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Let ft) be a real measurable
function of a real variable ¢ , and

{Mc} be an increasing positive se-
quence with certain gap conditions.
Asymptotic properties of the sequence
of functions F(Nt) such as
the asymptotic distribution of their
partial sums and almost everywhere
convergence or divergence of the series

= o), cx  constant coeffi-
cients, have been discussed by M.Kac,”
R.Fortet,® R.Salem and A.Zygmund,®
R.Fortet and J.Ferrand,” and T.Kawata®
The object of this note is to prove
the following theorem which corresponds
to the law of the iterated logarithm
in the theory of probability. The proof
glven here deponds on Kac'!s method of
approximating a gap sequence by a set
of independent functions.
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proof. Let us put AW=[clyx] |
where c=:./d,,g_ and fa] denotes
the integral part of a , and define
gop—negative cequences of 1lntegers
A5, 0, vy v I in the follow-
ing way. Choose an integer N so
large, that we have

¢ gl P} <[] o o2

and let 1€ < < dy, < (V)]

but 4, (1Sv< N~ ) otherwise
arbitrary; d, = ((logv)*] for vai;
pv=d, for & VS N~ i
P,;::)\(d"" ot d ..H’V,,)
for 2N , and put

ay | Mwmdeerdopestie

Ny = wmyt )\(mv)

Then by the above choice of N and
definition of pv
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Now, for amy positive sequences {a.}
and” {§,} let us agree to write
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Consider the dyadic expansions of all

real numbers t , ot
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where by Tnit) we denote Rad-
macher's system of independent func-
tions, and put
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Then by the periodicity and Lipschitz
condition imposed on f{t) we obtain
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(8), (7) and (8) give us
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Since, as is seen from (8), S, de~
pends only on r(t) NS ISy,

{S.} 1is a set of independent func-
tions, each with common mean value 0 ,
and the same is true of {T,} .
Hence, if we write

Ny k k
(n ;»Z' x,,cg__‘, S+2T,

- 31 -



then by (5), (9)/and (10) the M"varian-
of the two terms
:Ln the right-hand Tember of (11) are

given by
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Therefore we can apply Kolmogoroff's

theorem on the law of the iterated

logarithm, getting almost everywhere
t
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Given m , let us choose M«  such
that =, ,<n € n, , then
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Hence, by (11), (14), (15) ana (16)
we get
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tor almost :zwvery ' . This proves
the theroem.
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