting point of [M(8) for every 6
except for some © belonging to a set
of measure O ., Thus our theorem has
been proved.
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Chapter II

§ 1, In this chapter we suppose
that S 1s a O-regilon, Let Vi(z) be
a bounded function: | V()| < L., which
is harmonic in 8 and 18 O on [ .
Putting Un(z) = w (% ACTn), A(Ta)
and W)= Y@L _ ({_uym) , Wal®
is harmonic in 4(1f,), and wW,(z)=0 on
B(t,) , and w,{2)20 on A (tp) o
Hence w, (z) 20 in A(Ty) o

yarl >4y 1n 4 (t.) . Since
L, wamr =0 , we have YEI= 3

in § , and therefore V(z)20 . Re-
placing V) by -V(z) , we get 1-V(z)
2 . Hence V(z)z0 . Thus we have
the following theorem.

Theorem 8. If S 1s a ( -region,
there exists no non-zero bounded har-
monic function in S which is O on

.

Let L/ be e bounded harmonic
function in § ; [U@/< L . We sup-
pose that L/(z) 1is continuous on [" .
Let V(2 be a harmonic function in

A (Ta) such that Ve(z)=l/cz0 on
By and 1s 0 on A (£,)
Putting W.m-p,m (z)= er{‘” ~Vaz),

Waep, m (2) 18 harmonic in A (%,) and
is 0 on DBz, . Now,
i me,.n(”'); = [V.'rw'b (=3 ‘-\".,,\,(Z)l< QL_
Y T
o e WnenpC) r 2L
Putting mrp, 2L
~ (4-ta () o then Unipm (%) is

harmonic in A (fw) and 1s 0O on
B(1n) and Umpw(® 20 on Ala) .
Hence [y m 020 in 8(%y) .
Since Lm i, (m = o ¢ e get lu Waypn(®
20 .  Applying the asem& &rgument
B0 ~Whepa () 2 we geﬁ_
: <

L ~Wasp,m (2) 20, ,,\Q_':x Waspn <0,

M>oo

Hence ,“n:";;e Wmfr»"l'(z) =0 , Therefore,

Vi (=) converges to a harmonic func-
tion Vm . Putting W)= L=V ,
w(z) is a bounded harmonic function
in'S eand 1s O on I' ., By Theorem
g, we have Uw = V(z) . Thus we
have the following theorem:

Theorem 9. Let U (2> be a bounded
harmonic function in S . If W)
is continuous on [y 1s
uniquely determined by boundary values

glven on T’ o

Theorem 10, If G be a Fuchsold
group of O ~type, then there exlsts
no non-constant, bounded, hermonic and

automorphic function.

Proof. We suppose that this propo-
sition is false. Let uw(z) pa a func=
tion stated in theorem. Without loss

of generality, we may assume that

m = least wppey boumd af w (),
=M = greatest lower bound of w(z),

md  ms>o,

Let Z, be a point in the fundamental
region D such that 4(z.)>0 , Then
there exists a non-Euclidean circle C
with center 2, such that C 1is en-
tirely contained in D and u(=>o0 on

. Let S Dbe the region bounded
by =3 S.(Cy and by the unit cir-
cle, then S 1is a 0 -region. By the
same argument as theorem 8 wzy >0
in § . Since u®>0 in ( and
w(z) 1s an automorphic function,
w2y > 0 in S.(C) « Thus w)>0
in the unit circle. This is incon-
sistent with our assumption o>-m =
greatest lower bound; the proposition
has thus been proved,

Corollary (Myrberg’s theorem). There
oxists no non-constant, bounded har-
monic function on the "Null berandet”
Riemann Surface,

§ 2, Theorem 11. We suppose that S
1s a 0 -reglon, and w=f(z)
=¢(+i v 1s a meromorphic function in
o If wz is 0 on [ and
w(z)> o in § , then w=§® takes
every value w (R (w)>0) , except
posalbly some values of W  belonging
te a set of capacity O o
1= fe
Proof. Putting &= Fo= —ge R
[E1 <1 ' o We will assume that §w)
does not take values W~ Dbelonging to
a set E.,- contained in the half plane
RwY>0o and R, 1s of positive
capapclty. Then ['(z) does not take
values & belonging to a set £ con=-
tained in the circle 1&( <4 and £
is of positive capacity., Without loas
of generallity, we may assume that K]
1s entlrely contalned In the clrcle
i3j<5 < % . Let G(& 1) be a
Green’s functlion of the unit circle
with a pole at 7 . There exists a
distribution of positive mass & ul7;
on B so that 1ts povential 3(&)
= [ GE)dp®) 4is bounded and non-
constant. Putting I{ @ =9(F®) s
Kz) is a bounded harmonic function
and 1s O on [' ., Hence we have, by
Theorem 8, [{(z) =0 « This 35 ab~
surd, Thus our theorem has been proved.

Theorem 12, Let (G be a Fuchsoid
group of O -type, and let w=§(z) bs
an automorphic function with respect %o

. Then f{2) takes all values
W , except some valuss of W belong-
ing to a set of capaclty 0O

As this theorem can be easlly proved,
we omit its proof.

Corcliary, If is a meromorphic
function on the Null berandet Riemann
Surface, takes every value except
some values belonging to a set of capa-
city 0 o
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By Theorem 1 we have next theorem: (%) Received October 10,

1
i
—i_ 4
Theorem 13, If f TOM °T = e hima Universit
then there exlsts no non-constant har- Kagoshima University.
monic function such that it is O on[
and its Dirichlet’s integral is finite.
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