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ON THE EXISTENCE OF PRIME PERIODIC

ENTIRE FUNCTIONS

BY MlTSURU OZAWA

1. In our earlier paper [7] we proved the existence of a periodic entire
function which is prime. This gives an affirmative answer to an open problem
given by Gross [5]. Recently Baker and Yang [2] have discussed the same
problem, having emphasized the growth of the constructed function. Their
example is really not only of infinite order but also of infinite hyperorder.
In the same point of view there still remains a problem whether there is a
prime periodic entire function of given growth. Here of course the given order
should not be less than one. Our theorems give a partial answer to the above
problem.

As already remarked in [7] we must seek for a prime periodic entire func-
tion among the class of entire functions h (ez\ where h (w} is a one-valued
regular function in 0<M<oo, having essential singularities at w—0 and w = oo.
Of course this is not sufficient for the problem as remarked there.

THEOREM 1. There is an entire periodic function of order
which is prime.

THEOREM 2. There is an entire periodic function of hyperorder p(l^
which is prime.

Here the order and the hyperorder of / mean

r-oo lθgr r-oo log r

respectively.

2. Proof of Theorem 1. We firstly construct an entire function Π1(w)
so that

logM(r, ZΓj)~(logrY, l<ρ<oo~.

In this case we may assume that the absolute moduli of zeros of Π^w} are
greater than 1. There are infinitely many such functions. Let /72(w) be the
same as in [7]. Let F(z) be
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EXISTENCE OF PRIME FUNCTIONS 309

ΠiWΠ^e-*).

By the well-known Pόlya method

logM (r, Π1(e'))^\ogMdM9 e*, 77 0<d<l

and

logM(r, 771(e*))^logΛί(er, 770

Hence Π1(ez) is of regular growth of order p. On the other hand Π2(e~z) is of
order 1. Hence F is of order p. The remaining main part of the proof is the
same as in [7] with several small modifications. For p— 1 we already proved
the existence in [7].

3. Proof of Theorem 2. Let us consider the function

where g0(z) is a prime periodic entire function of order p(l^p<oo)m The
existence of g0(z) has just been proved. Evidently the hyperorder of F is p.
Let us put F(z)=f(g(z)).

a) / and g are transcendental entire. Firstly Edrei's theorem [3] implies
that / has only finitely many zeros, all of which are simple except at most one.
Hence with a positive integer q,

Assume that n^2 and q=l. Then by the second main theorem

nm(r, gϊ^N(r, 1, *•)= Σ N(r, wJ9 g}
J=l

^ (n-1) m (r, g)+O (log rm (r, g))

and

N(r, I,β2)~— -π

Hence the order of g is equal to 1. Therefore

P(g(z»=B(e -ΐ)e*
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and

gt(z)=\ogB+az+L(g(z»+2pπι.

go(z) and gQ(z)—az are prime by Theorem 1 and by Baker^and^Gross' theorem
[1]. Hence L is linear. Therefore

go(*)=log B+2pπi+az+Cg(z)+D.

Hence the order p of g0(z) must be equal to 1, since the order of g is 1.
In this case

r-oo m (r, ez) r-°° m (r, ez

This gives again a contradiction. Assume that n^2 and q^2. Then g(z)—wn

=Ee^z\ g(0)=0. Further

7V(r, 1, e2)- Σ^Cr, w:, g)~(n-l)m(r, g}
3=1

Hence the order of g is equal to 1. Therefore

P(g(z»=B(e -ΐ)e*'

and

gt(z)=logB+az+L(g(z))+2pπi.

Hence the same reasoning does work.

Assume that n = l. Then

-wύ=B(e'-ϊ)eM< >, Aί(0)=0,

g*(z)=\ogB+2pπι+M(z)+L(g(z)).

Hence M(z) is a polynomial. Evidently we have

and

If N(z)=2sπi with an integer s, g(z+2τri) =,£(*) and hence L(g(z+2πi))=
L(g(z)). Therefore N(z)=Q9 s— 0. In this case M(z) should be a constant.
Hence M(z)=0 by Λ/(0)=0. Thus
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Let us put w=ez. Then

Now w=Q is an essential singularity of g0(\ogw) by its construction but a
regular point of the right side term. This is impossible. If N(z) = c(cφ2sπί),
g(2πi)=g(o). Hence L(g(2πί))-L(g(ΰ))=Q, Hence L(g(2πί))-L(g(ΰ))=0, that
is, c— 0. This is impossible. If N(z) is not a constant, the zeros of g(z+2πι)
—g(z) should be zeros of L(g(z+2πι))—L(g(z)). Hence

N(r, 1, eN(i*^N(r, 0, N(z)}.

This is evidently impossible.

b) / i s transcendental entire and g is a polynomial. Suppose that the
degree of g is at least two. Then by Renyi's theorem [9] the degree of g is
equal to two. Let {wn} be the set of zeros of f(w). Then the set of roots of
a(z— zoy+β=wn coincides with the set {2mπi}. Then {wn} lies on a ray and
the counting function N(r, {wn}) of {wn} is of half order. Let h(w) be the
canonical product formed by {wn}. Then f(w)= h(w}eJΛw\ Hence

h (a (z-zoγ+β)=A (e*- ΐ)e",

If γφQ, go(z}—γz is prime by Baker and Gross' theorem [1]. Hence L should
be linear, which is a contradiction. Thus γ=Q. Since gQ(z) is prime, L is linear.
This is impossible.

c) / is a polynomial and g is transcendental entire.
Suppose / has two different zeros wlf wz. Then by the second main

theorem g is of order 1, which contradicts that g is of infinite order. Since /
has no multiple zero, / should be linear.

d) / i s transcendental meromorphic (not entire) and g is transcendental
entire. Then

In this case /*(^)=0 has only finitely many roots. Hence
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Therefore

)=C(e'-ΐ)eN™, N(U)=Q

and

gQ(z)=logC+2pπι+N(z)-nM(z)+L(g(z)).

If m^2, g should be of order 1. Hence M(z)=az, N(z)=βz. Hence

go(z)=logC+2pπι+(a-nβ)Z+L(g(z».

We have a contradiction as in the case a). If w— 1,

gQ(z)=\ogC+2pπi+N(z)-nM(z)+L(g(z».

Hence M(z) and N(z) should be polynomials. By B(wQ—u
co we have two possibilities:

N(z)=Q N(z)=—z
i) ί ϋ) I

Thus we have

where e= — n or (w — 1). We then have a contradiction as in the case a).

e) F is rational (not a polynomial) and g is transcendental entire. Then
with a polynomial f*(w)

Since F(z) has no multiple zeros, f*(w)=B(w—w1) (w—wm). Therefore, if
τn^2, the order of g is equal to one. This is impossible, since F is of infinite
order. If w = l, f*(w)=B(w— wj, wλΦwQ. Hence

Since

m(r, AeM}~N(r, wl—w0> AeM}

=N(r, 1, 02)~ —
7Γ

is linear. Hence g is of order 1. This is a contradiction.
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f ) / i s rational (not a polynomial) and g is meromorphic.
Let Wι be a pole of f(w). Then g(z)—w1^Q. Let gλ(z) be l/(g(z)—wl}.

Then F(z)=R(g1(z)) with rational 7? and entire glf Now this case reduces to
the case e).

Thus we have the desired result.

4. Remarks. We can construct several other prime periodic entire functions
not depending on g0(z).

EXAMPLE 1. (ez— I)exρ(e2+e"2)

This function is of hyperorder 1. We only consider the case a), since the
others are easier than or similar to a). Let F(z) be f ( g ( z ) ) with transcendental
entire / and g. In this case f ( w ) has only finitely many zeros. Hence f(w)=
P(w}eL^w\ P(w)=A(w—w1}~ (w—wn)

q as in the case a). If n^2, then g is of
order 1 and more precisely

with 0<k<K<oo. Hence

P(g(z»=B(e -l)e*

and

Next we shall prove that ez+e~z— az is left-prime in entire sense, if
In order to prove this we make use of our earlier theorem in [8]. Let
us consider

ez+e~z— az— c

Eliminating ez and e~z we have

This has only two roots. Hence the above simultaneous equation has only
finitely many common roots. Further ez— e~z— a has infinitely many zeros.
Thus we have the left-primeness of e*+e~z— az in entire sense. (We do not
make use of the primeness.) Hence L is linear. Hence

Cg(z)+D+\og

Substituting this into P(g(z))=B(e*—ΐ)e«* we have

ane
n'+ - +fl0+ ••• +a-ne-n'=Be<«
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Here an= a.nφ§, α0 is a polynomial of degree n, whose leading coefficient does
not vanish. This is impossible. (This part can be proved more easily in the
following manner. Since P(w) is a polynomial, there are two 2mπi and 2qπι
such that

g(2mπί)=g(2qπι).

Then

L(g(2mπι))-L(g(2qπi))=2(q-m)πia

should be equal to zero. Hence α=0, which contradicts α^O. ) If a— 0, we
have

From this we can get a contradiction in several ways. By Renyi's theorem [9]
g(z) is periodic with period 2n0πι. Here nQ is an integer satisfying I^n0^n.
Hence g(z)=h(ez/UQ) with a one-valued regular function h(w) in Q<\w\<oo.
So putting w—ez/n° we have P(h(w))=B(wn°—l). Thus h(w) is regular in
|^| <oo. On the other hand L(h(w)}— wUQ+w~nQ+aQ. w=Q is a regular point of
L(h(w)) but not of the right side. This is impossible. If n = l,

-w,)=B(ez-T)eM^z\ M(0)=0.

Hence

e*+e-'=\og B+2pπι+M(z)+L(g (z) ) .

This gives M(z)=az. Therefore we can discuss this case quite similarly as in
the case n^2. By the above discussion

with non-zero constants A and B and an integer n is a prime periodic entire
function.

EXAMPLE 2. (ez— l)expO~*-fexρe*).

This function is of infinite hyperorder as Baker and Yang's example
(ez— l)exp(exp(V— z)) is. It is sufficient to prove that there is no entire
function g(z) such that

ΐ)e*™, M(0)=0,

e*+e-=D+M(z)+L(g(z)).
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Assume that there is such an entire function g. Then

Suppose that N(z) is not a constant. Evidently g(z0

Jr2πι)=g(z0) implies
L(g(z0+2πί))=L(g(z0». Therefore

N(r, 1, eN

This shows that

which is clearly impossible. Suppose next that N(z) = c. If cφ2sπi with an
integer s, then g(2πι)=g(ΰ) and hence c=L(^(2ττί))— L(^(0))=0. If c=2sπi,
g(z+2πι)=g(z) and so 7V(z)Ξc=0. Therefore M(z)=Q or M(z) is a non-constant
periodic entire function. If M(z)=0, then

Let us put w—ez. Then

At w— 0 the left side has a pole but the right side is regular. This is im-
possible. If M(z) is periodic with period 2πι, M(z)=h(ez) with a one-valued
regular function h(w) in 0<|ι^|<oo. Then putting w=ez we have

ew + — =D+h(w)+L(w0+B(w-l)eh^)

If h(w) is regular at w=Q, we have immediately a contradiction. If /ι(w ) has
a pole at w;=0, the right hand side has an essential singularity but the left
hand side has a pole. We have again a contradiction. If h(w) has an essential
singularity at w=Q, the left hand side has only a pole and the right side has
an essential singularity. This part can be proved by m(r, h(w})=o(m(r, L(wQ

-\-B(w—V)ew)}) as r — »0. Thus we have the desired result.
The following function seems to be prime :

5. We shall give another method to construct a prime periodic entire func-
tion, whose proof depends on a different principle.
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THEOREM 3. There is prime periodic entire function of arbitrariy rapid
growth.

Proof. Let us consider

Π1(W)= Π
n=l

and

tf.(Mθ= Π (l— ̂ Y", Σ T
n=l\ On/ τι=l \bn\

where E(x, p) is the Weierstrass primary factor

and vn, μn are prime numbers satisfying 3^μn, 3^ι>n, vn<vn+ι, μn<μn+ι,

μn^Vm.

Let us put

F(z)=Π1(e')ΠΛ(e'^.

We shall prove that F(x) is the desired function. Let F(z) be f ( g ( z ) } .

a) / and g are transcendental entire.

1) f(w) has infinitely many zeros {wn}. In this case g(z)=wk has simple
roots with the exception of at most two w}. Then the order of wk as a zero

of f(w) must be equal to one of vs or μt, say vs. If further g(z)=wk has any
multiple roots, then at these roots the order as zero of F(z) must be some
multiple of iv This is impossible. Hence g(z)=wk has no multiple root if it
has simple roots. Therefore the set of roots of g(z)= wk is a subset of {logα s

+2pπi}, if wk is a zero of f(w) of order v8. Hence the set of roots of g(z)=
wk lie on the straight line /, I log as-\-t2πι, — cχD<ί<oo. If k runs over the set
of possible indices, then s runs correspondingly over indices of us and μt.
Assume firstly that there are infinitely many different /,. /,— ̂  oo as s — > oo.
They are parallel. By Kobayashi's theorem [6] implies that

g(z)=a(eA +Bγ+β.

Since log as+2pjπi, y=0, ±1, ••• give the same value wk for g(z), A should be
a rational number p/q, q>0. It is enough to discuss the case p>Q. Then
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Let us put x=ez/q. Then

The left side has an essential singularity at x=Q but the right side is regular
at Λ:— 0. This is a contradiction. The case that there are only finitely many
different 18 can be treated as in the following case 2).

2) f ( w ) has finitely many zeros and at least two zeros. Then f(w)=
P(w)euw\ P(w)=ΛΠJ

n=:ί(w-wj)
k3. If g(z)=wj has multiple roots, then fe,=l

and g(z)=Wj has only multiple roots, which must be a subset of zeros of F(z).
Hence their orders should be larger than v^S or μ^3. Therefore there is at
most one w3 for which g(z)=w3 has multiple roots. Further there is at least
one Wj for which g(z)= w3 has multiple roots. If there are two w2 and ws for
which g(z)=wz, g(z)=wB have simple roots, then

(l-f-e)m(r, g)^N(r, w2, g)+N(r, ws, g)

^2m(r, ^2)~2—
7Γ

If g(z)=Wι has multiple roots, then for an arbitrary positive K

m(r, g)^N(r, W

This is a contradiction. Hence we only have one possibility: g(z)=w^ has
multiple roots and g(z)—w2 has simple roots. In this case for any K>0 and

m(r, g)^N(r, wl9 g)^KN(r, w2, g).

Hence

N(r, w*> g)=o(m(r, g } )

and so δ(w2, g)=l. Further N(r, wl9 g)^3N(r, wlf g). Hence Θ(wl9 ^)^2/3.
This is impossible, since g is entire.

3) f ( w ) has only one zero wlt In this case ki=l and

Hence
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Let us consider

L(g(z+2πι))-L(g(z))=-M(z+2πί)+M(z)=N(z)f

A (g (z+2πi)-g (z) )=F(z) eM^ (e~N^-Y) .

If N(z)^εc, then the zeros of g(z+2πί)—g(z) is a subset of zeros of L(g(z+
2πϊ)}-L(g(z}}. Hence

N(r, 0, N(z»^N(r, 1, eN^).

This is a contradiction. If N(z) = cφ2mπi, for any z0 satisfying F(z0)=0
L(g(z0+2πι))=L(g(zo)) and so c=0. This is impossible. If N(z)=2sπι, g(z+
2πΐ)=g(z] and hence L(g(z+2πι)}=L(g(z}}. Thus A^(z)^0. In this case g(z),
M(z) are periodic with period 2πι. We now put

with one-valued regular functions hi(w), hz(w) in 0<M<°°. Then

Evidnetly hz(w) is not regular at w— 0. Let us consider the growth of various
functions around w;— 0. By its construction

m(r, Πl(w}Π,}=

as r -> 0. Further

m(r, Λ a(w;)

m(r, Λ ι ( w ) )=(l+e) m(r, g^c^))

as r — > 0. This gives a contradiction.

b) / i s transcendental entire and g is a polynomial. Asymmetricity of the
distribution of zeros of F(z) gives a contradiction.

c) / is a polynomial and g is transcendental entire. This case is included
in a) 2).
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d) / i s transcendental meromorphic (not entire) and g is transcendental
entire. Then

f(w)=/*(w\n, gW-w,=Ae*«>, M(0)=0.
\W - WQ)

In this case g(z)—wl has simple zeros for all W^WQ. Hence /*(u;) should
have infinitely many zeros. Thus the same reasoning does work as in a), 1).

e) / i s rational (not a polynomial) and g is transcendental entire. As in
the case d) g(z)=w0+AeM^ and g(z)=w has simple roots for all W^WQ.
Hence we cannot cover all the zeros of F(z) by the roots of g(z)=w3.

f ) / is rational (not a polynomial) and g is transcendental meromorphic.
This case can be reduced to e).

6. Theorem 3 can be verified by the following example.

(**-l)exp (*»(*)+*-),

where en(z)=exρ en-ι(z), e^(z)—ez.

Proof. Let F(z) be f ( g ( z ) ) . Again it is sufficient to prove that there is
no entire function g(z) such that

g(z)-w1=A(e'-ΐ)eltw

f M(0)=0

en(z)+e-=D+M(z)+L(g(z».

As in the proof of Theorem 3, M(z) reduces to a periodic function with period
2πi. The case M(z)=0 gives a contradiction. Let us put M(z)=hλ(e*) and
g(z)=hz(e*) with one-valued regular functions h1(w}f h2(w} in 0<|w;|<oo.
Then

Evidently w= p is neither any regular point nor any pole of hι(w). Hence
w=Q is an essential singularity of h^w). In this case as r-»0

m(r, A!(u;))

for an arbitrary positive /Γ. This is a contradiction.
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We now list up two examples: (ez— l)exp(en(Π1(ez))Jre~z) and (ez— l)exρ
(en(z)+e2(—z)), where Π1(w) is the function in Theorem 1. We shall not give
any proof here. There are several examples of prime periodic entire functions
among functions of similar type. We shall not list them up here.

7. We now give an example of a prime simply periodic meromorphic
function of finite order. Let us consider the function

where

,l(«0=π(ι--Γn=A an>

oo / 7 1 1 \ μn

*r8(ι0)=π(ι--^)
n=l\ bn/

such that anφbk and ττιO~2), π20~2) are of finite order and vn, //n are prime
numbers satisfying 3^vn, 3^μn, vn<Vn+ι> μn<μn+ι> μn^Vk '•

We only give a sketch of proof. Let F(z) be f(g,(z)}* Since the case that
/ is transcendental meromorphic and g is transcendental entire is essential, we
consider only this case. By Edrei-Fuchs' theorem [43 we have firstly that / is
of zero order and g is of finite order. Hence f ( w ) is representable as a quotient

fiW/Mw)

of two entire functions f l f /2 of zero order. As in the proof of Theorem 3 g(z)
should be of the following form

Further it is easy to prove that a should be a real number q/p, p>0. q may
be negative or positive. It suffices to consider the case <?>0. In this case with
a polynomial M(z)

ffi (*')=/! teC*))*^0

π*(e-')=Mg(z»e*«>

Since g(z)=(Ae^qlp^ZJrB}'2' is periodic with period 2pπi, e j fco is periodic with
period 2pπi. Hence M(z) is equal to γz+δ, γ—u/p with integers u and p.
Let us put w=exp(z/p). Then

We can easily obtain a contradiction by considering the behavior around w .=Q. '
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