ON HARMONIC FIELD IN RIEMANNIAN MANIFOLD

By Isamu MOGI
(Communicated by Y. Komatu)

Recently S. Bochner has treated the estimation of Betti-numbers of Riemannian manifold by means of locally defined curvature, [2], [3]. Its radical idea was based on Hodge-de Rham's isomorphy theorem between harmonic integrals and Betti-numbers, but this shows an important aspect of the differential geometry which connects the grobal theory and local properties of the Riemannian manifold.

Now, in the present paper we shall clarify the characteristic property of Lapalcian operated to harmonic tensor fields, and then reproduce some of Bochner's results with some modifications and supplements. Using these results we shall give new viewpoints on T.Y. Thomas' theory on metric tensors, [6], [7]. By the treatment, we can also show an important meaning of so called "index", defined by T.Y. Thomas.

1. Definitions.

Me be a compact or non-compact orientable Riemannian manifold with positive definite fundamental quadratic differential form

$$
d s^{2}=g_{\lambda \mu} d x^{\lambda} d x^{\mu}
$$

We assume that $M C$ and $g_{\lambda \mu}$ belong to differentiable class u and $u-1(u \geqq 3)$, respectively. We consider, on $M C$. the harmonic tensor fields with class $u \geqq 2:$

$$
\begin{aligned}
\xi_{\alpha_{1} \cdots \alpha_{p}} & =\xi_{\left[\alpha_{1} \cdots \cdots \alpha_{p}\right]}^{p+1}, \\
(D \xi)_{\alpha_{1} \ldots \alpha_{p+1}} & =\sum_{k=1}^{k}(-1)^{k-1} \xi_{\alpha_{1} \cdots \hat{\alpha}_{k} \cdots \alpha_{p+1}} ; \alpha_{k}=0, \\
\left(D^{*} \xi\right)_{\alpha_{1} \cdots \alpha_{p-1}} & =\xi_{\alpha_{1} \ldots \ldots \alpha_{p-1} \lambda ; \mu g^{\lambda \mu}=0,}=0,
\end{aligned}
$$

where";"denotes the covariant differentiation.

Definition. A tensor $T_{\alpha_{1} \ldots \ldots \alpha_{p}}$ on Tre is called a restrained tensor, if either

$$
\Delta \phi\left(P_{0}\right)<0
$$

at some point P_{0} in $M C$, or

$$
\phi(\dot{P})=\text { const. }
$$

throughout $M C$, where

$$
\phi=T_{\alpha_{1} \cdots \alpha_{p}} T_{\beta_{1} \ldots \beta_{p}} g^{\alpha_{1} \beta_{1} \ldots . . g^{\alpha_{p} \beta_{p}}}
$$

and

$$
\Delta \phi=g^{\lambda \mu} \phi ; \lambda ; \mu
$$

Lemmas.
I. If M is compact, tensor field is restrained, [1].
II. A covariant constant tensor field is always restrained.

Defining the Laplacian for any skew symetric tensor field as follow:

$$
\Delta \xi_{\alpha_{1} \ldots \alpha_{p}}=\xi_{\alpha_{1} \ldots \alpha_{p} ; \lambda ; \mu} g^{\lambda \mu}
$$

we obtain the expression:

$$
\begin{aligned}
\Delta \xi_{\alpha_{1} \cdots \alpha_{p}} & =\sum_{(j<k)}^{p \ldots p}(-1)^{j+k} R^{\lambda \mu} \alpha_{j} \alpha_{k} \xi_{, \alpha_{1}, \alpha_{j} \ldots \alpha_{k} \cdot \alpha_{p}} \\
& +\sum_{k=1}^{p}(-1)^{k} R^{\lambda} \cdot \alpha_{k} \xi_{\lambda \alpha} \ldots \hat{\alpha}_{k} \ldots \alpha_{p} \\
& +(-1)^{p}\left(D^{*} D-D D^{*}\right) \xi_{\alpha_{1}} \ldots \alpha_{p}
\end{aligned}
$$

where $\sum_{\substack{ \\k}}$ means the summation over all combination (j, k) ordered by $j<k$, and

$$
\begin{aligned}
& R_{\mu v \omega}^{\lambda}=\frac{\partial\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\}}{\partial x^{\omega}}-\frac{\partial\left\{\begin{array}{c}
\lambda \\
\mu \omega
\end{array}\right\}}{\partial x^{\nu}}+\left\{\begin{array}{c}
\alpha \\
\mu \nu
\end{array}\right\}\left\{_{\alpha \omega}^{\lambda}\right\}-\left\{\begin{array}{c}
\alpha \\
\mu \omega
\end{array}\right\}\left\{\begin{array}{c}
\lambda \\
\alpha \nu
\end{array}\right\}, \\
& R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda}, \quad R^{\lambda \mu}, \\
& R_{\nu \omega}^{\lambda}=g^{\mu \nu} R_{\alpha \nu \omega}^{\lambda}=g^{\lambda-\alpha} R_{\nu \mu} .
\end{aligned}
$$

In culculation we have used the for... mulae:

$$
\begin{aligned}
& A_{\alpha_{1}} \ldots \alpha_{p} ; \lambda ; \mu-A_{\alpha_{1} \ldots \alpha} ; \mu ; \lambda \\
&=\sum_{k=1}^{\infty} R_{\alpha_{k} \nu \mu}^{\alpha} A_{\alpha_{1} \ldots \alpha_{k-1} \alpha \alpha_{k+1} \ldots \alpha_{p}},
\end{aligned}
$$

$$
R_{\alpha_{j} \alpha_{k}}^{\lambda}-R^{\lambda \cdot \alpha_{k} \alpha_{j}} \mu=-R^{\lambda \mu_{\alpha_{k} \alpha_{j}}}
$$

Especialiy, if $\xi_{\alpha_{1} \ldots \alpha_{p}}$ is harmonic, then (1.1) becomes

$$
\begin{align*}
& \Delta \xi_{\alpha_{1} \ldots \alpha_{p}} \\
& =\sum_{\left(j<\alpha_{1}\right)}^{1 \cdots p}(-1)^{j+k} R^{\lambda \mu} \alpha_{j \alpha_{k}} \xi_{\Delta \mu \alpha_{1} \cdots \alpha_{j}^{A} \cdots \alpha_{k} \cdots \alpha_{p}} \tag{1.2}\\
& \quad+\sum_{k=1}^{\infty}(-1)^{k} R^{\lambda} \cdot \alpha_{k} \xi_{\lambda \alpha_{1} \cdots \hat{\alpha}_{k} \cdots \alpha_{p}} .
\end{align*}
$$

Introducing the notations:

$$
\begin{align*}
& \xi_{\alpha_{1} \ldots \alpha_{p}}^{\eta_{\beta_{1}} \ldots \beta_{p}} g^{\alpha_{1} \beta_{2}} \cdot g^{\alpha_{p} \beta_{p}}=\left(\xi_{2}, \eta\right), \tag{1.3}
\end{align*}
$$

$$
\begin{aligned}
& =\left(\xi^{\prime}, \eta^{\prime}\right)
\end{aligned}
$$

one can easily obtain the formula:
(1.4) $\frac{1}{2} \Delta \phi=(\Delta \xi, \xi)+\left(\xi^{\prime}, \xi^{\prime}\right)$,
where

$$
\phi=(\xi, \xi)
$$

If ξ is restreined, then
(1.5) $\Delta \phi \underset{*}{\geqslant} 0 \rightarrow \Delta \phi=0$,
where $\xlongequal{\star}$ means that the strict inequality hold at least a point in the concerning domain, and the condition
(1.6) $\quad(\Delta \xi, \xi) \leq 0$
is sufficient for (1.5). Now, following [1], [2] and [3], we shall investigate tre quantity appeared in the sight nand member in (1.6).
from (1.2) we obtain
(1.T) $(\Delta \xi, \xi)=-\frac{p}{2(p)} H_{\gamma \mu \omega} \xi^{\mu \alpha_{j} \cdot \alpha p} \xi^{\nu \omega 1} \alpha_{3} \cdot \alpha_{p,}$
where

$$
\begin{aligned}
(p) H_{\lambda \mu \nu \omega} & =(p-1) R_{\lambda \mu \nu \omega \nu} \\
+ & \frac{1}{2}\left(R_{\lambda \nu} g_{\mu \omega \omega}-R_{\lambda \omega} g_{\mu \nu}+g_{\lambda \nu} R_{\mu \omega}-g_{\gamma \omega} R_{\mu \nu}\right)
\end{aligned}
$$

2. Frundamental Theorem.

Now, we can conclude imediately
Theorem 1. For any non zero tensor $\xi^{\lambda \mu}=\xi^{\mu \mu^{\mu}}$ or ξ^{λ}, if the conditions

$$
\begin{align*}
{ }_{(\beta) 3} H_{2 \mu v \omega)} \xi^{\lambda \mu} \xi^{\nu \omega} & \text { for } k p \leqq n, \\
R_{\lambda \mu} \xi^{\lambda} \xi^{\mu} & \leq \tag{2.1}\\
\varlimsup & \text { for } p==1
\end{align*}
$$

nold on M, there exist no restrained hapmonic p-fields.

Theorem 2. For any non zero tensor $\xi^{\lambda \mu}=\xi^{\left[\mu^{\mu}\right]}$ or ξ^{λ}, if the conditions
(2.2)

$$
\begin{aligned}
& \text { (p) } H_{\text {ruva }} \xi^{2 \mu} \xi^{\nu \omega} \underset{*}{\geqslant} 0 \text { for } 1<p \leq n, \\
& R_{r \mu}^{\mu} \xi^{\lambda} \xi^{\mu} \underset{\gg}{\geq} 0 \text { for } p=1
\end{aligned}
$$

hold on 7 me there exjsts no restrained $p-f i e l d$ such that

$$
\begin{equation*}
\xi_{\alpha_{1} \cdots \alpha_{p} ; \alpha_{p+1}}=\xi_{\left[\alpha_{1} \cdots \alpha_{p} ; x_{p+1}\right]} \tag{2.3}
\end{equation*}
$$

Proof. We use (1.1). If we had (2.3), then $D^{*} \xi=0$, and
$(D \xi)_{\alpha_{1} \cdots \alpha_{p+1}}=(-1)^{p}(p+1) \xi_{\alpha_{1} \cdots \alpha_{p}} ; \alpha_{p+1}$,
$\therefore\left(D^{*} D-D D^{*}\right) \xi_{\alpha_{1} \cdots \alpha_{p}}=(-1)^{p}(p+1) \Delta \xi_{\alpha_{1} \cdots \alpha_{p}}$,
$\therefore(\Delta \xi, \xi)=(p+1)(\Delta \xi, \xi)$

$$
-\frac{p}{2}{ }_{(p)} H_{\nu \mu \nu \omega} \xi^{\lambda \mu_{3} \cdots \alpha_{p}} \xi_{\alpha_{3} \cdots \alpha_{p}}
$$

Hence, from (1.4), we can conclude the theorem, as theorem 1 .

For $p=1, \quad(2.3)$ is reduced to

$$
\xi_{\lambda ; \mu}+\xi_{\mu ; \lambda}=0,
$$

therefore, as Bochner has shown, we have

Corollary la $_{0}$ For any vector ξ^{λ}, if the condition

$$
R_{\lambda \mu} \xi^{\lambda} \xi^{\mu} \frac{2}{\star} 0
$$

holds, $M C$ can not admit the restrained one parameter group of motion,"il].

Definition. In the domain \mathcal{F}, for any non zero tensor field $\xi^{\wedge \mu}=\xi^{\left[\lambda \mu^{\prime}\right]}$ or ξ^{λ}, if the condition (2.2) holds, then we say that (p) Hapuw or Rru $^{\prime}$ has the positive condition in ϑ ? and if (2.1), then negative condition. If at least one of them holds, then we say that they have definite condition.

Theorem 3. on M_{c}^{α}, if (p) H H $_{\lambda \mu \omega}$ (for $l<p \leqq n$) or $R \lambda \mu$ (for $p=1$) has the definite condition, there exists no harmonic field such that

$$
\text { (2.4) } \Delta \xi_{x_{1}} \cdots \alpha_{p}=0
$$

Proof. If harmonic field $\xi_{\alpha_{1}} \cdot \alpha_{p}$ has the condition (2.4), then

$$
(\Delta \xi, \xi)=0
$$

which implies

$$
{ }_{(p)} H_{\lambda^{\mu} \omega \omega} \xi^{\mu \mu^{\mu} \cdots \alpha_{3}} p \xi_{\alpha_{1} \omega_{p} \omega}=0
$$

or

$$
R_{\lambda \mu} \xi^{\lambda} \xi^{\mu}=0
$$

If ${ }_{(\mu)} \mathrm{H}_{\lambda \mu \nu}$ and $\mathrm{R}_{\lambda \mu}$ have the definite condition, we have

$$
\xi_{\alpha_{1}} \cdots \alpha_{p}=0
$$

which proves the theorem．

Remark．In this statement we have not concerned the condition that the fields ξ＇s are restrained．But，if ξ＇s are restrained，then evidentiy
（＊）$\xi_{\alpha_{1} \cdots \alpha_{p}}=0 \rightleftarrows \xi_{\alpha_{1} \cdots \alpha_{p} ; \alpha_{p+1}}=0$.
Therefore，Theorem 3 shows the condition for the non existence of covariant con－ stant pofield．

Iwamoto［5］has studied the differ－ ential form

$$
\xi_{\alpha_{1} \ldots \alpha_{p}} d x^{\alpha_{1} \ldots d x^{\alpha p} \quad(p-\text { form })}
$$

whose coefficients are covariantly con－ stant．These forms constitute an im－ portant class of p－forms which are in－ variant by the group of holonomy．

$$
\begin{aligned}
& \text { Now, if } \quad \xi_{d, \cdots \alpha_{p}, w}=0 \text {, then evidently } \\
& \xi_{a}, \ldots \text { of is restrained, and therefore } \\
& \text { we have (} * \text {). Hence, we can remplte the } \\
& \text { Theorem } 3 \text { as follows: }
\end{aligned}
$$

Theorem 3^{\prime} ．on $M C$ ，if ${ }_{(p)} \mathrm{H}_{\lambda \mu \mu \omega}$ （for $R<p \leq n$ ）or $R_{\lambda \mu}$（for $p=1$ ）have the definite condition，there exists no no p－form which is invariant by the group of holonony．

Now，we shall proceed to some spe－ sial cases，which are locally confor－ mally flat，of constarit curvature and Einstein space．First we take the case where the space is locally con－ formally flat，that is

$$
\begin{aligned}
R_{\mu \nu \omega}^{\lambda}= & \frac{1}{n-2}\left(R_{\mu \nu} \delta_{\omega}^{\lambda}-R_{\mu \omega} \delta_{y}^{\lambda}+g_{\mu \nu} R_{\omega}^{\lambda}-g_{j_{\omega}} R_{v}^{\lambda}\right) \\
& +\frac{R}{(n-1)(n-2)}\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right) .
\end{aligned}
$$

In this case，we have

$$
\begin{aligned}
& \text { (p) } H_{\text {人puy }} \\
& =\left(\frac{1}{2}-\frac{b-1}{m-2}\right)\left(R_{\lambda, y} q_{\mu \omega}-R_{\lambda \omega} g_{f^{\omega}}+g_{\lambda \nu} R_{\alpha \omega \omega}-g_{\mu \omega} R_{\mu \omega}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{(p)} H_{\lambda \mu \omega \omega} \xi^{\lambda \mu \xi \omega \omega} \\
& =4\left(\frac{1}{2}-\frac{p_{1}}{n-2}\right) R_{\lambda \mu} \xi^{\lambda d} \xi_{\alpha}^{\mu}+\frac{2(p-1) R}{(n-1)(n-2)} \xi_{\lambda} \xi^{\gamma} l^{\mu} \\
& =\frac{2(n-2 p)}{n-2} R_{\lambda \mu} \xi^{\lambda \alpha} \xi_{\alpha}^{\mu}+\frac{2(p-1) R}{(n-1)(n-2)} \xi_{\lambda \mu} \xi^{\lambda \mu} .
\end{aligned}
$$

From this last expression，we can conclude that，if $n \geqq 2 p$ ，the positive condition or negative conditions of
（p）H λ unv reduce to those of $R_{\lambda \mu}$－ Thus we have

Theorem 4．On a locally conformally flat $\eta \vec{C}$ ，there can not exist：
（1）the restrained p－field（ $\mathrm{p} \leqq n / 2$ ）， if $R \lambda \mu$ have the negative condition；
（2）the restrained $p-f i e l d ~(p \leqq n / 2)$
which satisfies the condition（2．3），if $R_{\lambda \mu}$ have the positive condition；
（3）the harmonic p－field（ $p \leqq n / 2$ ） which satisfies the condition（2．4），if $R_{\text {ap }}$ have the definite condition．

Next，we shall proceed to the case of constant curvature space，which is characterized oy the condition

$$
R_{\mu \nu \omega}^{\lambda}=-\frac{R}{n(x-1)}\left(\delta_{\nu}^{\lambda} g_{\mu \omega}-\delta_{\omega}^{\lambda} g_{\mu \nu}\right) .
$$

In this case，we have

$$
\begin{aligned}
& { }_{(p)} H_{\lambda \mu \nu \omega}=\frac{(n-p) R}{n(n-1)}\left(g_{\lambda \nu} g_{\mu \omega}-g_{\lambda \omega} g_{\mu \nu \nu}\right) . \\
& { }_{\left(\beta_{1}\right)} H_{\lambda \mu \nu \omega} \xi^{\lambda^{\mu} \xi^{\nu \omega}}=\frac{2(n-p)}{n(n-1)} R \xi_{\lambda \mu} \xi^{\lambda \mu} .
\end{aligned}
$$

From the last expression we can con－ clude that the positive or negative conditions of $\left(\beta, H_{\lambda}\right.$ quvas reduce to those of R ，and therefore we have the following：

Theorem 5．On a space of locally constant curvature 7 tri ，there can not exist
（I）the restreined hermonic p－field， 2f R SO：［8］
（2）the restrafned porield which satisfies the condition（2．3），1f R $\sum_{\text {雲 }} \mathrm{O}$
（3）the harmonic p－field which sa－

On the other hand，we have brcader case which contains conformally flat spaces and spaces of constent curva－ ture，that is Einstein spaces which are characterized by the condition

$$
R_{\lambda \mu}=\frac{1}{n} R g_{\lambda \mu}
$$

In this case，the definite conditions on $R_{\lambda \mu}$ will be reduced to the condi－ tions on R ，therefore we have

Theorem 6．On a locally Einstein $7 t$ ，there can not exist
（1）the restrained harmonic l－field， if R 条 0 ：
（2）the restrained l－field which sa－ tisfies the condition（2．3），if R 条 0 ；
（3）the harmonic l－field which sa－ tisfies the condition（2．4）， if R 录 O or R 枈 O 。
Now，from the Theorem 3^{\prime} ，we can con－ clude the

Corollary 1．If $M C$ is a space of locally constant curvature，there can not exist the covariant constant p－ field，in other words，on such a space
$M C$ ，there is no p－form which is in－ variant by group of holonomy．

3．Estimation of Betti－numbers of the compact Riemannian manifold．

In case where $n t$ is compact，by means of Hodge－de Rham＇s isomorphy theorem between harmonic integrals and Betti－numbers，we can use the Theorem 1 for estimation of the Betti－numbers of manifold $T C$ ．（see［2］），that is

Theorem 5．On a compact $m t$ ，if （p） $\mathrm{H}_{\lambda \mu \nu \omega}$ has the negative condition，

$$
B_{p}=0 \quad(1<p<n-1)
$$

where $B p$ denotes the $p-t h$ Betti－num－ bers of $n t$, and if $R_{\lambda \mu}$ has the ne－
gative condition，

$$
B_{1}=B_{n-1}=0
$$

Corollary 1．On a locally confor－ mally flat $n t$ ，if $R_{\lambda \mu}$ has the nega－ tive condition，

$$
B_{p}=0, \quad 0<p<n
$$

Corollary 2．On NC of locally con－ stant curvature，if $R \underset{⿻}{\grave{ }} 0$ ，then

$$
B_{p}=0, \quad 0<p<n .
$$

Corollary 3．On a locally Einstein space $M t$ ，if $\mathrm{R} \underset{⿻}{\widehat{S}} 0$ ，then

$$
B_{1}=0 .
$$

Theorem 6．If a compact $h \zeta$ is sim－ ply connected，then there can not exist any parallel vector field，［8］．

Proof．Let $\pi_{1}\left(M^{\prime}\right)$ be the fundamental group（Poincaré group）of $W t$ ，and C be its＇commatator subgroup．We have a well known relation

$$
\pi_{1}(n t) / C \cong \mathbb{B}_{1}(m t)
$$

where $\mathbb{B}_{1}(M C)$ denotes the 1－dimension－ al integral homology group of $M C$ ． If $\pi_{1}=0$（simply connected），then we have $\mathbb{B}_{1}=0$ also，and therefore we can not have any harmonic one－field on $n t$ On the other hand，the parallel vector field is also harmonic．Thus，we can conclude the result．

Now，we can generalize Theorem 6 as follows：

Theorem 7．Let $\pi_{k}(M)$ be k－th homo－ topy group of $W t$ ．If

$$
\text { (3.1) } \pi_{k}(n t)=0 \quad \text { for } \quad 1 \leq k \leq p,
$$

then there can not exist any harmonic field of k－th order $(l \leqq k \leqq p)$ ．And then， there can exist no k（ $1 \leq k \leq p$ ）－．form which is invariant．by group of holonomy．

Proof．Let \mathbb{B}_{p} be k－tr integral homology groups of $n t$ ．Being $\pi_{1}=\cdots$ $=\cdot \cdot \pi_{k-1}=0$ ，we have，by Hurewicz＇s theo－ rem，

$$
\pi_{k} \cong \mathbb{B}_{k} .
$$

Therefore，（3．1）implies

$$
\mathbb{B}_{k}=0 \quad \text { for } \quad 1 \leqq k \leq p
$$

and

$$
B_{k}=0 \quad \text { for } \quad 1 \leq k \leq p \text {. }
$$

On the other hand，since the covariant constant tensor field is also harmonic， under the condition（3．1）there exists no k（ $1 \leqq k \leqq \beta$ ）－．form which is invariant by group of holonomy．

Remark．We could easily reproduce all the Bochner＇s results in［2］［3］， but we have only stated the main part， and we investigate some other topics． They may be considered as the applica－ tions of Bochner＇s estimation theorem， and one can recognize the importance of this method，by those examples．

Now，we shall draw our attention to the important fact that for any harmonic tensor fields $\Delta \xi_{\alpha_{1}} \ldots \alpha_{p}$ does not vanish， and this relation contains $\xi_{\alpha}, \ldots, \alpha p$ itself and local curvature quantities of $M C$ ，but not contain its own deriva－ tives．This is a very simple fact，but is an important property of harmonic tensors．Mur present method is based just on this property．

4．Metric tensors in $n t$ ．［6］， ［7］。

Let the symmetric tensor $\mathrm{T}_{\text {人M }}$ of order two be a solution of the differen－ tial equations

$$
\begin{equation*}
T_{\lambda \mu} ; \alpha=0 . \tag{4.1}
\end{equation*}
$$

We call it the metric tensor on $W t$ ． Index I of $n t$ denotes the maximal num－ bers of the metric tensors of $M C$ which are algebraically independent with con－ stant real coefficients．Let I_{p} be the maximal number of metric tensors which have the rank p and essentially differ from each other，i．e．none of them is constant multiple of any other．

Thus

$$
\text { (4.2) } \quad \sum I_{p}=I .
$$

Existence of a metric tensor with rank p is equivalent to existence of parallel vector fields V_{p} and V_{n-p} which are perpendicular to each other．There－ fore，we remark that
（4．3）

$$
I_{p}=I_{n-p}
$$

Normalizing the basis $\xi_{1}^{\lambda} \ldots . . \xi_{\phi}^{\lambda}$ of V_{p} ，we consider the current Plücker coordinates

$$
\pi_{d_{1} \cdots \alpha_{p}}=\left|\begin{array}{cccc}
\xi_{1 \alpha_{1}} & \cdots \cdots & \xi_{1 \alpha_{p}} \\
\vdots & & \vdots \\
\xi_{p \alpha_{p}} & \cdots \cdots & \xi_{p \alpha_{p}}
\end{array}\right|
$$

then we have

$$
\begin{aligned}
& \pi_{\alpha_{1} \ldots \ldots \alpha_{p}}=\pi_{\left[\alpha_{1} \cdots \cdots \alpha_{p}\right]}, \\
& \pi_{\alpha_{1} \ldots \ldots \alpha_{p}: \beta}=0,
\end{aligned}
$$

thus Theorem 3 implies
 （for $1<p<n$ ）or R \quad p（for $p=1$ ）has the definite condition，

$$
I_{p}=0 \quad \text { ior } \quad o<p<n
$$

Now，we consider the compact case． Let $B p$ be the Bettinnumber of $m i$ and B_{p}^{\prime} be the maximal number of inneariy independent covariant constant skew symmetric covariant tensor fields which is maximal number of inneariy indepen－ dent differential forms，invariant by group of holonomy of this space．Then， we can conclude the

Theorem 9．On a compact $M I$ ，we have

$$
B_{p} \geqq B_{p}^{\prime} \geqq I_{p} \text { for } n>p>0 \text {. }
$$

Corollary i。 On a compact $M T$ ，if

$$
\pi_{k}(m)=0 \text { for } \quad 1 \leqq \hbar \leqq p
$$

then

$$
I_{k}=0 \text { for } \quad 1 \leqq k \leq \phi
$$

Corollary 2．On a compact MC，if

$$
B_{p}=0 \quad \text { for } \quad 0<p<n
$$

then there can not exist any metric tensor which essentially differs from the fundamental tensor of $n t$ ．

Theorem 10．On a compact $n t$（con－ nected），we have

$$
B_{0}=B_{0}^{\prime}=I_{0}=I_{n}=B_{n}^{\prime}=B_{n}=L
$$

Proof．We have immediately $B_{n}=B_{0}=I_{0}$ ， and，on the other hand，$I_{0}=I_{n} \geqq 1$, for fundamental tensor itself is metric tensor in our sense．

Theorem 11．On any $m t, B_{n-1}^{\prime}=B_{1}^{\prime}$ $=I_{n-1}=I_{1}$ and especially，if a com－ pact r it is simply connected，then we have

$$
B_{n-1}^{\prime}=B_{1}^{\prime}=I_{n-1}=I_{1}=0
$$

Proof．$T_{\alpha_{1} \ldots \alpha_{n-1}}=T\left[\alpha_{1} \ldots \alpha_{n-1}\right]$ are always simple．Therefore，if $T_{a, \cdots \beta_{n-1}}=0$ ，then their bases span the parallel vector space．Thus we can conclude the first half of the theorem， The second half can be directly conclu－ ded from Theorem 9，corollary 1.

Theorem 12．If we have $B_{p}^{\prime} \geqq 1$ for some p ，and

$$
\begin{gathered}
T_{d / \beta}=\pi_{\lambda_{1} \cdots \lambda_{p-1} \alpha} \pi^{\lambda_{1} \cdots \lambda_{p-1}} \neq \phi g_{\alpha \beta}, \\
\operatorname{Rank}\left(T_{\alpha, s}\right)=q \neq 0,
\end{gathered}
$$

then

$$
I_{q} \geq 1
$$

Remarks If $M I$ is compact or an general M has a suitable boundary condition，then we can characterize the metric tensors as the solutions of the differential equation

$$
\Delta T_{\lambda \mu}=0
$$

（＊）Received June 30，1950。
（7）Bockners．Vector fields and Riccs ourvature，Bull．Amer．Math． Soc．（1946）．
（2）Bochners．Curvature and Batti－ numbers，AMA．Wath．（1948）．
（3）Bochners．Survature and Betti－ numbers，I．Ann．Math．（1949）。
（4）Hodge，W．V．D．Theory and appli－ cations of harmonic integral．（1941）．
（5）Iwamoto．Ho Study of holonomy groups No． 7 （1948），in Japanese。
（6）Thomas，T．Y．The decompositions of Kiemann space in the large，Monstsio Math．Phys．（1937）．
（7）Thomas，I．Y。 Reducible Riemann space and their characterization， Monatsh．Math．Phys．（1939）．
（8）Thomas，T．Y．Some simple appli－ cations of Green s theorem for compact Riemann space．Tohoku Math．J．Vol． 46 （1940）．

Addendum．
The Theorem 5 is essent ，ilenti－ cal Prof．A．Lichnerowicz＇：＂esult ［Courbure et nombre de Betti d une va＊ riete riemanniene compacte，CoR．Paris 226 （1948）pp．1678－1680］．

The summary of our results has boon presented at the annual meeting of Mathematical Society of Japan in May 1950, and the preserit author then row celved a kind letter from Prof. A.

Ltehnerowicz with his fine results in July.

Tokyo Bunrika Daigaku.

