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1. Let K be an algebraic field.
Under a (k-dimensional) formal analytic
transformation we mean a k-ple of in-
tegral formal power series in k varia-
bles %

x t
 ..., Xfc over K without constant

terms* Let a and b be formal analytic
transformations

--^aj

bs

The product ab can be expressed as
followsi

ab;

l, ..., k)

where it is to be noticed that the co-
efficients of ab can be determined
formally as polynomials of those of a
and b. The associativity of this mul-
tiplication is easy to verity and we
obtain a semi-group F^ composed of all
formal analytic transformations, whose
identity is

e
L
(x)-x, . (i-1, k)

Next, letting correspond to any ele-
ment a αf Ffc, the linear part

La: f tX

(i-l, •.., k)

we have a linear representation of

(1) La Lb^L(ab).

Now l e t Efr. be the group composed of a l l
elements having inverses in P f t. Efc may
be called the group of k-dimensional
formal analytic transformations. An
element a of F& belongs to E* if and
only if La i s a non-singular l inear
transformation. Now we define two sub-
groups of fife In the following mannerj

J a s

\a i

-̂  a V,

Then (1) implies that R
κ>
 is an invari-

ant subgroup such that

(2) E^RfeLfe, RkΛL
f t
«
 (

Now. let 0 bt a group, and G> D(G),
-» t D

n
(GΪ*DCD*4W# . the defending

series of subgroups of 0, where D(G)
denotes the commutator subgroup or G

When
ble.

θ. we shall call G solva-

PROPOSITION 1. R is a solvable
group*

Proof, Let

(i-1, ..., k)

be an element of R*, where An(x) de-
notes the homogeneous part of degree
n. If a is not the identity, there
exists A^(x)*0. The smallest number
r such that .there exists A;.(x)£θ for
some i is called the rank of as r(a)
=r. The rank of e is <*>.

Now let a and b be elements of Ή.
k)

of rank r and s respectively;

a: f
t
=x,, + Aj: + higher terms,

bί g
t
~x

t
 -t- Bs + higher terms.

(i«l, ..., k)

Then clearly we have

(5) abί

( Xι •+• (Aj. +• B£) -t higher terms,

x. + Aj -t higher terms,

(
 + Bj f higher terms,

(i-1, ..., k).

according as r=s, r<s, or r>s respec-
tively. Hence in the expressions of
ab and ba the terms of degree Min(r.s)
concide, and this readily leads to the
following inequality;

(4) r(aba"
1
K

1
)>Min(r(a),r(b)),

which is valid except for a-b=e.

Let Hi be the subset of R^ composed
of all elements of rank at least t(tέ2).
By (3) R| is a subgroup, and we have
that ΓϊRl β On the other hand we can
conclude from (4) that

whence is solvable.

S« In this section we consider the
case where K ia the field of complex
(or real) numbers. Then we can intro-
duce a topology (the so-called weak to-

" r) in F, namely the sequence
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a(n)$ fj. (n)»2aj,".. j^n)

(i«i, ..., k)

converges to

THEOREM. A loca
G of Efe Is a Lie gr

lly compact subgroup
group.

if an4 only if every a
 ι
,in) converges

to aΛdpo). E&. can thus Be considered
as a topologlcal group* It is clear
that Lfe, RK, and R£ are all closed sub-
groups .

Let us now define the topological
commutator group C(G) of a topological
group G as the closure of D(G); D(G)^.
C(G)» Then we get the descending series
of subgroups S C ^ G M * where C

t
,(G)-

.C(Cnj G)). When Λ C ^ Q U , we call G
topologically solvable. Then by a slight
modification of the proof of Proposition
1 we obtain

PROPOSITION 2. IU is topologically.
solvable.

From this proposition follows readily
the following

COROLLAHT.
group in i s semirs' Imple^feejQ, p

 f
for a 4 S defines a faithful re-
t t ΐ i ΰ

Now the following lemma, which is a
generalisation of the so-called unique-
ness theorem of H

β
 Cartan, is known.

LEMMA l.
<4
" Let K be a compact sub-

group of E^ Then K is a Lie group
β

In detail there exists an element d of
R^ such that

d~*ad se La for every a & K

On the other hand K. ϊwasawa called
a locally compact ~rouρ G an (L)-group^
if G can be approximated by Lie groups:'
¥e owe to him the following lemmas.

LEMMA 2l
 J
 A connected locally com-

pact solvable group is an (L)-group.

LEMMA 3
β
 A connected (L)-group is

a Lie group if it is locally euclidβan.

LEMMA 4
 Λ
' The space of a connected

(L)-group is a direct product of that
of a (maximal) compact subgroup and a
eueliάeaα space„

LEMMA b!
V
 Let H be a locally com-

pact group, and N a closed invariant
subgroup of H. If K is a simply con-
nected solvable Lie group and i{ the
factor group H/N is compact, then there
exists a compact subgroup K of H such
that H**KϋΓ«

Using above lemmas we shall prove
the following theorem.

Proof. Let % be the intersection
of G and R,.., and N the connected compo-
nent of Nx containing e

β
 Since R& is

solvable, so is U. Hence N is an (L)-
group by Lemma 2. Prom Lemma 4 N is
topologically a direct product of a com-
pact subgroup ana a euclidean space.
On the other hand, from (2) and Lemma 1
I contains no compact subgroup but for
the identity group. Therefore N is a
(simply connected solvable) Lie group
according to Lemma 3.

Next let H be an open subgroup of N«
containing N such that H/H is compact/
Then frorα Lemma 5 there is a compact
subgroup K of H so that H«KN Again by
Lemma 1 we have K-e, H«N Hence N is
open in N

l β
 Therefore Nj is a Lie group,

Now the correspondence a-*La for a- G
gives a faithful representation of G/Nj.
into Lfe Hence G/N^is also a Lie group.
Our theorem follows directly from the
extension theorem of Lie groups due to
K. Iwnsawa and M. Kuranishi
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