By Koiti KONDÓ.
(Communicated by Y. Komatu)

I will give in this note a proof of the well-known moeplitz's cheorem on normal matrix. Let A be a square matrix of order n, in the complex number field, then A is said to be normal if $A A^{*}=A^{*} A$ where A^{*} denotes the conjugate and transposed matrix of A.
I. will show the well-known fact that A has only simple elementary divisors, as follows.

Consider $\quad(x E-A)^{-1} .(x E-A)^{-1}$ is obtained from minor-matrix of degree $n-1$ of $(x E-A)$, being diVided by $\operatorname{det}(x E-A)$ - Dividing $\operatorname{det}(x E-A)$ by the greatest common divisor of all minors, we obtain the minimum equation $\varphi(x)$ of A. So

$$
(x E-A)^{-1}=\frac{B}{\varphi(x)}
$$

B being polynonial in x.E.
Hence $(x E-A)^{-1}$ has a pole at the roots λ of $\varphi(x)=0$. Put
(1) $\quad(x E-A)^{-1}=C(x-\lambda)^{-a}+\cdots, C \neq 0$

To be shown is $\quad a=1 \quad$.
Taking conjugate and transporse of (1),

$$
\left(x E-A^{*}\right)^{-1}=C^{*}(x-\bar{\lambda})^{-a}+\cdots
$$

As A is normal,

$$
(x E-A)^{-1}\left(x E-A^{*}\right)^{-1}=\left(x E-A^{*-1}\right)^{-1}(x E-A)
$$

So we get $C C^{*}=C^{*} C$, that is, C is also normal.

Now, by differentlating (1) we get
(2) $(x E-A)^{-2}=-a C(x-\lambda)^{a-1}+\cdots$

By taking square of ($\frac{1}{(1)}$), on the other hand, we get
(3) $\quad(x E-A)^{-2}=C^{2}(x-\lambda)^{-2 a}+\cdots$.

It is to be noticed that $C^{2} \neq 0$
ause C is normal and $\neq 0$,
Hence, putting the exponent of the first term in (2) and (3) equal, we get

$$
-a-1=-2 a, \text { or } a=1
$$

g.e.d.

As being noticed in a previous note, two elgen-vectors which belong to two different eigen-values of a normal
matrix A are (unitary) orthogonal. ${ }^{2)}$
Thus, a normal matrix can be transformed by unitary matrix into the diagonal form. And the inverse of this fact is evident.
(*) Received June 8, 1950.
(1) If A is normal and $A^{2}=0$, then $A=0$
(2) The facts I) and 2) are proved, as Hilfssatz 2 and 4, in K.Kondo and S.Huruya: Ein Beweis des Toepiltzschen Satzes uber die normale Matrix. Proc. Imp. Acad. Japan, (1939). For the sake of readers, I will rewrite them here.

$$
\begin{aligned}
& \frac{\text { Lemma 1e }}{\text { Proof. }} \quad A x=0 \rightarrow A^{*} x=0 \\
& \left(A^{*} x, A^{*} x\right)=\left(x, A A_{x}^{*}\right)=\left(x, A^{*} A x\right)=(A x, A x)=0
\end{aligned}
$$

Lemma 2. $A^{2}=0 \rightarrow A=0$
q.e.d. Proof. $\quad A^{2} x=0$ (for all vectors x). So, from Lemma 1., $A^{*} A x=0$ So $(A x, A x)=\left(x, A^{*} A x\right)=0$. Then $A x=0$ or $A=0 \quad$.

Lemrna 3. $A x=\lambda x, A y=\mu y, \quad \lambda \neq \mu$ $\rightarrow(x, y)=0$

Proof. Put $A-\lambda E=B$, then $B x$ $=0$. Hence $B^{*} X=0$, or $A^{*} X=\pi X$ We have $(A x, y)=\lambda(x, y)$. On the otherhand, $(A x, y)=\left(x, A^{*} y\right)$ $=(x, \vec{\mu} y)=, \mu(x, y)$. So that. $\lambda(x, y)=\mu(x, y)$. Hence,

$$
(x, y)=0
$$

Tokyo Metropoli.tan University

