By Yoshio KINOKUNIYA

(Communicated by Y. Komatu)

1. Uniform Convergence of Convoluted Functions. Assume that $f_{1}(x)=f(x)$ is a non-negative, bcunded function in $(-\infty, \infty)$ and the Lebesgue integral $\int_{-\infty}^{\infty} f(x) d x=1$ exists, then it may be easily seen that

$$
\begin{align*}
f_{n+1}(x)= & \int_{-\infty}^{\infty} f_{n}(x-t) f(t) d t \\
= & \int_{-\infty}^{\infty} f(x-t) f_{n}(t) d t \tag{I,1}\\
& (n=1,2,
\end{align*}
$$

are all bounded, non-negative functions throughout $(-\infty, \infty)$ and

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{n}(x) d x=1 \quad(n=1,2, \cdots) \tag{I,2}
\end{equation*}
$$

the integrations being suprosed as Lebesgue's. In this case, since $f_{n}(x)$ ($n=1,2, \ldots$) are all bounded, we may denote by M_{n} the maximum of $f_{n}(x)$ in $(-\infty, \infty)$ and assume that for any positive number K there exists a positive quantity k such that in the interval $-K<x<K$ almost everywhere $f(x) \geqq k$. Then we shall prove in this paragraph that the sequence $\left\{f_{r}(x)\right\}$ converges to zero uniformly. ${ }^{1)}$

From the relation

$$
\begin{aligned}
M_{n}-f_{n+1}(x) & =\int_{-\infty}^{\infty} M_{n} \cdot f(t) d t- \\
& -\int_{-\infty}^{\infty} f_{n}(x-t) f(t) d t \\
& =\int_{-\infty}^{\infty}\left(M_{n}-f_{n}(x-t)\right) f(t) d t
\end{aligned}
$$

it follows that $M_{1} \geqq M_{2} \geqq \cdots>0$ and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{n}=M \tag{I,3}
\end{equation*}
$$

exists and is finite.
Suppose now $M \neq 0$ and determine for a given positive sequence $\left\{\varepsilon_{n}\right\}$ converging to zero such a number ξ_{n+1} as

$$
M_{n+1}-f_{n+1}\left(\xi_{n+1}\right)<\varepsilon_{n+1} \quad(I, 4)
$$

Then, denoting by S_{n} the measurable set of x which satisfies the relation

$$
M_{n+1}-f_{n}\left(\xi_{n+1}-x\right) \geq \frac{M}{2}>0 \quad(I, 5)
$$

and by \bar{S}_{n} the complement of S_{n} in $(-\therefore, \infty)$, we find $f(x)$ and ($f_{n}\left(\xi_{n+i}-x\right)$ ' $f(x$) are ail integrable on S_{n} and \bar{S}_{n} Now determining an integer N_{1} such that for $n>N_{1}$

$$
\frac{\varepsilon}{2}>\varepsilon_{n+1}
$$

for an arbitrary positive duantity ε according to $(1,5),(1,2)$ and $(1,4)$ we have

$$
\begin{aligned}
& \frac{\varepsilon}{2}>\varepsilon_{n+1}>M_{n+1}-f_{n+1}\left(\xi_{n+1}\right) \\
&= \int_{-\infty}^{\infty} M_{n+1} f(x) d x-\int_{-\infty}^{\infty} f_{n}\left(\xi_{n+1}-x\right) f(x) d x \\
&= \int_{-\infty}^{\infty}\left\{M_{n+1}-f_{n}\left(\xi_{n+1}-x\right)\right\} f(x) d x \\
&= \int_{S_{n}}\left\{M_{n+1}-f_{n}\left(\xi_{n+1}-x\right)\right\} f(x) d x+ \\
&+\int_{\bar{S}_{n}}\left\{M_{n+1}-f_{n}\left(\xi_{n+1}-x\right)\right\} f(x) d x \\
& \geqq \frac{M}{2} \int_{S_{n}} f(x) d x+\int_{\bar{S}_{n}}\left\{M_{n}-\right. \\
&\left.\quad \quad-f_{n}\left(\xi_{n+1}-x\right)\right\} f(x) d x
\end{aligned}
$$

whenever $n>N_{1} \quad$, and by $(1,3)$ we
may have may have

$$
0 \leqq f_{n}\left(\xi_{n+1}-x\right)<M+\frac{\varepsilon}{2}
$$

if n is larger than a fixed integer N_{2} Consequently we have for $n>\operatorname{Max}\left(N_{1}, N_{2}\right)$

$$
\begin{aligned}
0 \geqq & \frac{M}{2} \int_{S_{n}} f(x) d x+\int_{\bar{S}_{n}}\left(M-M-\frac{\varepsilon}{2}\right) f(x) d x- \\
& -\frac{\varepsilon}{2} \\
& \geqq \frac{M}{2} \int_{S_{r .}} f(x) d x-\frac{\varepsilon}{2} \int_{-\infty}^{\infty} f(x) d x-\frac{\varepsilon}{2} \\
& =\frac{M}{2} \int_{S_{n}} f(x) d x-\varepsilon
\end{aligned}
$$

So it follows that

$$
\lim _{n \rightarrow \infty} \int_{S_{n}} f(x) d x=0
$$

By the supposition upon $f(x)$ there exists for a given positive number the set

$$
E\{x ; f(x)<k, \quad|x|<K\}
$$

has measure zero. Hence, putting $U_{n}(K)=S_{n} \cap(|x| \leqslant K)$, we obtain

$$
\int_{S_{n}} f(x) d x \geqq \int_{U_{n}(K)} f(x) d x \geqq k m\left(U_{n}(K)\right)
$$

$$
\text { where } m\left(U_{n}(K)\right) \text { means the measure }
$$

$$
\text { of } U_{n}(K) \text {. Then by }(1,6)
$$

$$
\lim _{n \rightarrow \infty} m\left(U_{n}(K)\right)=0
$$

which implies

K being arbitrary, it follows

$$
\lim _{n \rightarrow \infty} m i\left(\bar{S}_{n}\right)=\infty . \quad(I, 7) .
$$

Besides, it holds obviously

$$
\begin{align*}
1 & =\int_{-\infty}^{\infty} f_{n}\left(\xi_{n+1}-x\right) d x \\
& \geqq \int_{\bar{S}_{n}} f_{n}\left(\xi_{n+1}-x\right) d x \geqq\left(M_{n+1}-\frac{M}{2}\right) m\left(\bar{S}_{n}\right) \\
& \geqq \frac{M}{2} m\left(\bar{S}_{n}\right) \quad(I, 8) . \tag{I,8}
\end{align*}
$$

because for all \boldsymbol{x} in \bar{S}_{n}

$$
M_{n+1}-f_{n}\left(\xi_{n+1}-x\right)<\frac{M}{2} .
$$

$(1,8)$ gives a contradiction to ($\mathbf{I}, 7$), so far as $M \neq 0$. It must be $M=0$ and hence the sequence $\left\{f_{n}(x)\right\}$ converges to zero uniformly.
11. If the function, given in 1. , is differentiable throughout $(-\infty, \infty)$ applying Lagrange's mean-value theorem, we have

$$
f(z-x)=f(z)-x f^{\prime}(z-\theta x), \quad 0<\theta<1
$$

(II, 1)
In this case, using the result of the previous paragraph, the author will verify in the following that

$$
\lim _{x \rightarrow \pm \infty} \theta(z, x)=0^{2)}
$$

on condition that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x f(x) d x=0, \quad(\text { II }, 3, a) \\
& \frac{d}{d z} \int_{-\infty}^{\infty} f(z-x) d x=\int_{-\infty}^{\infty} f^{\prime}(z-x) d x, \\
& (\text { II, } 3, b)
\end{aligned}, \begin{array}{r}
\frac{d}{d z} \int_{-\infty}^{\infty} x f(z-x) d x=\int_{-\infty}^{\infty} x f^{\prime}(z-x) d x, \\
(I I, 3, c)
\end{array}, \begin{array}{r}
d^{2} \\
\frac{d z^{2}}{2} \int_{-\infty}^{\infty} x f(z-x) d x=\int_{-\infty}^{\infty} x f^{\prime \prime}(z-x) d x, \\
(I I, 3, d)
\end{array}
$$

From the equality (II, 1), we see

$$
\left|x f^{\prime}(z-\theta x)\right| \leqq f(z)+f(z-x),
$$

both $f(z)$ and $f(z-x)$ being
bounded for all x, z in $(-\infty, \infty)$, so that $x f^{\prime}(z-\theta x)$ must also be bounded.

Front! (II, $3, b$), we have

$$
\int_{-\infty}^{\infty} f^{\prime}(z-x) d x=0, \quad(I I, 4) .
$$

and from (II, $3, a$) and (II, $3, d$)

$$
\int_{-\infty}^{\infty} x f^{\prime \prime}(z-x) d x=\frac{d^{2}}{d z^{2}} \int_{-\infty}^{\infty} x f(z-x) d x=0 .
$$

Then subject to (II,4) and (II,5) it results

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty} f^{\prime}(z-x) d x=\left[x f^{\prime}(z-x)\right]_{-\infty}^{\infty}+ \\
& +\int_{-\infty}^{\infty} x f^{\prime \prime}(z-x) d x \\
& =\left[x f^{\prime}(z-x)\right]_{-\infty}^{\infty}
\end{aligned}
$$

Here we can see easily that

$$
\lim _{x \rightarrow \pm \infty} x f^{\prime}(z-x)=0 . \quad(I I, 6)
$$

Next let us suppose that

$$
\lim _{x \rightarrow \infty} \theta(3, x) \geqq q>0, \quad(I I, 7)
$$

which, in accordance with (II, 6), gives

$$
\lim _{x \rightarrow \infty} x f^{\prime}(x-\theta x)=0
$$

Then, for an arbitrary positive quantity ε we can find a positive number G such that

$$
\left|x f^{\prime}(z-\theta x)\right|<\frac{\varepsilon}{3}
$$

whenever $x>G$. So it follows that
$\left|\int_{0}^{\infty} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|$
$\leqq\left|\int_{0}^{G} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|$
$+\left|\int_{G}^{\infty} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|$
$\leqq\left|\int_{0}^{G} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|+$
$+\frac{\varepsilon}{3} \int_{G}^{\infty} f_{n}(x) d x$
$\leqq\left|\int_{0}^{G} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|+\frac{\varepsilon}{3}$
And since $x f^{\prime}(z-\theta x)$ is bounded for all values $x, 2$ in $(-\infty, \infty)$ and $f_{n}(x)$ tends to zero uniformly,
it becomes for sufficiently large n

$$
\left|\int_{0}^{G} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|<\frac{\varepsilon}{3} ;
$$

hence we can determine an integer N_{\perp} such that for $n>N_{1}$

$$
\left.\left|\int_{0}^{\infty} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|<\frac{2 \varepsilon}{3}, \quad \text { (II, } 8\right) .
$$

By the formula (II, 1) we obtain

$$
\begin{aligned}
f_{n+1}(z)= & \int_{-\infty}^{0} f_{n}(x) f(z-x) d x+ \\
& +\int_{0}^{\infty}\left\{f(z)-x f^{\prime}(z-\theta x)\right\} f_{n}(x) d x \\
\leqq & \int_{-\infty}^{0} f_{n}(x) f(z-x) d x+f(x) \cdot \\
& -\int_{0}^{\infty} x f^{\prime}(z-\theta x) f_{n}(x) d x .
\end{aligned}
$$

and since $f_{n}(x)$ tends to zero uniformally we can determine an integer N_{2} such that for $n>N_{2}$

$$
0 \leqq f_{n}(x) \leqq \frac{\varepsilon}{3}
$$

hence it follows that
$\int_{-\infty}^{\infty} f_{n}(x) f(z-x) d x$
红 $\frac{\varepsilon}{3} \int_{-\infty}^{\infty} f(z-x) d x=\frac{\varepsilon}{3}$.
Finally by (II, 8) we have
$\left|f(z)-f_{n+1}(z)\right|$
$\leq \int_{-\infty}^{\infty} f_{n}(z) f(z-x) d x$
$+\left|\int_{0}^{\infty} x f^{\prime}(z-\theta x) f_{n}(x) d x\right|$
$\leqq \frac{\varepsilon}{3}+\frac{2 \varepsilon}{3}=\varepsilon \quad($ II, 9$)$
for $n>\max \left(\mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}\right)$. \mathcal{E} being arbitrary, this asserts that for all values z in $(-\infty, \infty)$, $x i m, f_{n}(z)=f(z)$, winich gives a contradiction because $\lim f_{n}(z)=0 \quad$ whereas $f(z)$ being assumed as almost everywhere positive in every finite interval. Therefore it must be $\frac{\lim }{x \rightarrow \infty} \theta(x, x)=0$. Similarly we may show that
$\frac{\lim _{x \rightarrow-\infty}}{} \theta(z, x)=0$.
The author expresses his hearty
thanks to Prof. M. Moriya for his valuable assistance in the preparation of this paper.
(*) Received July 8, 1950.
(1) The same property of convergerise has been demonstrated for an important sequence of unimodal distribution densities, by T. Kawata (The Characteristic Function of a probability Distribution, Tônoku M.J. (1941) p.255).
(2) On $\lim _{x \rightarrow 0} \theta(z, x), C f .: R o t h e, ~ Z u m$ Mittelwertsatze der Differentialrechnungen, Math. Zeitsch. Bd. 8 (1921); also see Y.Kinokuniya, Fiddle Position, Mem. Muroran Coll. Tch. Vol. I, No. 1 (1950). Muroran College of Technology.

