ON DISTORTION IN SCHLICHT MAPPINGS

By Y{isaku KOMATU and Han NISHIMIYA.

0. Several distortion theorems huve
been derived, in various ways, for func-
tions r'evular and schlicht in a circle.
In the present Note we shall attempt

the equality sign of left and right
side is, in each case, realized only
by Koebe'!s extremal function

certain estimations about their spheri- c = ——E (el=1)
pal dérivative. The aim is to obtain .5 Clse2)t ’
astinates of spherical derivative, de- -
neneing only on \z.1 , for family and, in fact, merely at = tlz|
of funchions regular, seniicht in the and % -Eiz| , respectively.

wudt cirele \z\ <t and normalized
at the origim. The results which will Denoting now, for brevity, by
be Jjbtaizt;ed llj? the following lines are

unly rtia precise. In fact, al- NE -1
though the best possible bounds f:ogether (. 6) ™ = o = cLt..
with extremal functions can be found

for points » comparatively near the the positive root or the quadratic
wrigin, the precise bounds for remain- equation L1~ we get

say points are yet unkmown., But it will with regard to both bounﬂs contained

be noteworthy to remark that the precise in Koebe-Bieberbach's distortion theorem
bounds are not analytic in the whole (1.3), the relations
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On the other hand, the coneept of (1) - € ——=3 & l/-_—--3 (rsx’),
harical derivative 15 really rather ”* 1y t-13 (1+1)
usiful for meromorphic functions than
aerely for regular functions. But, in
comparison with rich results in the
cneory of sechlicht functions regular
i 1 cirele, those referring tu schlicht
functions meromorphic in a cirele are
E 1 poor. Making use of invariant
shavacter of spherical derivative with
rispect to any rotation of Riemann
gpnere, distortion inequalities will be
derived for spherical derivative of
certain schlicht functions meromorphic
in a circle. w8y
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L. The spherical derivative of an
znalytie function w(z) is defined Combining both relations (1l.4) and
25 (1.9), we obtain for spherical deriva-
yw'cz>) tive which may be written in the form

{1 b)) DWzY = —‘mz
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if Z 1s a pole of the first order
with residue ¢ or of higher order, we
rub DW= t/ic| or Dw=0 s X
respectively. (1.10) B < DPwy £
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Consider first the family of func-
ticns {~wzd} regular ax% schlicht The extremal functions for this
in  izl<{ and normalized at the ori- distortlon inequality must, as readily
zin sueh as seen from the above argument be of
, the form (1. si For such a function
P2y M(er=0, Wlody={, the actual caleulation shows that

the following estimation:
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We shall attempt to estimate the sphe- R "m- W= —(‘:'fj“a:?s 3
rical derivative of such functions from
voty sldes, B as is well-known, the T X \w'l 4. gt
ke caf’T dlatorfzion theorems (1 DY TR T ik et
¢ glEwE s we) = a-ir

-1 y W and hence the left and right bound in
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due to Koebe-Bieberbach and t
Nevanlinna rupocfivoly, hold povd for
any tunetions of the family. Morwovoer,
for ary « with o< tmizla s ,

(1.610) 1s indeed attained at 1%
and Z =—1F ana only at these
points, respsctivaly

We note hore, in passing, that the
same is valid tor distortion inequality
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which 1is equivalent to (1.9).

We have seen that the estimation
(1.10) (and also (1.12)) 1s valid for
Tzl £ T* and is the best
possible one so far as it depends only

on Y . Next, if 2z 1ies in the
remaining range r*<y=izt<i , @
similar argument, by using (1.8) in~
stead of (1.7), shows that in this case
g;w inequality (1.9) must be replaced

or

(L13)  ghaurwtoaxbel el g,

Combining the last relation with
(1.4), ve have a distortion inequality
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similar to (1.10)., But the last esti-
mation is not the most precise ome.

In fact, the only extremal funetions
for Nevanlinna's distortion theorem
(1.4) ere of the form (1.5) for which
the equality sign of left and right side
appears only at 2-tE and Zz~-t¢
respectively. On the other hand, al-
though the only extremal functions for
the distortion inequality
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equivalent to (1.13) are also of the
same form (1,5), the equality sign of
left and right side holds here only

at %= ~E and zm1E »
resfe tively. Hence the estimation

(1. 4§ obtained by combining both in-
equal ties for which in spite of the
community of extremal functions the ar«
gumonts of the extremal points are dif-
erent, cannot be the most precise one.

Well, the existence of the best pos-
sible bounds for Dwiz)  depending
only on t and realized by functions
of the family, also for the range

Ty w\¢l , 1s evident from the faet
that the ramily of functions in ques~
tion 1s a normal one. The determina-
tion of these exact bounds is left open
for future considerations. It is, how-
aver, at any rate interesting tha% the
precise bounds are given by very simple
rational functions of t for tsak
but not analytie dh + for the whole
range

Z. We consider next the Riemann
yphere X with dismeter unity touching
the complex - ~plane at its origin,
und denote by § v, 4.) the spherie
sal distence between the points corre-
9gonﬂim to o v, and  Wa steroogras
phio projection. The line element on

X, 18 given by the expression
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On the other hand, a linear trans—
formation corresponding to any rotatlon
of Y. 1s represented in the form

W W
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W, being a parametric point; but in
case w.,= o0 (2.2) has to be replaced
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Let now W (z) be a function re--
gular and schlicht in \zl<t and
normalized at the origin such as in
(1.2), There corresponds then, by the
transformation (2.2), a function

wiz) + Yo

2.n) WM-?T:- ~

*ﬂ;--?w,quvw.l‘ut- izt < §%:1)
also schlicht in 1zi< . If the
point Y5 does not belong to

the range-domain of w(=) , then

the transformed function (2.4) is also
ro%ular throughout in z.< ¥ =t .
But, 1f on the contrary the point V%,
helongs to the range-domain of w.=, ,
the function (2.4) possesses a pole of
the first order at the /%, -point

% ($=i¥1yef wix> with residue
equal to
i + ¥, (%)
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A.’ 48 well-known, the line element
(2.1

remains invariant for any rota-
tion (R.2) of y, , that is
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Hence, all the estimations obtained
with respect to the spherical deriva-
tive of wi») remain valid also for
schlicht funotions W) which
are represented in the form (2.4).

In particular, the precise estima-
tion of the spherical distance
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may be obtained for amy 2 with
Tmlz| & T5 = ({F~1)/2 , [ denoting
here the circular arc from V) to
Wiz) which corresponds to a minor
arc of ircat circle on X . In fact,
integrating along the curve 7 on the
Z-plane which corresponds to [ , we
have, by (1.10),
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On the other hand, denoting by I the
surve on the  «plane corresponding
to the radial segnent from 0 to z,
we have, again by (1.10),
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Hence, we conclude finally that
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The only extremal functions for the last
estimation are those obtained from (1.5)
by linear transformations of the form
(2.2) (or (2.3)).

More generally, with regard to the
sphericai distance betweenstvo points

Wr) for any z, (3=, %)
. ! o) 4
with Tzl st , We get
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The extremal cases can be discussed
sirilarly as above.

We may notice here that the distor-
tion inequality for DW= is no-
thing but the one obtained from (2.9) by
putting arg z, =aig 2, , dividing
each member by =T = {2 o and
then letting Z, ¢ =u4=2) both tend tec

z .« In fact, we have then

3 (W(z,,, .WQZJ)AZ; -2 -> ?‘W(z),

and hence the relation (2.9) yilelds,
by thie limiting process,
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3. Ve have hitherto considered
quite generally the whole family of
schlicht functions normalized in re-
spective ways. But, if we restriet our~
selves to particular sub-families, then
the results will be correspondingly
ameliorated. For instance, if we con-
sider the family consisting of fuactions
which are regular and schlisht in w11,
ndrmalized at the origin saeh as in
(1.2) and moreover map \zl<t  onto
convex domains, then the disvortion
theorems (L.3), (l.4) are irproved in
tne followiug wanner:
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Tf we now put, instead of (i.6),
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we get, corresponding to (1.7),
1 1.,/
= %’;‘{ (r=YLy)

G 4) =T ST
and hence obtain, in place of (1.12),
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Combining (3.2) with (3.5%, the estima-
tion correspondimg to (1.10) is, in our
case of functions possessing convex ima.-
Bes, obtained in the form
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The only extremsl functions are of the
form

1) W TR Clei= 1o,
for which we have
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and hence

(3.3) Dw=>

= Tz \\T?;T:

Though we may further assert, for
remaining range of 2z , the vai:ldity
of distortion inequality
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this is not the most precise one as Is
shown by the similar argument as above.
The determination of the exact bounds
are here also left open.

The relation which correspords to
(2.8) becomes, in our present case,
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More genmerally, corresponding to (2.9¢),
we now obtain
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Each bound in (3.10) and also in (3.11 *
is the best possible one. ( ) (*) Received June 24, 1950.
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