By Yûsaku KOMATU and Han NISHIMIYA.
0. Several distortion theorems hive been derlved, in various ways, for functions regular and schlicht in a circle. In the present Note we shall attempt certain estimations about their spherical derivative. The aim is to obtain estimates of spherical derivative, denenaine only on $x=1 \% 1$ for family of functions regular, schlicht in the uat circle $|z|<1$ and normalized at the origin. The results which will be obtained in the following lines are only partially precise. In fact, although the best possible bounds together with extremal functions can be found for points z comparatively near the sutidin, the precise bounds for retainng points are yet unknown. But it will be noteworthy to remark that the precise bounds are not analytic in the whole name of z .
on the other hand, the eoncept of aphaxical derivative is really rather destul for meromorphic functions than serely for regular functions. But, in comparison with rich results in the cneory of schlicht functions regular in a circle, those referring to schlicht buctions meromorphic in a circle are still poor. Making use of invariant character of spherical derivative with resrect to any rotation of Riemann spiere, distortion inequalities will be derived for spherical derivative of certain schlicht functions meromorphic in a circle.

1. The spherical derivative of an inalytic function $W(Z)$ is defined as

$$
\text { (1.1) } \quad \operatorname{DW}(z) \equiv \frac{\left|w^{\prime}(z)\right|}{1+|w(z)|^{2}} \text {, }
$$

if z is a pole of the first order with residue C or of higher order, we put $D W=1 / 1 c \mid$ or $D W=0$, respectively.

Consider first the family of functicns $\left\{\begin{aligned} \text { Cons } \\ \text { z })\} \\ \text { regular and schlicht }\end{aligned}\right.$ in $|z|<1$ and normalized at the origin such as
$\because 2: \quad W(0)=0, \quad W^{\prime}(0)=1$.
We shail attempt to estimate the spherical derivative of such functions from uots. jldes. Now, as is well-knowr, the :lass:aj distortion theorems

$$
\begin{aligned}
& \text { (: : } \frac{T}{(1+r)^{2}} \leqq|w(z)| \leqq \frac{x}{(1-x)^{2}} \text {, } \\
& \text { (a. (a) } \frac{1-t}{1+\tau} \leqslant\left|\frac{2(z)(z)}{w(2)}\right| \leqq \frac{1+x}{1-t} \text {. }
\end{aligned}
$$

due to Koebemieberbach and to $R_{\text {. }}$
Nevanilima raspectively, holid good for asy functions of the PRinily. Moxucivers, for ary \% with $0<r=1 \mathrm{z}$!
the equality sign of left and right side is, in each case, realized only by Koebe's extremal function

$$
\text { (1.5) } \quad W=\frac{z}{(1+\varepsilon z)^{2}} \quad(|\varepsilon|=1),
$$

and, in fact, merely at $z=\bar{\varepsilon}|z|$
and $z u-$ En|z|, respectively.
Denoting now, for brevity, by
(1.6) $\quad T^{*}=\frac{\sqrt{5}-1}{2}=0.618$.
the positive root of the quadratic
equation $\quad 1-x^{2}=x$ we get
with regard to both bounds contained
in Koebe-Bieberbach's distortion theorem (1.3), the relations

$$
\begin{aligned}
& \text { (1.1) } \frac{x}{(1+x)^{2}} \leqq \frac{x}{(1-x)^{2}} \leqq 1 / \frac{x}{(1+x)^{2}} \quad\left(x \leqq x^{*}\right), \\
& \left(1.8 ; 1 / \frac{x}{1-x)^{2}}<\frac{x}{(1+x)^{2}}<\frac{x}{(1-x)^{2}} \quad\left(x^{\mu}<\dot{x}<1\right) .\right.
\end{aligned}
$$

Hence, if $T \equiv|z| \leqq T^{*}$, we have

$$
\frac{\gamma}{(1-x)^{2}}+\frac{(1-x)^{2}}{Y} \leqq|x|+\frac{1}{\mid-1} \leqq \leqq \frac{x}{(1+x)^{2}}+\frac{(1+x)^{2}}{x},
$$

or
(1.9)

$$
\frac{r^{2}+(1-r)^{4}}{r(1-1)^{2}} \leqq \frac{1+|w|^{2}}{|w|} \leqq \frac{r^{2}+(1+r)^{4}}{r(1+r)^{2}}\left(r \leqq r^{*}\right) .
$$

Combining both relations (1.4) and
(1.9), we obtain for spherical derivative which may be written in the form

$$
\operatorname{Dr}(z)=\left|\frac{w^{\prime}}{w}\right| \frac{|w|}{1+\left|w^{-}\right|^{2}},
$$

the following estimation:

$$
\text { (1.10) } \quad \frac{1-r^{2}}{T^{2}+(1+T)^{4}} \leqq \operatorname{Dr}(z) \leqq \frac{1-r^{2}}{r^{2}+(1-r)^{4}} \quad\left(I \leqslant r^{*}\right)
$$

The extremal functions for this distortion inequality must, as readily seen from the above argument, be of the form (1.5). For such a function the actual calculation shows that

$$
\begin{aligned}
W=\frac{z}{(1+\varepsilon z)^{2}}, \quad w^{\prime} & =\frac{1-\varepsilon z}{(1+\varepsilon z)^{3}} ; \\
\text { (1.11) } \quad D W & =\frac{\left|w^{\prime}\right|}{1+|w|^{2}}=\frac{\mid 1}{|z|^{2}+|z+\varepsilon z|^{\prime}},
\end{aligned}
$$

and hence the left and sight bound in
(3.10) is indeed attained at, $z=\pi \cdot T$ and $z=-T ₹$ and only at these pointis, reapeotivély.

We note hore, in passins, that the same is valid for distortion inequality

which is equivalent to (1.9).
We have seen that the estimation (1.10) (and also (1.12)) 1 s valid for $r \equiv|z| \leqq r^{*}$ and is the best possible one so far as it depends only on r. Next, if z lies in the remaining range $t^{*}<x \equiv|z|<1$, a similar argument, by using (1.8) in stead of (1.7), shows that in this case the inequality (1.9) must be replaced by

$$
\frac{t}{(1+T)^{2}}+\frac{(t+t)^{2}}{1} \approx|w|+\frac{1}{|w|} \leq \frac{t}{(1-t)^{2}} \frac{(1-t)^{2}}{i},
$$

or

$$
\begin{equation*}
\frac{x^{2}+(1+x)^{4}}{x(1+x)^{2}} \leq \frac{1+|w|^{2}}{|w|}=\frac{t^{2}+(1-x)^{4}}{x(1-x)^{2}} \quad\left(t^{*}-x-1\right) \tag{1.13}
\end{equation*}
$$

Combining the last relation with (1.4), We have a distortion inequality

$$
\begin{equation*}
\frac{(1-T)^{3}}{1+t^{2}} \frac{1}{t^{2}+(1-t)^{4}} \leqq D W(z)<\frac{(1+t)^{3}}{1-t} \frac{1}{t^{2}+(1+1)^{4}}\left(t^{4}<t, 1,\right. \tag{1.14}
\end{equation*}
$$

similar to (1.10). But the last estimation is not the most precise one. In fact, the oniy extremal fimetions for Nevaniinnals distortion theorem (1.4) are of the form (2.5) for which the equality sign of left and right side appears only at $2= \pm \tilde{\xi}$ and $2 m-r \dot{\varepsilon}$. respectively. on the other hand, alm though the only extremal functions for the distortion inequality

$$
\begin{equation*}
\frac{\frac{I}{r^{2}+(1-y)^{2}}}{\left.t^{2}+x\right)^{4}} \leq \frac{|w|}{1+|w|^{4}} \leq \frac{1(1+\tau)}{r^{2}+(1+t)^{4}} \quad\left({ }^{*}+i<1\right) \tag{1.15}
\end{equation*}
$$

equivalent to (1.13) are also of the same form (1,5), the equality sign of left and right side holds here only at $2=-t \bar{\varepsilon}$ and $z \ldots r \bar{\varepsilon}$ respectively. Hence the estimation (1.14), obtained by combining both inm equalities for which in spite of the community of extremal functions the arguments of the extremal points are different, cannot be the most precise one.

Well, the existence of the best poseible bounds for Dw(z) depending only on r and realized by functions $0{ }^{\prime \prime}$ the family, also for the range $r^{*}<x \geqslant|z|<1$ is evident from the fact that the family of functions in question is a normal one. The determination of these exact bounds is left open for future considerations. It is, how aver, at any rate interesting that the precise bounds are given by very simple rational tunctions of t for $t \leq r^{*}$ but not analytic in r for the whole renge
2. We consider next the Riemann sphere $\sum_{\text {* }}$ with diameter undty touching the complex w miane at its oriein, and denote by $\delta\left(W_{1}, N_{2}\right)$ the spherical alstance between the pointa correm spordint to. w_{1} and 'wn by tervograghde proyection. Ithe inne eloment on玉 is given by the expression

On the other hand, a linear transformation corresponding to axy rotation of Σ is represented in the form
(2.2) $\left.W=\eta \frac{w+w_{0}}{1-\bar{W}_{0} w}, w=\bar{\eta} \frac{W-\} w_{0}}{1+\frac{\overline{W_{0}} W}{W}} \quad, \eta!=1\right\rangle$,
wo being a parametric point; but in
case $w_{0}=\infty \quad(2.2)$ has to be replaced by
(2.3) $W=\eta_{1} \frac{1}{W}, \quad W=i_{1} \frac{1}{W} \quad\left(\eta_{1}=1\right)$.

Let now $w(z)$ be a function regular and schlicht in $|z|<1$ and normalized at the origin such as in (1.2). There corresponds then, by the transformation (2.2), a function
(2.4) $W(z)=0\} \frac{w(z)+w_{0}}{1 \cdots w_{6} w(z)}=-\left\{w_{0}+\eta\left(6+\left|w_{0}\right|^{2}\right) z+\cdots \quad(i z \mid<4 *, 1)\right.$
also schlicht in $|x|<1$. If the point $1 / \bar{w}$. does not belong to the range-domain of $w(x)$, then the transformed function (2.4)' is also regular throughout in $\quad \mid z_{1}<s=1$ But, if on the contrary the point $1 / \bar{w}_{0}$ helongs to the range-domain of $k(z$, the function (2.4) possesses a pole of the first order at the $1 / \bar{x}_{0}$-point s $(\rho=|\xi|)$ of $w(z) \quad$ with residue equal to

$$
\text { (2.5) } \begin{array}{r}
\frac{1 / \hat{w}_{0}+w_{0}}{-w_{1} w^{\prime}(\xi)}=-\frac{\eta}{w^{\prime}(\xi)}\left(w(\xi)^{2}+\frac{w(\xi)}{|w(\xi)|^{2}}\right) \\
\left(w(\zeta) \equiv \frac{1}{w_{0}}\right) .
\end{array}
$$

As is well-known the line element (2.1) remains invariant for and rotation (2.2) of Σ, that is

$$
\begin{equation*}
\frac{|d W|}{1+|W|^{2}}=\frac{|d W|}{1+|W|^{2}} \tag{2.6}
\end{equation*}
$$

Hence, all the estimations obtained With respect to the spherical derivative of $w(x)$ remain valid also for schlicht functions $W(z)$ which are represented in the form (2.4).

In particular, the precise estimation of the spherical distance

$$
\begin{equation*}
\delta(W(0), W(z))=\int_{\Sigma} \frac{|d W|}{1+|W|^{2}} \tag{2.7}
\end{equation*}
$$

may obtained for any z with $r=|z| \leq \Psi^{*}-(\sqrt{5}-1) / 2 \quad \Gamma_{W}$ denoting here the circular arc from $W(0)$ to $W(z)$ Which corresponds to a minor urc of preat oircle on Σ. In fact, integrating alons the ourve σ on the z-plane whioh corresponds to Γ, we have, by (1.10),

$$
\begin{aligned}
& S(W(0), W(z))=\int_{r} D W(z)|d z|>-\int_{0}^{|z|} D W(x) d|z| \\
& \int_{0}^{t} \frac{1-r^{0}}{t^{2}+(1+y)^{4}} d x-\arctan \frac{t}{(1+r)^{2}}
\end{aligned}
$$

On the other hand, denoting by \hat{r} the curve on the wipiane corresponding to the radiad regntent from 0 to z, We have, agaith by (1.010),

$$
\begin{aligned}
& \delta(W(0), W(z)) \leqq \int_{\hat{r}} \frac{|d W|}{1+|W|^{2}}=\int_{0}^{i z \mid} D W(z) d|z| \\
& \leqq \int_{0}^{x} \frac{1-I^{2}}{r^{2}+(1-r)^{4}} d x=2 x \operatorname{ctan} \frac{x}{(1-r)^{2}}
\end{aligned}
$$

Hence, we conclude finally that
(2.8) $\quad \arctan \frac{I}{(1+x)^{2}} \leftrightarrows S(W(0), W(z))$

$$
\leqq \arctan \frac{r}{(1-r)^{2}} \quad\left(r \leqq r^{\vec{r}} .\right.
$$

The only extremal fumctions for the last estimation are those obtained from (1.5) by ilnear transformations of the form (2.2) (or (2.3)).

More generalily, with regard to the spierical distance between two points $\operatorname{mith}^{\text {Ni }}{ }^{(x)}$ for any $z_{i},(j=1, z)$

$$
\left|\arctan \frac{x_{2}}{\left(1+I_{2}\right)^{2}}-a x_{1} \tan -x_{1}\left(1+x_{1}\right)^{2}\right| \leqslant j\left(W\left(z_{1}\right), W\left(z_{2}\right)\right)
$$

$$
\approx \neq\left|\arctan \frac{x_{2}}{\left(1-z_{2}\right)^{2}}-\arctan \frac{x_{2}}{\left(1-x_{2}\right)^{2}}\right| \text {, }
$$

02
(2. 0$) \arctan \frac{\left(1-T_{1} Y_{2}\right)\left|X_{1}-I_{1}\right|}{x_{1} Y_{2}+\left(1+I_{1}\right)^{2}\left(1+Y_{2}\right)^{2}}=\delta\left(W\left(Z_{1}\right), W\left(Z_{2}\right)\right)$

$$
\begin{aligned}
& \equiv \text { aritar } \frac{\left(1-r_{1} r_{2}\right)\left|i_{2}-r_{1}\right|}{r_{1} r_{2}+\left(1-r_{1}\right)^{2}\left(1-r_{2}\right)^{2}} \\
& \qquad\binom{r_{1}=\left|z_{j}\right| \leq I^{*} ;}{j-1,2} .
\end{aligned}
$$

The extremal cases can be discussed similarly as above.

We may notice here that the distortion inequality for $D W(x)$ is nothing but the one obtained from (2.9) by putting arg $z_{1} \rightarrow$ arg z_{2}, dividing each member by $\left|x_{2}-x_{1}\right|=\mid z_{2} \ldots$ and then letting $z_{1}(,-1,2)$ both tend tc z. In fact, we have then

$$
S\left(W\left(z_{1}\right), W\left(z_{2}\right)\right) /\left|z_{2}-z_{1}\right| \rightarrow D W(z),
$$

and hence the relation (2.9) yields, by this liriting process,

- 3. We have hitherto considered quite generally the whole family of schilcht functions normalized in respective ways. But, if we restrint ourom selves to earticular sub-families, then the results will be correspondingly ameliorated. For instance, if we consider the femily consisting of fluctions which are regular and schliont in 12.1 . 1 , norinalized at the origin such as in (1.2) and noreover map $|z|<1$ onto convex domains, then tre diswortion theorems (1.3), (1.4) aro ivproved in ton tullowing wanner:

$$
\begin{align*}
& \frac{r}{1+I} \leqq|W(z)| \leqq \frac{\gamma}{1-\bar{r}}, \tag{31}\\
& \frac{1}{1+X} \leqq\left|\frac{Z W^{\prime}(z)}{W(z)}\right| \leqq-\frac{1}{1-\gamma} \tag{3.2}
\end{align*}
$$

If we now put, instead of (i.6),

$$
\begin{equation*}
x_{c}^{*}=\frac{\sqrt{2}}{2}=0.707 \cdots \tag{3.3}
\end{equation*}
$$

we get, corresponding to (1.7),

$$
\begin{equation*}
\frac{\tau}{1+\tau} \leqq \frac{x}{1-x} \equiv 1 / \frac{x}{1+x} \quad\left(x \leqq L_{c}^{*}\right) \tag{3.4}
\end{equation*}
$$

and hence obtain, in place of (1.12),
(3.5) $\frac{\tau(1+\tau)}{Y^{2}+(L+\tau)^{2}} \leqq \frac{|w|}{1+|W|^{2}} \leqq \frac{Y(1-\tau)}{Y^{2}+(1-Y)^{2}}\left(Y \leqq Y_{c}^{*}\right)$.

Combining (3.2) with (3.5), the estine-
tion correspanding to (i.io) is, in our
case of functions possessing convex ima...
ges, obtained in the form
(36) $\frac{1}{r^{2}+(1+\tau)^{2}} \leqq D W(=) \frac{1}{r^{2}+(1-r)^{2}} \quad\left(Y \frac{f}{3} X_{L}^{*}\right)$.

The only extremal functions are of the
form
(3.7) $\quad w=\frac{z}{1+\varepsilon z} \quad(|\varepsilon|=1)$,
for which we have

$$
w^{\prime}=\frac{1}{(1+\varepsilon z)^{2}}
$$

and hence
(3.8) $\operatorname{Dir}(z)=\frac{1}{|z|^{2}+|1+\varepsilon z|^{2}}$

Thourfh we may further assert, for remaining range of z, the validity of distortion inequality

$$
\begin{array}{r}
\frac{1-t}{1+x} \frac{1}{x^{2}+(1-r)^{2}} \leqq D W(z) \leqq \tag{3.9}\\
\frac{1+x}{1-Y} \frac{1}{x^{2}+(1, x)^{2}} \\
\quad\left(x_{c}^{*}<x<1\right),
\end{array}
$$

this is not the most precise one as is shown by the similar argument as above. The determination of the exact bounds are here also left open.

The relation which corresponds to (2.8) becomes, in our present case,
(3.10) $\arctan \frac{\mathbf{t}}{1+Y} \leqq \ddot{J}(W(0), W(x)) \leqq \arctan \frac{x}{1-i}$

$$
\left(r \leqq r_{:}^{*}\right)
$$

More generally, corresponding to (2.9), we now ottain
(3.11) $\arctan \frac{\left|\gamma_{2}-x_{1}\right|}{x_{1} x_{1}+\left(1+y_{1}\right)\left(1+x_{2}\right)} \leq \delta\left(W\left(z_{1}\right), W\left(x_{2}\right)\right)$

$$
=\arctan \frac{\left|r_{2}-r_{1}\right|}{x_{1} x_{2}+\left(1-r_{1}\right)\left(1-r_{2} ;\right.} \quad\binom{x_{j}+z_{j} \mid \leq x_{1}^{*} ;}{j=1,2} .
$$

Each bound in (3.10) and also in (3.11) is the best possible one.
(*) Received June 2t, 1950.
Tokyo Institute of Technolegy.

