A REMARK TO TOEPLITZ'S THEOREM ON NORMAL MATRIX.

By Koiti KONDÚ.

(Communicated by Y. Komatu)

I will give in this note a proof of the well-known Toeplitz's theorem on normal matrix. Let A be a square matrix of order n in the complex number field, then A is said to be normal if $AA^* = A^*A$ where A^* denotes the conjugate and transposed matrix of A .

I will show the well-known fact that A has only simple elementary divisors, as follows.

 $(xE - A)^{\dagger}$. (xE-A)' Consider is obtained from minor-matrix of degree n-1 of (xE-A), being di-vided by det(xE-A). Dividing det(xE-A) by the greatest common divisor of all minors, we obtain the minimum equation $\varphi(x)$ of A . So

$$(\mathbf{x}E - A)^{-1} = \frac{B}{g_{(\mathbf{x})}}$$

B being polynomial in x E.

Hence $(xE - A)^{-1}$ has a pole at the roots λ of $\varphi(x) = 0$. Put

(1)
$$(xE-A) = C(x-\lambda) + \cdots, C = 0$$

To be shown is n=1

Taking conjugate and transporse of (1),

$$(x E - A^*)^{-1} = C^* (x - \overline{x})^{\alpha} + \cdots$$

As A is normal,

$$(xE - A)(xE - A') = (xE - A')(xE - A)$$

So we get $CC^* = C^*C$, that is, C is also normal.

Now, by differentiating (1) we get

(2)
$$(xE - A)^{2} = -aC(x-\lambda)^{a-1} + \cdots$$

By taking square of $(\frac{1}{2})$, on the other hand, we get

(3)
$$(xE-A)^{2} = C^{2}(x-\lambda)^{2} + \cdots$$

It is to be noticed that $C^2 \neq 0$, because C is normal and $\neq 0$.

Hence, putting the exponent of the first term in (2) and (3) equal, we get

-a-1=-2a, or a=1. g.e.d.

As being noticed in a previous note, two eigen-vectors which belong to two different eigen-values of a normal

matrix A are (unitary) orthogonal.²⁾

Thus, a normal matrix can be trans-formed by unitary matrix into the dia-gonal form. And the inverse of this fact is evident.

(*) Received June 8, 1950.

- (1) If A is normal and A²=0, then A=0.
 (2) The facts 1) and 2) are proved, as Hilfssatz 2 and 4, in K.Kondo and S.Huruya: Ein Beweis des Toerlitzschen Satzes uber die Toeplitzschen Satzes uber die Japan, (1939). For the sake of readers, I will rewrite them here.
 - $\frac{\text{Lemma 1.}}{\text{Proof.}} \quad A x = 0 \implies A^* x = 0$
 - $(A^{*}x, A^{*}x) = (x, AA^{*}x) = (x, A^{*}Ax) = (Ax, Ax) = 0$ 9. e. d.
 - Lemma 2. $A^2 = 0 \rightarrow A = 0$ Proof. $A^3 x = 0$ (for all vectors x). So, from Lemma 1. $A^*Ax = 0$ So $(Ax, Ax) = (x, A^*Ax) = 0$. Then Ax = 0 or A = 0

Lemma 3.
$$Ax = \lambda x$$
, $Ay = \mu y$, $\lambda \neq \mu$
 $\rightarrow (x, y) = 0$

Proof. Put
$$A - \lambda E = B$$
, then Bx
=0. Hence $B^*x = 0$, or $A^*x = \overline{\lambda}x$
We have $(Ax, y) = \overline{\lambda}(x, y)$. On
the otherhand, $(Ax, y) = (x, A^*y)$
 $= (x, \overline{\mu}y) = \mu(x, y)$. So that,
 $\lambda(x, y) = \mu(x, y)$. Hence,
 $(x, y) = 0$.

Tokyo Metropolitan University.