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ON THE EXISTENCE OF PRIME PERIODIC
ENTIRE FUNCTIONS

By MITSURU OzZAWA

1. In our earlier paper [7] we proved the existence of a periodic entire
function which is prime. This gives an affirmative answer to an open problem
given by Gross [5]. Recently Baker and Yang [2] have discussed the same
problem, having emphasized the growth of the constructed function. Their
example is really not only of infinite order but also of infinite hyperorder.
In the same point of view there still remains a problem whether there is a
prime periodic entire function of given growth. Here of course the given order
should not be less than one. Our theorems give a partial answer to the above
problem.

As already remarked in [7] we must seek for a prime periodic entire func-
tion among the class of entire functions A (e?), where A(w) is a one-valued
regular function in 0<|w|<co, having essential singularities at w=0 and w=co.
Of course this is not sufficient for the problem as remarked there.

THEOREM 1. There is an entire perodic function of order p(1=p<o0),
which is prime.

THEOREM 2. There is an entire periodic function of hyperorder p(1=p <o),
which is prime.

Here the order and the hyperorder of f mean

im logm (7, f) and Tim log logm (7, f)
P logr 7o log r

respectively.

2. Proof of Theorem 1. We firstly construct an entire function 17,(w)
so that

log M (r, II,) ~(log r)°, 1<p<oo~,

In this case we may assume that the absolute moduli of zeros of II,(w) are
greater than 1. There are infinitely many such functions. Let [7,(w) be the
same as in [7]. Let F(z) be
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EXISTENCE OF PRIME FUNCTIONS 309
II,(e?) II,(e7?).

By the well-known Pdlya method

log M (7, Hl(e’))glogM(dM(—;—, e), II,) 0<d<1

— - ~(TY
=log M(de?, IT,) (2 )
and
log M (r, Il (e?))=<log M (e, II,) ~7°.

Hence I7,(e?) is of regular growth of order p. On the other hand /7,(e™?) is of
order 1. Hence F is of order p. The remaining main part of the proof is the
same as in [7] with several small modifications. For p=1 we already proved
the existence in [7].

3. Proof of Theorem 2. Let us consider the function
F(z)=(e?*—1)e%®,

where g,(2) is a prime periodic entire function of order p(1=<p<c0). The
existence of g,(z) has just been proved. Evidently the hyperorder of F is p.
Let us put F(2)=f(g(2)).

a) f and g are transcendental entire. Firstly Edrei’s theorem [3] implies
that f has only finitely many zeros, all of which are simple except at most one.
Hence with a positive integer ¢,

F(w)=P(w)et™,
Pw)y=Aw—w,) - (W—wn_) (W—wy)?

Assume that n=2 and g=1. Then by the second main theorem
nm(r, ZN(r, 1, €)= ilN(r, W, &)
=

Z(m—m(r, 9+0(ogrm(r, g))
and

N(r, l,e’)N—;—.

Hence the order of g is equal to 1. Therefore

P(g(2))=B(e*—1)e**
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and
go(z2)=log B+az+L(g(2))+2pr1.

go(z) and g,(2)—az are prime by Theorem 1 and by Baker andjGross’ theorem
[1]. Hence L is linear. Therefore

go(2)=log B+2pri+az+Cg(2)+D.

Hence the order p of g,(z) must be equal to 1, since the order of g is I
In this case

lim (80 _ o fp 8
e m (7, €°) r= m (7, %)

This gives again a contradiction. Assume that n=2 and ¢=2. Then g(z)—w,
=FEe??, Q(0)=0. Further

N(r, 1, &)= J"z;lzv(r, w, g)~(n—1)m(r, g)

Hence the order of g is equal to 1. Therefore

P(g(2))=B(e*—1)e**
and
go(z)=log B+az+L(g(2))+2pri.

Hence the same reasoning does work.
Assume that n=1. Then

A(g(@—w)=B(e—1)e”®, M(0)=0,
g¢(2)=log B+2pmi+M (2)+L(g(2)).
Hence M (z) is a polynomial. Evidently we have

L(g(z+2ri))—L(g (2))=—M (z+21i)+M(2)=N(2)
and
Alg(z42n1)—g (2)]=B(e*—1) ¥ @ (e~ ¥ 1),

If N(z)=2szi with an integer s, g(z+2ri)=g(2) and hence L(g(z+2ri))=
L(g(z)). Therefore N(z)=0, s=0. In this case M(z) should be a constant.
Hence M (z2)=0 by M(0)=0. Thus

A(g(@)—w)=B(e—1),

go(2)=log B—|—2pﬂi+L(w1—|— %(e’—l)).
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Let us put w=e* Then
B
20(log w)=log B—!—me—FL(wl—I——A—(w—l)).

Now w=0 is an essential singularity of g,(logw) by its construction but a
regular point of the right side term. This is impossible. If N(z)=c(c#2sr1i),
g(@2ri)=g(0). Hence L(g(2ri))—L(g(0))=0, Hence L(g(2ri))—L(g(0))=0, that
is, c=0. This is impossible. If N(z) is not a constant, the zeros of g(z+2x7)
—g (2) should be zeros of L(g(z+2r1))—L(g(z)). Hence

N(r, 1, eY)<N(r, 0, N(2)).
This is evidently impossible.

b) f is transcendental entire and g is a polynomial. Suppose that the
degree of g is at least two. Then by Rényi’s theorem [9] the degree of g is
equal to two. Let {w,} be the set of zeros of f(w). Then the set of roots of
a(z—z)*+B=w, coincides with the set {2m=zi}. Then {w,} lies on a ray and
the counting function N(r, {w,}) of {w,} is of half order. Let h(w) be the
canonical product formed by {w,}. Then f(w)=h(w)el®. Hence

h(a(z—z)*+B)=A(e*—1)e"™,
go(2)=log A+2pritrz+L(a(z—2z)*+ ).

If y+#0, go(z2)—7z is prime by Baker and Gross’ theorem [1]. Hence L should
be linear, which is a contradiction. Thus y=0. Since g,(z) is prime, L is linear.
This is impossible.

c¢) fis a polynomial and g is transcendental entire.

Suppose f has two different zeros w,;, w,. Then by the second main
theorem g is of order 1, which contradicts that g is of infinite order. Since f
has no multiple zero, f should be linear.

d) f is transcendental meromorphic (not entire) and g is transcendental
entire. Then

(e*—1)eto@=A"f*(wo+ Ae”®)e ¥, M (0)=0,
Fw)y=w—w)"f(w), gD)=w,t+Ae"™.
In this case f*(w)=0 has only finitely many roots. Hence
A7 f* (w)=P (w)e™ ™
P(w)=Bw—w,) - (W—wny).
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Therefore
P(g(2))=C(e*—1)e¥=®, N(0)=0
and
go(2)=log C+2pmi+N(2)—nM(2)+L(g(2)).

If m=2, g should be of order 1. Hence M (z)=az, N(z)=pz. Hence
go(2)=log C+2pmi+(a—nPB)Z+L(g(2)).
We have a contradiction as in the case a). If m=I,
B(g(@)—w)=B w,—w;,+ Ae¥®)
=C(e*—1)e"®,
go(@)=log C+2pri+N(z)—nM (2)+L(g(2)).

Hence M(z) and N(z) should be polynomials. By B(w,—w;)=C(e*—1)e"®—
ABeM® we have two possibilities :

N()=0 N@)=—z
{ i) {
M(z)=z M(z)=—z.
Thus we have
go(2)=log C+2pri+ez+L(g(2)),
where e=—n or (n—1). We then have a contradiction as in the case a).

e) F is rational (not a polynomial) and g is transcendental entire. Then
with a polynomial f*(w)

F)=(e"—1)ef@=A""f*(w,+ Ae” @) e ¥,

f(w)=@%, g(@D=w,+Ae®,

Since F(z) has no multiple zeros, f*(w)=B(w—w,) - (w—wy). Therefore, if
m=2, the order of g is equal to one. This is impossible, since F is of infinite
order. If m=1, f*(w)=B(w—w,), w,#w, Hence

(ez_l) eso(z):BA—n (wo_w1+AeM(z)) e—nM(z)
Since
m(r, Ae®)~N(r, w,—w,, Ae™)

=N(r, 1, &)~

M(z) is linear. Hence g is of order 1. This is a contradiction.
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f) f is rational (not a polynomial) and g is meromorphic.

Let w, be a pole of f(w). Then g(2)—w,#0. Let g,(2) be 1/(g(2)—w,).
Then F(z2)=R(g,(z)) with rational R and entire g,. Now this case reduces to
the case e).

Thus we have the desired result.

4. Remarks. We can construct several other prime periodic entire functions
not depending on g,(z).

EXAMPLE 1. (e*—1)exp(e*+e7?).

This function is of hyperorder 1. We only consider the case a), since the
others are easier than or similar to a). Let F(z) be f(g(z)) with transcendental
entire f and g. In this case f(w) has only finitely many zeros. Hence f(w)=
P(w)er™, P(w)=A(w—w,) - (w—w,)? as in the case a). If n=2, then g is of
order 1 and more precisely

r ¥
r < <KL
k;r =m(r, g)=Kn_

with 0<k<K<oco. Hence

P(g(z))=B(e*—1)e**
and
e*+e *=log B+2pritaz+L(g(2)).

Next we shall prove that e*+e *—az is left-prime in entire sense, if a=0.
In order to prove this we make use of our earlier theorem in [8]. Let
us consider

ete—az=c

e’—e *—a=0.
Eliminating e? and ¢™? we have

(az+c)—a*=A4.

This has only two roots. Hence the above simultaneous equation has only
finitely many common roots. Further e¢*—e *—a has infinitely many zeros.
Thus we have the left-primeness of e¢*+e *—az in entire sense. (We do not
make use of the primeness.) Hence L is linear. Hence

Cg(2)+D+log B+2pri=e*+e*—az.
Substituting this into P(g(z))=B(e*—1)e¢** we have

anenz_l_ vee +a0+ vee +a_ne-nz=Be(a+l)z_Beaz'
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Here a,=a_,+#0, a, is a polynomial of degree n, whose leading coefficient does
not vanish. This is impossible. (This part can be proved more easily in the
following manner. Since P(w) is a polynomial, there are two 2m=ni and 2qn:
such that

g@mri)=g(2qri).
Then
L(g2mni))—L(g (2qni))=2(q—m) mia

should be equal to zero. Hence a=0, which contradicts a+0.) If a=0, we
have

e*+e *+a,=L(g(2)),
P(g(2))=B(e*—1).

From this we can get a contradiction in several ways. By Rényi’s theorem [9]
g (2) is periodic with period 2n,7:. Here n, is an integer satisfying 1=n,=n.
Hence g(z)=h(e®™) with a one-valued regular function A (w) in 0<|w|<co.
So putting w=e*™ we have P(h(w))=B(w"—1). Thus Ai(w) is regular in
|w|<oco. On the other hand L(A(w))=w"+w ™*%, w=0 is a regular point of
L(h(w)) but not of the right side. This is impossible. If n=1,

Fw)=A(w—w,) "™,

A(g(@—wy)=B(e*—1)e™=®, M(0)=0.
Hence
e’+e*=log B+2pmi+M(2)+L(g(2)).

This gives M(z)=az. Therefore we can discuss this case quite similarly as in
the case n=2. By the above discussion

(e*—1)exp(Ae*+Be *+nz)

with non-zero constants A and B and an integer n is a prime periodic entire
function.

EXAMPLE 2. (e’—1)exp(e *+expe?).

This function is of infinite hyperorder as Baker and Yang’s example
(e*—1)exp(exp(e’—z)) is. It is sufficient to prove that there is no entire
function g(z) such that

g@=we+B(e—1) ", M(0)=0,

e +te ' =D+M()+L(g(2)).
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Assume that there is such an entire function g. Then
L(g(z+2ri))—L(g(2))=—M (z+2ri)+M(2)=N(z)
g (z+2ni)—g(2)=B(e*—1)e"®(e”¥»—1).

Suppose that N(z) is not a constant. Evidently g(z,+2717)=g(z,) implies
L(g(z0+2r1))=L(g(z,)). Therefore

N, 1, e"®)=N(r, 0, N(2)).
This shows that

(A—e)ym(r, e¥)=m(r, N@2)),
which is clearly impossible. Suppose next that N(z)=c. If c¢#2szi with an
integer s, then g(2ri)=g(0) and hence c¢=L(g(2ri))—L(g(0))=0. If c=2smxi,

g (z+2ri)=g (2) and so N(z)=c=0. Therefore M (z)=0 or M(z) is a non-constant
periodic entire function. If M (z)=0, then

e +e =D+ L(wy+B(e?—1)).

Let us put w=e*. Then
1
ew—l—?:D—l—L(wo—l—B(w—I))

At w=0 the left side has a pole but the right side is regular. This is im-
possible. If M(z) is periodic with period 2zi, M(z)=h(e?) with a one-valued
regular function A (w) in 0<|w|<oco. Then putting w=e* we have

ew—{—%:D—l—h (0)+L(wot+ B (w—1) e

If A(w) is regular at w=0, we have immediately a contradiction. If A(w) has
a pole at w=0, the right hand side has an essential singularity but the left
hand side has a pole. We have again a contradiction. If A(w) has an essential
singularity at w=0, the left hand side has only a pole and the right side has
an essential singularity. This part can be proved by m(r, h(w))=o0(m (r, L(w,
+B(w—1)e®))) as r — 0. Thus we have the desired result.

The following function seems to be prime:

(e—1)e,(go),

en(W)y=e,_(e”), e (w)=e®.

5. We shall give another method to construct a prime periodic entire func-
tion, whose proof depends on a different principle.
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THEOREM 3. There is prime periodic entwe function of arbirariy rapid
growth.

Proof. Let us consider

mw)=TLE(==, p.)"

127
and

00

= 11,(1=57)" 8 3f5 <0<,

n=1 lbnla

where E(x, p) is the Weierstrass primary factor

1, 1,
(l—x)exp(x—{—?x 4o +5x )
and v,, 4, are prime numbers satisfying 3=p,, 3=v,, va<vpii, fo<Un+1,
UnFVm.
Let us put
F(2)=1I1,(e*) I, (e™).

We shall prove that F(x) is the desired function. Let F(z) be f(g(2)).

a) f and g are transcendental entire.

1) f(w) has infinitely many zeros {w,}. In this case g(z)=w, has simple
roots with the exception of at most two w,. Then the order of w, as a zero
of f(w) must be equal to one of v, or y,, say v,. If further g(z)=w, has any
multiple roots, then at these roots the order as zero of F(z) must be some
multiple of y;. This is impossible. Hence g(z)=w, has no multiple root if it
has simple roots. Therefore the set of roots of g(z)=w, is a subset of {log a;
+2pri}, if w, is a zero of f(w) of order v;,. Hence the set of roots of g(z)=
w; lie on the straight line I :log a;+12x1, —oo<t<oo. If k runs over the set
of possible indices, then s runs correspondingly over indices of v, and p,.
Assume firstly that there are infinitely many different [,. [;— o0 as s— oo.
They are parallel. By Kobayashi’s theorem [6] implies that

g@)=a(e*”+B)*+B.

Since log as+2p,xi, j=0, +1, --- give the same value w, for g(z), A should be
a rational number p/q, ¢>0. It is enough to discuss the case p>0. Then

F)=f(a(e® 0"+ B)+ )
S AGYACSY



EXISTENCE OF PRIME FUNCTIONS 317
Let us put x=e*% Then

1

x9

(20 ITo(—) = (a (x7+ B+ ).

The left side has an essential singularity at x=0 but the right side is regular
at x=0. This is a contradiction. The case that there are only finitely many
different /; can be treated as in the following case 2).

2) f(w) has finitely many zeros and at least two zeros. Then f(w)=
P(w)et™, Pw)=AIl (w—w)*. If g(z)=w, has multiple roots, then k;=1
and g(2)=w, has only multiple roots, which must be a subset of zeros of F(z).
Hence their orders should be larger than y,;=3 or p;=3. Therefore there is at
most one w, for which g(z)=w, has multiple roots. Further there is at least
one w, for which g(z2)=w, has multiple roots. If there are two w, and w, for
which g(z)=w,, g(z)=w,; have simple roots, then

A+e)m(r, 2)=N(r, we, 2)+N(r, ws, g)
< ) ~2 -
=2m(r, e9)~2 -
If g(z)=w, has multiple roots, then for an arbitrary positive K
m (7’, g)gN(r: wl: g)ZKm (7’, ez) NK.;?;—

This is a contradiction. Hence we only have one possibility: g(z)=w, has
multiple roots and g(z)=w, has simple roots. In this case for any K>0 and
Tgro

m(r, =N (r, wy, 9 =KN(r, ws, g).
Hence
N(r, ws, g)=0(m(r, g))
and so d(w,, g)=1. Further N(r, w,, g)=3N(r, w,, g). Hence O (w,, g)=2/3.

This is impossible, since g is entire.

3) f(w) has only one zero w,. In this case £,=1 and
Fu)=Aw—w)er™,

A(g())—w)=F(z)e™®.
Hence
L(g(2))+M(z)=2pri.
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Let us consider

L(g(z+2ni))—L(g(2))=—M(z+2zi))+M (2)=N(z),
A(g(z+2r1)—g(2))=F (z) e"® (" V2 —1).

If N(z)=%c¢, then the zeros of g(z+271)—g(z) is a subset of zeros of L(g(z+
2n1))—L(g(z)). Hence

N@, 0, N)=N(r, 1, e¥®).
This is a contradiction. If N(z)=c+#2mni, for any z, satisfying F(z,)=0
L(g(z0+27m1))=L(g(z,)) and so ¢=0. This is impossible. If N(z)=2smi, g(z+
2ri)=g(2) and hence L(g(z+2rxi))=L(g(z)). Thus N(z)=0. In this case g(z),
M(z) are periodic with period 27:. We now put

g@)=h,(e?), M(z)=h,(e)

with one-valued regular functions h;(w), h,(w) in 0<|w|<co. Then

Al @)= w)=IT, () T ) e,

L(%l]l(w) H2<—i7)e"2‘“”+w1) =2pm1—h,y(w).

Evidnetly h,(w) is not regular at w=0. Let us consider the growth of various
functions around w=0. By its construction

mr, () (- ))=o0(m (7, ehsc)
as r — 0. Further
m(r, hy(w))=(1+€ m(r, L(h,(w))),
m(r, L(hy(w)))zm(r, hi(w)),
m(r, hy(w))=(1+e€) m(r, e">*?)
as r — 0. This gives a contradiction.

b) f is transcendental entire and g is a polynomial. Asymmetricity of the
distribution of zeros of F(z) gives a contradiction.

c) fis a polynomial and g is transcendental entire. This case is included
in a) 2).
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d) f is transcendental meromorphic (not entire) and g is transcendental
entire. Then

=200, g@—w= e, MO=0,

In this case g(z)=w; has simple zeros for all w,+#w,. Hence f*(w) should
have infinitely many zeros. Thus the same reasoning does work as in a), 1).

e) f is rational (not a polynomial) and g is transcendental entire. As in
the case d) g(@)=w,+Ae¥*® and g(z)=w has simple roots for all w,#w,.
Hence we cannot cover all the zeros of F(z) by the roots of g(z)=w,.

f) f is rational (not a polynomial) and g is transcendental meromorphic.
This case can be reduced to e).
6. Theorem 3 can be verified by the following example.
(e’—1)exp(e,(2)+e™?),
where ¢, (z)=exp e,_(z), e;(z)=e¢"

Proof. Let F(z) be f(g(z)). Again it is sufficient to prove that there is
no entire function g(z) such that

g@—w,=A(e*—1)e¥®, M(0)=0
e, (2)+e*=D+M(2)+L(g(2)).

As in the proof of Theorem 3, M (z) reduces to a periodic function with period
27i. The case M(z)=0 gives a contradiction. Let us put M(z)=h,(¢*) and
g(2)=h,(e*) with one-valued regular functions h,(w), h.,(w) in 0<|w|<co.
Then

Cnes ()t~ =D k(W)L (ha()),
he(w)—w,=A (w—1) eh1¢w>

Evidently w=p is neither any regular point nor any pole of h,(w). Hence
w=0 is an essential singularity of A,(w). In this case as r — 0

m(r, hy(w))=A+e€) m (r, L(h.(w)))
Z(1+e)m(r, he(w))
=(1+€)m(r, e"1®)
Z(1+e)Km(r, hi(w))

for an arbitrary positive K. This is a contradiction.
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We now list up two examples: (e*—1)exp(e,([1,(e*))+e %) and (e’—1)exp
(en(2)+e,(—2)), where IT,(w) is the function in Theorem 1. We shall not give
any proof here. There are several examples of prime periodic entire functions
among functions of similar type. We shall not list them up here.

7. We now give an example of a prime simply periodic meromorphic
function of finite order. Let us consider the function

F(z)=n,(e?)/ms(e™?),

where

m(w)= 11 (1= 2-)”

n=1
mw= 1, (15 )"

such that a,#b, and =,(e”?), m.(e”®) are of finite order and v,, p, are prime
numbers satisfying 3=v,, 3=ptn, Vo <Vns1, Un<Un+1) UnF Ve

We only give a sketch of proof. Let F(z) be f(g(z)). Since the case that
f is transcendental meromorphic and g is transcendental entire is essential, we
consider only this case. By Edrei-Fuchs’ theorem [4] we have firstly that f is
of zero order and g is of finite order. Hence f(w) is representable as a quotient

JFr(w)/fo(w)

of two entire functions f;, f. of zero order. As in the proof of Theorem 3 g(2)
should be of the following form

(Ae**4B):

Further it is easy to prove that « should be a real number ¢/p, »p>0. ¢ may
be negative or positive. It suffices to consider the case ¢>0. In this case with

a polynomial M (z)
mi(e)=/f1(g (2))e™®
my(e™ )=/, (g(2)) ™™

Since g(z2)=(Ae‘?’?*4-B)* is periodic with period 2pzi, e¥® is periodic with
period 2pxi. Hence M(z) is equal to yz+40, y=u/p with integers u and p.
Let us put w=exp(z/p). Then

2 (wA)=CF ((Aw+ BY)w,
m(w )= fu((Aw 4 BP) .

We can easily obtain a contradiction by considering the behavior around w=0.
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