By Kihachiro ARIMA
(Communicated by Y. Komatu)

Chapter I.

§1. Let S be a region in the unit circle bounded by analytic curves $C_{n}(n=1,2,3, \cdots)$ and by the unit $\operatorname{circle}|z|=1$ - By $\rho(n)=p_{n}$ we denote the distance to C_{n} from $|z|=0$. We suppose that if $z(|z|<1)$ lies on $C_{n}, 2$ is not a imiting point of the point-set $\sum_{i=m} C_{i}$ and that $\rho(n) \leqq \rho(n+1)$

We explain notations used in this note.
$n(r)$: the greatest number of n
which satisfies $\rho(n)<x$.

$$
\Gamma(r)=\sum_{i=1}^{n(r)} c_{i}, \Gamma=\sum_{i=1}^{\infty} c_{i}
$$

$E(x)$: the region bounded by $\Gamma(x)$ and by the unit circle $|z|=1$.
$\Delta(x)$: the region which is common to $E(x)$ and the circle $|z|<x$.
$A(x)$: arcs of the circle $|z|=x$ contained in S.
$B(x)$: the boundary of $E(x)$ contained in the circle $|z|<x$.
$A(1, x)$: the boundary arcs of $E(x)$ lying on the unit circle $|z|=1$

We consider a region D whose boundary consists of $b_{1}+b_{2}$.

By $\omega\left(z, b_{1}, D\right)$ we denote the function which is harmonic in D and is 1 on b_{1} and is 0 on b_{2}. Let $\left\{r_{n}\right\}$ be a sequence of positive numbers such that

$$
r_{n}<r_{n+1} \quad, \quad \lim _{n \rightarrow \infty} r_{n}=1
$$

Putting $\quad u_{n}(z)=\omega\left(z, A\left(x_{n}\right), \Delta\left(x_{n}\right)\right)$
and $\quad v_{n}(z)=\omega\left(z, A\left(1, r_{n}\right), E\left(r_{n}\right)\right)$,
then, by Harnack's theorem, $u_{n}(z)$ and $v_{n}(z)$ converge uniformly to harmonic functions $u(z)$ and $v(z)$, respectively.

In § 2, we will prove that
$u(z)=v(z)$.
If $u(z) \neq 0$, we say that S is a positive-region, and otherwise we say that S is a 0 -region. Myrberg (Über den fundamentale Bereich der automor. phic Functionen, Saja Series A MathPhysica) considered particular cases.

In this note the following problem will be researched:

What is a necessary or sufficient condition that S should be a 0 . region

What properties has a harmonic function in a O-region S ?
§ 2. Let $\left\{x_{\lambda}\right\}$ and $\left\{d_{\mu}\right\}$ be sequences of positive numbers such that
$r_{i}<x_{i+1}, d_{i}<d_{i+1}, \quad \lim _{i \rightarrow \infty} x_{i}=1$, and $\lim _{i \rightarrow \infty} d_{i}=1$
Putting $\quad u_{n}(z)=\omega\left(z, A\left(x_{n}\right), \Delta\left(x_{n}\right)\right)$
and $\quad U_{n}(z)=\omega\left(z, \lambda\left(d_{n}\right), \Delta\left(d_{n}\right)\right)$,
then we can easily prove that, if
$\lim _{n \rightarrow \infty} u_{n}(z)=u(z) \neq 0, \lim _{n \rightarrow \infty} U_{n}(z)$
$\xlongequal{n} u(z)$, and, if $\lim _{n \rightarrow \infty} u_{n}(z) \equiv 0, \lim _{n \rightarrow \infty}[\rfloor_{n}(z) \equiv 0$. Thus the fact that S is a 0 -region, does not depend upon the choice of the sequence $\left\{x_{n}\right\}$. By $E\left(x_{i}, x_{n}\right)$ we denote the region which is common to $E\left(x_{n}\right)$ and the circle $|z|=x_{1}$, and by $A\left(x_{i}, x_{n}\right) \quad$ the arcs of $|z|=r_{a}$ contained in $E\left(\tau_{n}\right)$. Puttirg $v_{n}(z)=\omega\left(z, A\left(1, x_{n}\right), E\left(x_{n}\right)\right)$ and $v_{n, t}(z)=\omega\left(z, A\left(x_{i}, x_{n}\right), E\left(r_{n}, r_{n}\right)\right)$, trien $v_{n}^{\prime}(z)=\lim _{n \rightarrow \infty} v_{m i}(z) \quad$. Since, fior $\forall n$, $v_{n, n}(z)>u_{i}(z)$ in $\Delta\left(x_{n}\right)$, we have $v_{n}(z)=\lim _{i \rightarrow \infty} v_{n, i}(z) \geqq \lim _{i \rightarrow \infty} u_{i}(z)=u(z)$.
Hence $v(z)=\lim _{n \rightarrow \infty} v_{n}(z) \geqq u(z)$. Since, on the other hand, $u_{n}(z) \geq v_{n}(z)$ in $\Delta\left(r_{n}\right)$, we have $u(z)=\lim _{n \rightarrow \infty} u_{n}(z) \geq \lim _{n \rightarrow \infty} v_{n}(z)=v(z)$. Therefore we see that $u(z)=v(z)$.
§3. We put $A(x)=\sum_{i=1}^{N(x)} A_{i}(x)$, where $A_{i}(x)$ is an arc of $A(x)$ whose length is $x \theta_{i}(x)$ and $A_{i}(x)$ and $A_{j}(r)(i \neq j)$ have not a common part. If the circle $|z|=r$ is entirely contained in S, then we put $\theta(x)=\infty$, otherwise we put $\theta(x)=\max \theta_{i}(x)$

Ineorem 1. Let $u(x)$ be a positive function which is harmonic in $\Delta(k)$ $(R<1)$ and is 0 on $B(r)$ o we put

$$
m(r)=\frac{1}{2 \pi} \int_{A(x)} u(z)^{2} d \theta \text {, whexe } z=r e^{i \theta} \text {, }
$$

and
$D(x, u)=D(x)=\frac{1}{\pi} \iint_{\Delta(x)}\left[\left(\frac{\partial u(z)}{\partial \log x}\right)^{2}+\left(\frac{\partial u(z)}{\partial \theta}\right)^{2}\right] d \log r d \theta$.

Then
$D(x) \geqq D\left(x_{0}\right) \exp \int_{x_{0}}^{x} \frac{2 \pi}{x \theta(x)} d x$,
and
$m(x)-m\left(r_{0}\right) \geq D\left(x_{0}\right) \int_{\tau_{0}}^{\tau} \frac{d t}{t}-\exp \left[\int_{T_{0}}^{t} \frac{2 \pi}{s \theta(s)} d s\right]$.

This result was reported by the author at the spring meeting of the Mathematical Society of Japan in 1949 and will appear in the Journal of the Math. Soc. of Japan, so we omit the proof of this theorem.

Let $f(z)$ be an integral function, then applying this theorem to $u(z)=\log ^{+}|f(z)|$ we have the same result as Pfluger's.

We put

$$
u_{m}(z)=\omega\left(z, A\left(x_{n}\right), \Delta\left(x_{n}\right)\right)
$$

and

$$
m_{n}(x)=\frac{1}{2 \pi} \int_{A(x)} u_{n}(x)^{2} d \theta,
$$

Where $\quad Z=x e^{i \theta}, 0 \leqq r \leqq x_{n}$.

Since $0 \leqq u_{n}(z) \leqq i$, it becomes $0 \leqslant n_{n}(r) \leqq 4$. From Theorem l_{2} we nave

$$
\begin{aligned}
& 1>1-m_{n}\left(x_{c}\right)>n_{n}(x)-m_{n}\left(x_{0}\right) \\
& \leq D\left(x_{0}, u_{n}\right) \int_{r_{0}}^{\pi} \frac{d t}{r_{1}} \exp \left[\int_{r_{c}}^{t} \frac{2 \pi}{s \theta(s)} d s\right] .
\end{aligned}
$$

$$
\text { If } \lim _{n \rightarrow \infty} \int_{x_{0}}^{\pi_{r_{0}}} \frac{d t}{t} \exp \left[\int_{x_{0}}^{t} \frac{2 \pi}{s e(s)} d s\right] \text {, }
$$

We have $\lim _{n \rightarrow \infty} D\left(x_{0}, u_{n}\right)=0 \quad$ and hence $\lim _{x \rightarrow \infty} u_{n}(x)=0$ in $\Delta\left(x_{0}\right)$. Therefore we have the next theorem: Theorem 2. If $\int_{0}^{1} \frac{d t}{t} \exp \left[\int_{0}^{t} \frac{x \pi}{s \theta(s)} d s\right]$, S is a o-region.

$$
\begin{aligned}
\frac{\text { Now }}{\frac{d m n}{d \log r}} & =\frac{1}{\pi} \int_{A(r)} u_{n}(z) \frac{\partial u_{n}(z)}{\partial \log r} d \theta \\
& =\frac{1}{\pi} \iint_{\Delta(r)}\left[\left(\frac{\partial u_{n}(z)}{\partial \log r}\right)^{2}+\left(\frac{\partial u_{n}(z)}{\partial \theta}\right)^{2}\right] d \log r d \theta \\
& \geqq \frac{1}{\pi} \iint_{\Delta(z)} \frac{1}{\tau}\left(\frac{\partial u_{n}(\theta)}{\partial \theta}\right)^{2} d r d \theta \geqq 0
\end{aligned}
$$

$$
\int_{A(x)}\left(\frac{\partial u_{n}(a)}{\partial \theta}\right)^{2} d \theta \geq \sum_{i=1}^{N(r)} \frac{\pi^{2}}{\theta_{i}(r)^{2}} \int_{A_{i}(r)} u_{n}(x)^{2} d \theta
$$

$$
=\frac{\pi^{2}}{\theta(z)^{2}} \int_{A(x)} u_{n}(z)^{2} d e .
$$

Since $\frac{d m_{n}(x)}{d \log r} \geq 0, m_{n}(x)>m_{n}\left(t_{0}\right)$ for
$x_{0}<I<x_{n}$ - Hence $\int_{A(x)}\left(\frac{\partial u_{n}(z)}{\partial \theta}\right)^{2} d \theta$
$\geq \frac{2 \pi^{3}}{\theta(x)^{2}} m_{n}\left(x_{0}\right)$. Therefore
$\frac{d m_{n}(\boldsymbol{r})}{d \log r} \geqq \frac{1}{\pi} \int_{x_{0}}^{T} \frac{2 \pi^{3}}{\theta(r)^{2}} m_{n}\left(x_{0}\right) d r=2 \pi^{2} m_{n}\left(\tau_{0}\right) \int_{\tau_{0}}^{T} \frac{d S}{\theta(\boldsymbol{\delta})^{2}}$.
By integrating, we have

$$
\begin{aligned}
m_{n}(\tau)-m_{n}\left(r_{0}\right) & \geq 2 \pi^{2} m_{n}\left(x_{0}\right) \int_{x_{0}}^{r} d t \int_{x_{0}}^{t} \frac{d s}{\theta(s)^{2}} \\
& =2 \pi^{2} m_{n}\left(r_{0}\right) \int_{r_{0}}^{\tau} \frac{\tau-s}{\theta(s)^{2}} d s .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \quad m_{n}\left(x_{n}\right) \leqq 1 \\
& \begin{aligned}
\frac{1}{m_{n}\left(x_{0}\right)}-1 & =\frac{1-m_{n}\left(x_{0}\right)}{m_{n}\left(x_{0}\right)} \geqq \frac{m_{n}\left(x_{n}\right)-m_{n}\left(x_{0}\right)}{m_{n}\left(x_{0}\right)} \\
& \geqq 2 \pi^{2} \int_{r_{0}}^{r} \frac{x_{n}-s}{\theta(s)^{2}} \propto s .
\end{aligned}
\end{aligned}
$$

If $\lim _{n \rightarrow \infty} \int_{x_{0}}^{x_{n}} \frac{x_{n}-s}{\theta(s)^{2}} d s=\infty \quad$, then
$m_{n}\left(x_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence
$\lim _{n \rightarrow \infty} u_{n}(x)=0$ on $A\left(x_{0}\right)$.
Theorem 3。 If $\int_{0}^{1} \frac{1-s}{\theta(s)^{2}} d s=\infty$

S is a o-region.

Let $\left\{P_{n}\right\}$ and $\left\{q_{n}\right\}$ be increasing sequences of positive integers such that $\lim _{n \rightarrow \infty} p_{n}=\infty$ and. $\lim _{n \rightarrow \infty} q_{n}=\infty$. By $C_{n, k}$ we denote the segment connecting $z=1 e^{-\theta_{n, k}}$ and $z=e^{i \theta_{n, k}}$, $\frac{2 \pi k}{}$, where $r_{r_{2}}=1-\frac{1}{Q_{n}}$ and $\theta_{n, k}=\frac{2 \pi k}{p_{n}}\left(k^{\prime}=0,1, \cdots, p_{n}-1\right)$. i.et S be a region bounded by $\sum C_{n, k}$ end by the unit circle. Then

$$
\int_{i-\frac{1}{q_{1}}}^{1} \frac{1-r}{s(r)^{2}} d r=\sum_{n=1}^{\infty} p_{n}^{2}\left(\frac{1}{q_{n}^{2}}-\frac{1}{q_{n+1}^{2}}\right) .
$$

By Theorem 3, wa have the next theorem:
Theorem 4. If $\sum_{n=1}^{\infty} p_{n}^{2}\left(\frac{1}{q_{n}^{2}}-\frac{1}{q_{n+1}}\right)=\infty$,
is a $0 \rightarrow r e g i o n$,
Corollary (Myrberg's'theorem). If

$$
\lim _{n \rightarrow \infty} \frac{q_{n}}{q_{n}}=\infty \quad, S \text { is o. } 0 \text {-region }
$$

$$
\text { §4, By } \beta(x) \text { we denote the length }
$$ of $A(i, r)$. Since $\beta\left(T_{n}\right)$ is a monotone decreasing function of n, we put $\lim _{n \rightarrow \infty} \beta\left(t_{n}\right)=\beta$.

Theorem 5. If $\beta=0, S$ is a $0-$ region.

Proof. Without loss of generality, We may assume that for sufficiently small x_{0}, the circle $|Z|=x_{0}$ is contained in the complementary set of S putting $v_{f_{k}}(z)=\omega\left(z, A\left(1, r_{k}\right), E\left(x_{p_{k}}\right)\right)$ and applylng Green's formula, we have

$$
\begin{aligned}
\sum_{i=1}^{n\left(x_{k}\right)} \int_{C_{i}} \log \frac{1}{|z|} \frac{\partial v_{k}(z)}{\partial n} d s & =\int_{A\left(1, x_{k}\right)} \frac{\partial \log \frac{1}{|z|}}{\partial n} d s \\
& =P\left(x_{k}\right) .
\end{aligned}
$$

Given \mathcal{E} ，for sufficiently large k_{0} ， $\beta\left(t_{k}\right)<\varepsilon$ for $k \geq k_{0}$ ．We have

$$
\begin{aligned}
& \sum_{i=1}^{n\left(x_{k}\right)} \int_{C_{i}} \log \frac{1}{|z|} \frac{\partial v_{k}(z)}{\partial n} d s<\varepsilon ; \\
& \log \frac{1}{|z|}>0 \text { and } \frac{\partial v_{k}(z)}{\partial n} \geqq 0 \text { fox }|z|<1
\end{aligned}
$$

Since C_{i} is an analytic curve， $\lim _{x \rightarrow \infty} \frac{\partial v_{n}(z)}{\partial n}=0$ on C_{1} ，Where $|z|<\rho_{1}<1$ and ρ is a fixed number．Hence $\lim _{t \rightarrow \infty} v_{k}(z)=0$ in
S ．Thus the theorem has been proved．
Let P_{i} be a region bounded by C_{i} and by the unit circle $|z|=1$ And let α_{i} ．be the boundary arcs of P_{i} on the unit circle。 We put

$$
{\overline{\gamma_{i}}}_{i}(z)=\omega\left(z, \alpha_{i}, P_{i}\right)
$$

$\quad \frac{\text { Theorem 6．Suppose that } \beta>0 \text { and }}{} \begin{aligned} & \int_{C_{i}} \frac{\partial v_{i}(z)}{\partial n} d s<K \text { for all } i, \text { where } K \\ & \text { is anstant．If } \sum_{i=1} \log \frac{1}{\rho_{i}} \\ & \text { finite，} S \text { is a positive－region．is }\end{aligned}$
Proof．Without loss of generality， we may assume that，for sufficiently small T_{0} ，the circie $|z|=x_{0}$ is contained in the complementary set of S ．We put $v_{k}(z)=\omega\left(z, A\left(1, r_{k}\right), E\left(r_{k}\right)\right)$ 。 By Green＇s formula，we get $\sum_{i=1}^{n\left(x_{n}\right)} \int_{C_{i}} \log \frac{1}{\mid=1} \frac{\partial v_{k}(z)}{\partial n} d s=\int_{A\left(1, x_{i}\right)} \frac{\left.\partial \log \frac{1}{|E|} \right\rvert\,}{\partial n} d s$

$$
=\beta\left(t_{k}\right) \geqq \beta>0 .
$$

 is absurd．Now，

$$
\lim _{n \rightarrow \infty} \rho_{n}=1 \text { and } \rho_{n} \subseteq \rho_{n+1}
$$

Given \mathcal{E} ，for sufficiently lerge N_{0} ． $\sum_{i=1}^{\infty} \log 1 / \rho_{i}<\varepsilon$ ．If k is suffi－＂ clently large，we have for $i \leqq N_{0}$ o

$$
\int_{C_{i}} \frac{\partial V_{k}(z)}{\partial n} d s<\mathcal{E}
$$

Otherwise at a point z on $C_{i}\left(i \leqq N_{0}\right)$ $\lim _{\text {This }} \frac{\partial v_{n}(z)}{\partial N \text { in inconsistent with }} \neq 0$ hence $v_{\text {保 }}(z) \neq 0$ This is inconsistent wititour assumption $\lim _{k \rightarrow \infty} v_{k}(z) \equiv 0 \quad 0 \quad$ Nows

$$
\sum_{i=1}^{\rightarrow \infty} \int_{C_{i}}^{N_{0}} \log \frac{1}{|z|} \frac{\partial v_{k}(z)}{\partial n} \operatorname{ds} \leqslant \varepsilon \sum_{i=1}^{N_{0}} \log 1 / j_{i}<\varepsilon L,
$$

where

$$
\sum_{i=1}^{\infty} \log 1 / j_{i}=L,
$$

and

$$
\begin{aligned}
& \sum_{i=N_{0}+1}^{n\left(r_{i}\right)} \int_{C_{i}} \log \frac{1}{|z|} \frac{\partial V_{k}(z)}{\partial n} \alpha s \\
& \leqq \sum_{i=N_{0}+1}^{n\left(r_{f}\right)} \log 1 / \rho_{i} \int_{C_{i}} \frac{\partial V_{k}(z)}{\partial n} \operatorname{cis} .
\end{aligned}
$$

Since $v_{k_{k}}(z) \leqq \bar{v}_{k}(z) \quad$ ，we get $\int \frac{\partial v_{k}(z)}{\partial n} d s$ $\leqq \int_{C_{i}} \frac{\partial \overline{v_{k}}(z)}{\partial n_{\infty}} d s<K$ ．Hence $\sum_{i=N_{0}+1}^{n\left(x_{i}\right)} \int_{C_{i}} \log _{i} \frac{1}{|z|} \frac{\partial v_{i}(z)}{\partial n} d s$ $\leqq K \sum_{i=1}^{\infty} \log 1 / \rho_{i}<\varepsilon K$ ．
Thus $\varepsilon \mathrm{K}^{++}+\mathcal{E} L>\beta>0$ ．But，since ε
is an arbitrary positive number，this is absurd．

Corollary．If $\int_{C_{i}} \frac{\partial \bar{v}_{i}(z)}{\partial n} d s<K$, $\beta>0$ and $\sum_{i=1}^{\infty}\left(1-\rho_{i}\right)<\infty$ ，then S is a positivemregion．
§5．In this paragraph we will give some examples．

Exp．1．Let $S_{l}(z)(i=0,1,2, \cdots)$ be a Innear transformation of a Fuchsoid group G and let C be a circle con－ tained in fundamental region．By $S_{i}(E)$ we denote the set into which E is transformed by $S_{i}(z)$ ．We put
$S_{i}(C)=C_{i}$ and $S_{i}(0)=a_{i_{\infty}}$ ．Let S be the $r e g t i o n ~ b o u n d e d ~ b y ~ \sum_{i=1}^{\infty} C_{i}$ and by the unit circle，then a well known theorem is stated as follows．

Theorem（I）．If $\sum_{i=0}^{\infty}\left(1-\left|a_{i}\right|\right)=\infty$ ， then S is a 0 －region．（II）If $\sum_{i=0}^{\infty}\left(1-1 a_{i} \mid\right)<\infty, x_{0}$ then S is a positivem zegion。

The second part of the theorem is a simple result derived from the preced－ ing corollary．On the basis of this theorem we will say that in case（I） G is a Fuchsoid group of 0 －type and in case（II）G is a Fuchsoid group of P－type．

Rxpe \therefore Let $\left\{a_{k}=r_{\text {最 }} e^{i \theta_{k}}\right\}$ be a sem quexco of somplex numbers such that
 2 asegmext connecting 0_{i} and $e^{\theta_{k}}$ ． Denoting by S the rogion bounded by要 S_{s} and by the unit circie $|z|=1$ then we have the following theorem：

Theoren（Myrberg＇s theorem）。 If $\sum_{\text {ieng }}^{\infty}\left(1-\left(a_{i}\right)<\infty \quad, \quad S\right.$ is a positive－解g（On。

> If i is a Fuchsoid group of the P-type, S is a positive-region. But the outhor has not yet solved the fol－ lowing problem：

$$
\begin{aligned}
& \text { If } \hat{T} \text { is a Fuchsoid group of } O \\
& \text { type is } S \text { a O-region? }
\end{aligned}
$$

We denote by $S(\pi, \alpha, \beta)$ the sector in which $\alpha<a r y z<\beta$ and $|z| \leqq r \quad a$ and by $\eta(x, \alpha, \beta)$ the number of a_{i} which are conrbinod in $S(\gamma, \alpha, \beta)$ ，Then we can easily prove the next theorem：

If S is a $0-r$ egion， $\int_{0}^{1} n(t, \alpha, \beta) d t=\infty$ for any pair (α, β) ．

Expo3．Let L_{i} be a circle which is orthogonal to the unit circle $|z|=1$ and let C_{i} be a subarc of L_{i} contain－ ed in $|z|<1$ ．We suppose that C_{i} does not intersect $C_{j}(i \neq j)$ in the unit circle $|z|<1$ ．Then we get next theorem：

Theorem（Myrberg＇s theorem）．If $\beta=0, S$ is a 0 －region and，if $\beta>0, S$ is a positive－region．
§ 6．We will consider the particu－ lar case such that all C_{n} are closed analytic curves．If the following con－ ditions are satisfied，we will say that a point P on the unit circle is a normal point：

1．$\angle O P A=\angle O P B \neq 0$ ，where 0 is the origing

2．there are finite number of C_{n} which are entirely contained in $\angle A P B$ ．

3．$P A$ and $P B$ intersect finite number of C_{n} ；

4．$P A \perp O A$ and $P B \perp O B$ ．
Theorem 7．Let B be a set of nor． mal points．If linear measure（E）is positive，S is a positive－region．

Proof．Let E be a set of normal points．By $N(x, \alpha, \theta)$ we denote a number of C_{n} which are contained in $\angle A P B$ or intersect $A P$ or $B P$ in the circle $|z|<T$ ，where $P: z=e^{\iota \theta}$ and $A P B=\alpha$ ．Since for fixed r and α $N(r, \alpha, \theta)$ is a measurable function of θ and $N(x, \alpha, \theta)$ is a monotone in－ creasing function of t ，we see that $\lim _{x \rightarrow 1} N(r, \alpha, \theta)=N(\alpha, \theta)$ is a measurable function of θ 。 By $E(m, n)$ we de－ note the subset of E such that at $P\left(z=e^{i \theta}\right) \in E(m, n), N\left(\frac{1}{m}, \theta\right)=n$ Then $E(m, n)$ is a measurable set and $\sum E(m, n)=E$ ．Since $m(E) \neq 0$ ． there exists a set $\mathrm{E}\left(m_{0}, n_{a}\right)$ such that，at $P \in E\left(m_{0}, n_{0}\right), N\left(1 / m_{0}, \theta\right)=n_{0}$ and $m\left(E\left(m_{0}, n_{0}\right)\right) \neq 0$ ．We denote by $E\left(m_{0}, n_{0}, k\right)$ a subset of $E\left(m_{0}, n_{0}\right)$ such that，if $P \in E\left(m_{0}, n_{0}, k\right)$ ，there exists no C_{n} in the ennulus $1-1 / k \leqq|z|$ <1 which is contained in $A P B$ or intersect $A P$ or $B P$ ．For fised k ． we denote by $n\left(1 / m_{0}, k, r, \theta\right)$ the number of C_{n} in the annulus $1-1 / k \leqq|z|$ $<x<1$ which are entirely contained in $A P B$ or intersect $A P$ or $B P$ ． where $\angle A P B=1 / m_{0} P: z=e^{i \theta}$ ．Since for ifixed r and $k, n\left(1 / m_{0}, k, r, \theta\right)$ is a measurable function of θ and is a monotone increasing function of r ， we see that $\lim _{x \rightarrow 1} n\left(1 / m_{0}, k, x, \theta\right)=n\left(1 / m_{0}, k, e\right)$ Is a measurable function．Therefore， for a fixed $k, E\left(m_{0}, n_{0}, k\right)$ is a mea－ surable set of $e^{i \theta^{\circ}}$ and $\sum_{i=1} E\left(m_{0}, n_{0}, k\right)$ $=E\left(m_{0}, n_{0}\right)$ ．Hence theri exists a set $E\left(m_{0}, n_{0}, k_{0}\right)$ such that at $\mathrm{P} \in \mathrm{E}\left(m_{0}, n_{0}, k_{0}\right)$ ， $N\left(1 / m_{0}, \theta\right)=n_{0}$ and there is no C_{n} in the ennulus $1-1 / k_{0}=|z|<1$ which is en－ tirely contained in $A A P B$ or intersects
$A P$ or $B P$ and $m\left(E\left(m_{0}, n_{0}, k_{0}\right)\right) \neq 0$
We put $E\left(m_{0}, n_{0}, k_{0}\right)=F \cdot$ Const－ ructing an angle $A P B=1 / m$ at each point of F ，we get the region D_{F} bounded by sides of these angles，we see that there exist a finite number of C_{n} which are entirely contained in D_{F} or intersect the boundary．Let D_{G} be the region bounded by these C_{n} and by the boundary of D_{F} ．Then $U(z)=$ $=\omega\left(z, F, D_{G}\right) \neq 0$ ，and if $r_{k}>1-1 / k_{0}$ ，we have $u_{f}(z)>U(z)$ ．Hence S is a positive－region。

Theorem（Myrberg－Tugi－Y $\hat{u} j \hat{f} b \hat{O}$ ）．Let G be a Fuchsoid group of 0 －type． Let z^{*} be an equivalent point of z which lies in the fundamental region D As z moves along the radius $\left(0, e^{i \theta}\right), z^{*}$ moves on the set $M(\theta)$ in D ．Then $M(\theta)$ is everywhere dense in D ，except for θ belong－ ing to a set of measure 0 ．

Proof．Let Q be any rational point in D ，and let $C(Q, m)$ be a non－Euclidean circle with center at Q and radius m ．We suppose that $C(Q, m)$ is entirely contained in D for a rational number m ．Let $F(\theta)$ be a set of θ such that $M(\theta)$ and $C(Q, m)$ have no common part．We will prove that $m(F(\theta))=0$－Assuming that $m(F(\theta)) \neq 0$ we will show that this assumption is absurd．Let S be the region bounded by $\sum_{n} S_{n}(C(Q, m))$ and by the unit circie，then，by Theorem $6, S$ is a 0 －region．If $P\left(z * e^{i \theta}\right)$ belongs to $F(\theta)$ ，we construct non－ Euclidean circle with radius $\frac{1}{2} m$ and center at each point on $O P$ ．The re－ gion swept by these circles contains the angle $A P B$ such that there is no C_{n} contained in $A P B$ or intersected by $A P$ or $B P$ ，and $\angle A P B=k(m) \neq 0$ ， where $k(m)$ is a constant depending upon m－By Theorem $7 \quad S$ is a positive－region．This is absurd． Thus $m(F(\theta))=0$ 。 Hence Q is a limiting point of $M(\theta)$ for every θ except for some θ belonging to a set of measure 0 －Thus our theorem has been proved．

Chapter II．

§ 1．In this chapter we suppose that S is a O－region．Let $V(z)$ be a bounded function：$|V(x)|<L$ ，which is harmonic in S and is 0 on Γ ． Putting $\quad u_{n}(z)=\omega\left(z, A\left(\Sigma_{n}\right), \Delta\left(\tau_{n}\right)\right)$ and $w_{n}(z)=\frac{V(z)+L}{L}-\left(1-u_{n}(z)\right), w_{n}(z)$ is harmonic in $\Delta\left(t_{n}\right)$ ，and $w_{n}(z)=0$ on $B\left(I_{n}\right)$ ，and $w_{n}(z) \geqq 0$ on $A\left(t_{n}\right)$ ． Hence $w_{n}(z) \geqq 0$ in $\Delta\left(x_{n}\right)$ 。
$\frac{V(z)+L}{L} \geq 1-u_{n}(z)$ in $\Delta\left(x_{n}\right) \quad V(z)+L$ Since $\lim _{n \rightarrow \infty} u_{n}(z)=0$ ，we have $\frac{v(z)+L}{L} \geq 1$ $\ln _{n \rightarrow \infty}^{n \rightarrow} S$ ，and therefore $V(z) \geqq 0$ ．Re－ placing $V(z)$ by $-V(z)$ we get $1-V(z)$ ≥ 0 ．Hence $V(z)=0$ ．Thus we have the following theorem．

Theorem 8．If S is a 0 －region， there exists no non－zero bounded har－ monic function in S which is O on Γ ．

Let $U(z)$ be a bounded harmonic function in S ：$|U(z)|<L$ ．We sup－ pose that $U(z)$ is continuous on Γ ． Let $V_{n}(z)$ be a harmonic function in
$\Delta\left(x_{n}\right)$ such that $V_{n}(z)=U J(z)$ on
$B\left(x_{n}\right)$ and is 0 on $A\left(x_{n}\right)$ ．
Putting $W_{n+p, n}(z)=V_{n+p}(z)-V_{n}(z)$ ，
$W_{n+p, n}(z)$ is harmonifc in $\Delta\left(x_{n}\right)$ and is O on $B\left(v_{r}\right)$ ，Now，

$$
\left|W_{n+p, n}(z)\right|=\left|V_{n+p}(z)-V_{n}(z)\right|<2 L .
$$

Putting $U_{n+p, n}(z)=\frac{W_{n+p, p}(z)+2 L}{2 L}$
$-\left(1-u_{n}(z)\right)$ ，then $U_{n+p, n}(z)$ is harmonic in $\Delta\left(x_{n}\right)$ and is D on $B\left(r_{n}\right)$ and $\dot{U}_{n+p, n}(z) \geq 0$ on $A\left(T_{n}\right)$ ． Hence $\left[U_{n+p, n}(x) \geq 0\right.$ in $\Delta\left(x_{n}\right)$ 。 Since $\lim _{n \rightarrow \infty} u_{n}(z)=0$, we get $\lim _{n} W_{n+p, n}(z)$
 to $-W_{n+p, n}(x)$ we get

$$
\lim _{n \rightarrow \infty}-W_{n+p, n}(z) \geqq 0, \overline{\lim }_{n \rightarrow \infty} W_{n+p, n}(n) \leqq 0
$$

Hence $\lim _{n \rightarrow \infty} W_{n+p, n}(x)=0$ ．Therefore， $V_{n}(z) \quad$ converges to a harmonic func－ tion $V(x)$－Putting $W(z)=U(x)-V(z)$ $w(z)$ is a bounded harmonic function in S and is O on Γ ，By Theorem 8，we have $U(z)=V(z)$－Thus we have the following theorem：

Theorem 9．Let $U(z)$ be a bounded harmonic function in S ．If $U(x)$ is continuous on $\Gamma, \square(z)$ is uniquely determined by boundary values given on Γ

Theorem 10．If G be a Euchsoid group of 0 －type，then there exists no non－constant，bounded，hammonic and automorphic function．

Proof．We suppose that this propo－ sition is false．Let $u(z)$ be a funce tion stated in theorem．Without loss
of generality，we may assume that

$$
\begin{aligned}
m & =\text { least upper bound of } u(x) \\
-m & =\text { greatest lower bound of } u(z)
\end{aligned}
$$

and $m>0$ ．
Let Z_{o} be a point in the fundarnental region D such that $u\left(z_{0}\right)>0$ ．Then there exists a non－Euclidean circle C with center z_{0} such that C is en－ tirely contained in D and $u(x)>0$ on
C Let S be the region bounded by $\sum_{n} S_{n}(C)$ and by the unit cir－ cle，then S is a 0 －region．By the same argument as theorem $8 \quad u(z)>0$ in S ．Since $u(x)>0$ in C and $u(x)$ is an automorphic function， $u(z)>0$ in $S_{n}(C)$ ．Thus $u(z)>0$ in the unit circle．This is incon－ sistent with our assumption $0>-m=$ greatest lower bound；the proposition has thus been proved．

Corollary（Myrberg＇s theorem）．There existe no non－constant，bounded har－－ monic function on the＂Null berandet＂ Riemann Surface。
§2．Theorem 11．We suppose that S is a 0 region，and $w=f(z)$ $=u(x)+i v(z)$ is a meromorphic function in S ．If $u(z)$ is 0 on Γ and $u(z)>0$ in S ，then $w=f(z)$ takes every value $w(R(w)>0)$ ，except possibly some values of w belonging to a set of capacity 0 －

Proof．Putting $\xi=F(z)=\frac{1-f(z)}{1+f(z)}$ $|\xi|<1$ ．We will assume that $f(z)$ does not take values w belongine to a set Ew contained in the half plane $R(w)>0$ and $E w$ is of positive capapity．Then $F(z)$ does not take values ξ belonging to a set E con－ tained in the circie $|\xi|<1$ and E is of positive capacity．Without loss of generality，we may assume that E is entirely contained in the circle $|\xi|<\rho<1$ o $\operatorname{Let} G(\xi, \eta)$ be a Green＇s function of the unit circle With a pole at η ．There exists a distribution of positive mass $\alpha \mu(\eta)$ on E so that its potential $g(\xi)$ $=\int_{E} G(\xi, \eta) d \mu(\eta)$ is bounded and non－ constant．Putting $K(z)=g(F(z))$
$K(z)$ is a bounded harmonic function and is 0 on Γ^{7} ．Hence we have，by Theorem 8，$K(x) \equiv 0$ ．This is ab－ surd．Thus our theorem has been proved．

Theorem 12．Let G be a Fuchsoid group of 0 －type，and let $w=f(z)$ be an automorphic function with respect to
G ．Then $f(z)$ takes all values
w except some values of u belong ing to a set of capacity 0 ．

As this theorem can be easily proved． we omit its proof．

Corollary。 If f is a meromorphic function on the Null berandet Riemann Surface，f takes every value except some values belonging to a set of capa－ city 0 ．

By Theorem 1 we have next theorem:
Theorem 13. If $\int_{0}^{1} \frac{1}{T \theta(x)} d x=\infty$, then there exists no non-constant harmonic function such that it is 0 on Γ and its Dirichlet's integral is finite.
(*) Received October 10, 1950.
Kagoshima University。

