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1. Let C be the space of all con-
tinuous functions x) , 0sr<l,
X(0)=0 . N.Wiener introduced into

¢ a probability measure, and recently
R.H.Cameron and W.T.Martin have develop-
ed its various aspects on point trans-
formations, averages of certain func-
tionals, unitary transformations, and
orthogonal developments of arbitrary
functionals. In this note we shall em~
phasize the fact that the Wiener measure
can be equivalently transformed into a,
probability measure on a product space“)
n the following we shall prove three
theorems, of which the first two are
¥nown, showing how this measure can be
used to simplify considerations based
on the function space (¢ . This point
of view is really contained in Wiener's
expression of the random function, and
even more explicitly, in considerations
by Cameron and Martin. In the follow=-
ing we use basic concepts and notations
by these authors.

2. We will begin by proving a theo-
rem by Cameron and Martin In a slightly
generalized form, which proves to be
essential for our later use.
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Thas proves the theorem.

3. We now gass on to proofs of two
theorems on orthogonal developments of
Wiener functionals, of which tae first
has been obtained by Cameron and Hate
field, 87

Ikag

Hex"rife "f’unct;“ﬁ‘s constructed from

(a; meron and Matfield)

@m 001YDONIaly And, Lhe orino-
'U.L.\J 5 CeN cop (G =)l

t ; f pa @ /ggume\l
gxgzc ionsl /rmi{/l»f , Wwhicn is

he the Fourier-

measurable over £ and continucus 1s _in
the Hllbert topology at x,:7) % c .

then
wv,o + 8947
Fm/-—v anw/-oz ’4"" ot

(8 ) ?«;

¥p [&) s

e,

vherse w
,4,,,,...,,,4-‘:[ Frd/?,ml_‘_ M,.,(” i

¢of. Define
ore, and put

Ay = ff /3 ) / /$J (4 2,44) 41,

Ao, A A/},_Z Aﬂ' ””a'ﬁ,r cw

(z(/' and ;! ay be-

i AN TS0
X . oy (R0l
then
@H;d(zwr.(,,,,uu: -m.j/ 15y v'4
‘9' ;?4’

Zf

! H
(7} d"/ PIY] [d HIZM [F/dt) / {'Zh#[{// F'{d

f ¢ [ /mdtrw(i._q/ A4 )

{ [ Brta) 2, 101ds) dXE)
/7,2}/’/ [ 5o s
/,z',,,vmdxw

Hence Fy a formula by Cameron and Hat-
£1e1dé/ and Theorem 1

,4(19 AN)- F(Il/ G [F”/"F“o/]
cop (S AL

/-A%
--Ca/ [FtA+ALoy) ~ F,x,,]
X ix/b [ / ( Zp,//{l‘/}dt ~£ZA / ;t,,,,lf/a/z/é/]

“//;[f(z/w 5/-&J‘ -A% '-I.A"cg Y -ﬁ‘} ~ﬂf %)

x r“"/-w]‘/v"’
b= (1A%

whict, on applying (9), reduces to

»
4
ve) C"/ [Featad..)-Fea)] wpl-124, AL
[

Grmsider now the function o)
Gleys & LA
FEi= ¢ for 4!’”’/’1]")[
Ay herwise,

then, since

42 -



nan= [ I{xm/'dt = -% f ,-53’}

we have, by means of (10), the in-equa-
lity

|Ara, A ) -Fub)f

€ Cof (Fresax,)-Fix))
lwl«[

”W["“f"/%/-a?] drvx
+£”[Cai(/?737‘—?’§z)”f/“,‘%/zﬂ?)]dvl

The first term in the right-hand side
of (11) is uot greater than ‘

Mo | Flatazey) = Fiay)

27294
Xhic)g, bydthe continuity or M/ ,
an be made as small as we please, if
pn.}].y we let § and /f-A p‘ne small
and large. On the other hand, thne
second integral of (11) can be written

as

k) ke ‘ - -~ a
4{;’1/ m c“,[, [v‘?{;’-??‘j""’/)

op [ 2924
xdd, °'-'/b/&. ,

- 4 . oA,

= /(/‘(“dyl/ ) f((//l’/, -/-‘,/—f—,/;

& e
oL )

~

- ud pand
= / f{(l‘”/f 2= " 4

iy Ty

"

In the last integral, if we let A—»/-~0,

— O, , the integrana bound-
edly converges to zero almost everywhere
on , and hence the integral also
tends to zero, Thus we have completely
rroved tne theorem.

In the above theorem we cuuld not see
wnether our Fourier-Hermite series is
swmable almoct everywnere by the Abel
method, even when the functional is
bounded, whereas almost everywhere sum-
mability is true for ordiuary Fourier
series. In this conneetion thue follow~
ing theorem may be of interest.
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Substituting this into the integrand
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Finally it is obvious that Jzl4) =0
as. A-»/-0 . Combining these re-
sults we get the proof of the lemma.
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