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§0. Introduction.

It is now well known that a submanifold of codimension 3 of an almost
Hermitian manifold admits an (f, g, u, v, w, 4, g, v)-structure induced from the
almost Hermitian structure of the ambient manifold, a submanifold of codimen-
sion 2 of an almost contact metric manifold admits a same kind of structure
induced from the almost contact metric structure of the ambient manifold and
a hypersurface of a manifold with (f, g, u, v, A)-structure admits a same kind
of structure induced from that of the ambient manifold.

In the present paper we show that under a certain condition a submanifold
of codimension 3 of an almost Hermitian manifold admits an almost contact
metric structure and study the properties of this almost contact metric
structure.

In §1, we define the (f, g, u, v, w, 4, g, v)-structure and in §2, we show
that this kind of structure gives an almost contact metric structure when
A4 p*+v?=1, and find condition under which the almost contact metric structure
is normal, contact or Sasakian.

In §3, we study the case in which the vector field p appeared in §2,
vanishes identically and show that in this case the submanifold admits also an
almost contact metric structure.

§4 is devoted to the study of submanifolds of codimension 3 of an almost
Hermitian or Kaehlerian manifold admitting an almost contact metric structure,
and §5 to the study of those of an even-dimensional Euclidean space.

The authors would like to express here their sincere gratitude to Professors
S. Ishihara and M. Okumura who gave them many valuable suggestions to im-
prove the paper. The second author wishes to express his gratitude to Nihon
Kokusai Kyoiku Kyokai who gave him the opportunity to study at Tokyo
Institute of Technology.

§1. (f, g, u, v, w, 4, u, v)-structures.

Let M?"*¢ be a (2n-+4)-dimensional almost Hermitian manifold covered by a
system of coordinate neighborhoods {U;&4} and denote by G¢z components of
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the Hermitian metric tensor and by Fz* those of the almost complex structure
tensor of M?***% where and in the sequel the indices A, B, C, --- run over the
range {1, 2, ---, 2n+4}. Then we have

() FoBFgt=—08,
1.2) Fc®Fg” Ggp=Ges,

04 being the Kronecker delta.

Let M?®**! be a (2n-+1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {V; %"} and immersed isometrically in
M?*+* by the immersion ¢ : M***' — M**** where and in the sequel the indices
h, 1, j, kb, -+ run over the range {1’,2/, -, 2n+1)’}. In the sequel we identify
(M) with M?*** itself and represent the immersion by

(L3 gA=£4(n").
We put
1.4 B*=0,¢4, 0,=0/dn"

and denote by C4 D* and E“ three mutually orthogonal unit normals to
M?**1, Then denoting by g;; the fundamental metric tensor of M*"*!, we have

1.5) g;:=B,°B,2G¢s,

since the immersion is isometric.

As to the transforms of B,4, C4, D4 and E4 by Fz* we have respectively
equations of the form

(1.6) Fy* BB=f," By4+u, CA+v, DA+w, E4,
(L7 Fg4 CB=—y" B,A —vDA 4 pE4,
19 Fyt DP=—v" ByA4yC4 —AE4,
(1.9 Fg* EP=—w" B,A— puCA+ DA,

where f,* is a tensor field of type (1, 1), u,, v;, w, 1-forms and 2, g, v functions
in M#*1, y* p* and w" being vector fields associated with u,, v; and w,

respectively.
Applying the operator F to both sides of (1.6), (1.7), (1.8) and (1.9), using
(1.1) and these equations and comparing tangent part and normal part of both

sides, we find
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(1. 10) ftfit=—0tu, u v v+ w, wh,
Iutf,‘z —wu;+pw,,
(1.11) v foil= vu,—Aiw,,
l w, foif=—pu+ v,
jft" ut= vt —pwh,
(1.12) [t vt=—put +Aw™,
lft"w‘— pul—vt,
Jutu‘—l—pz—v, u v =2y, u, w=2,
(1.13) vt =1—v"—2% v wi=py,

Also, from (1.2), (1.5) and (1.6), we find

(1. 14) FA A ges=g— U, U~ 0, 0;— W, W,.
Putting

(1.15) F3=1)" gn

and comparing (1. 10) with (1. 14), we see that

(1.16) fi==fa-

In general, we call an (f, g, u, v, w, 4, g, v)-structure a structure given by
a set of a tensor field f,* of type (1, 1), a Riemannian metric tensor gj;, three
1-forms u,, v;, w, and three functions 4, g, v in M®**! satisfying equations
(1. 10) ~ (1. 14) ([6]).

Considering a submanifold M?***! of codimension 2 of an almost contact
metric manifold M®***® or a hypersurface M?"*! of a manifold with (f, g, u, v,
A)-structure ([117), we also obtain an (f, g, u, v, w, 4, g, v)-structure as the
structure induced from that of the ambient manifold ([6]).

An (f, g, u, v, w, 4, p, v)-structure is said to be normal if the tensor field
S;i* of type (1, 2) defined by

(1.17) S;i*=N;*+@,u,—0;u,) u"+©0,v,—0, v;)v"
4@, w,—0; w;) w"
vanishes identically, where N;;* is the Nijenhuis tensor formed with f,*, that is,

(1.18) N =f, 0. f "= 1" 8 f,*— (0, f' = 0. F,) fe.
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§2. Vector field p and almost contact metric structure (7, g, p).

From (1.12), we find

@1 f pt=0,
where
2.2 Pr=2ut+ pvr4ywh.

From (2.2) we have
e pP=2Au, u'+pu, v +vu, w',

from which, using (1.13), we find u, p’=2. Similarly we can find
2.3) U, pP=24, v, p'=p, w,pt=w.
Thus we have
2.4) A+ pPvi=c?,
where p, pt=c? (c=0).

We easily see from (1.13) that Oélz—l—yz—l—vzé—;—. But we can prove here
that
2.5) 0=+ +v*=1

In fact, if c¢=1, then A*—c2(1—p?—v*)=—(p’+1%)(1—c*)=0. Consequently con-

sidering the square of the length of the vector c*u,—A+ vV 22—c*(1—p*—?)) p4,
we have

Lt u— QA+ V22— (1—p2—2?) ) p, X
Lt ul—A+ V22— (1—pu2—v?) ) p*1=0,

where we have used (1.13) and (2.3). Thus we have

u=(h VI =) ps.

Transvecting the last equality with p* and using (2.3), we have c(?=1.
Thus (2.5) is proved.

Suppose that the set (f, g, ») of the tensor field of type (1, 1), the Rieman-
nian metric tensor g;; and the vector field p* given by (2.2) defines an almost
contact metric structure, that is, in addition to (2. 1), the set (f, g, p) satisfies

(2.6) At ft=—0}+pi P,
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@7 i ges=8 =D, bis
2.8 pep'=1,
where p;=g; p'. Then we find from (2.4) and (2.8)
2.9 A+p+vP=1

Conversely suppose that the functions 4, g, v satisfy (2.9). Then we have
(2.8) and consequently (1.13) reduces to

u U=, u =y, u w=2,

(2. 10) vevt=p® v wi=py,
W wt—_—Vz.
Using (2.3) and (2.10) and computing the squares of lengths of vectors
u;—Ap;, vi—pp; and w;—vp,, we find

2.11) ui=Aap,, vi=ppi, Wi=vp;.

Substituting (2. 11) into (1. 10) and using (2.9), we find
fibfit=—0k+pi p™

Also substituting (2.11) into (1. 14) and using (2.9), we have
f;tfzsgtszgji_p; bi.

Thus we see that the set (f, g, p), where p is given by (2.2), defines an
almost contact metric structure. Hence we have

THEOREM 2.1. Let M*"*! be a differentiable manifold with an (f, g, u, v, w,
A, p, v)-structure. In order for the set (f, g, p), p being given by (2.2), to define
an almost contact metric structure, it is necessary and sufficient that A+ p*+v°=1.

Suppose that the set (f, g, p) defines an almost contact metric structure.
Then we have (2. 11) and consequently

@, u;—0; u;) u+©0,v,—0;v;) v 40, w;—0; w;) w"
=(22+,U2+1)2) (a; pi_ai Pj) ph
F2(p:0,2— ;05 2) p "+ p(ps0, pp—p; 05 pr) p*+v (p:0,v—p;0:v) p*,

from which, using 2*4-p*+v*=1 and 29, 1+ pd, p+vo;v=0,
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2.12) N;" 40, u,—0; uj) u+(©0,v;—0;v,)v*+(0, w,—0; w;) wh
=N;"+(@, pi—0: p;) ™
Thus we have

THEOREM 2.2. Let M®**! be a differentiable manifold with an (f, g, u, v, w,
A, p, v)-structure and suppose that the set (f, g, p), p being given by (2.2), defines
an almost contact metric structure. In order for the almost contact metric struc-
ture (f, g, p) to be normal, it is necessary and sufficient that the (f, g, u, v, w, 4,
o, v)-structure is normal.

We now suppose that the set (f, g, p) defines an almost contact metric
structure and the structure is contact, that is,

2.13) 2f1i=0,p1—0: b,

Then from (2.11) and (2. 13), we have
22fi=0,u,—0; u,—(p:0,A—p;0; 2),
20fi=0,v;—0;v,—(p: 0, u— p;0; 1),
2vf;;=0,w,—0; w,—(p;0,v—p,;0;v),

from which, using 2*+4p®+v?=1 and 20,2+ 0, p+vd,v=0, we find

2.14) 2f;=200,u,—0; u;)+p0,v;—0;v,)+v(@,w,—0; wy).

Conversely suppose that the (f, g, u, v, w, 4, y, v)-structure satisfies (2. 14)
and the set (f, g, p), p being given by (2.2), defines an almost contact metric

structure. Then we have (2.9) and (2.11). Consequently substitution of (2.11)
into (2. 14) yields

2f =R+ p*+v*) (0, p—0: p;)
+2(pi0,2— p;0: )+ p(p.0, p— ;0 ) Fv (p:0,v—p;0:v),
from which, using A+ p?+v?=1 and 20,2+ pd, p+vd,v=0,
2f71=0,p,—0: b,
Thus we have

THEOREM 2.3. Let M**! be a differentiable manifold with an (f, g, u, v, w,
A, p, v)-structure and suppose that the set (f, g, p), p being gwen by (2.2), defines
an almost contact metric structure. In order for the almost contact metric struc-
ture (f, g, p) to be contact, it 1s necessary and sufficient that the (f, g, u, v, w, A,
o, v)-structure satisfies (2. 14).
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From Theorems 2.2 and 2.3, we have

THEOREM 2.4. Let M*** be a differentiable manifold with an (f, g, 4, v, w,
A, #, v)-structure and suppose that the set (f, g, p), p being given by (2.2), defines
an almost contact metric structure. In order for the almost contact metric struc-
ture to be Sasakian, it is necessary and sufficient that the (f, g, u, v, w, 4, t, v)-
structure is normal and satisfies (2. 14).

§3. The case in which p vanishes identically.

Suppose that the vector field p* defined by (2.2) vanishes identically. Then
from Au+pv*+vw"=0, we have

3D A=p=y=0.

Consequently equations (1.11), (1.12) and (1.13) reduce respectively to

3.2 u f.!=0, v f.'=0, w.f,'=0,
(3' 3) fbhut:‘oy fthvt_—_oy fth wt:O’
and

u,ut=1, u,v*=0, u,w*=0,
3.4 vovt=1, v, w?=0,
w,wt=1.

Thus the (f, g, u, v, w, 4, g, v)-structure reduces to the so-called framed
f-structure ([4]).

In this case, we put
3.5) et =fl+v, w—w,v"

Then we can easily check that

3.6) o ot =—08ttu, ut,
3.7 u, 0:'=0, ¢, u*=0,
(3 8) SDJz §0isgts:gji_u,1 Uy

Thus we have

THEOREM 3.1. Let M*"*! be a differentiable manifold with an (f, g, u, v, w,
A, p, v)-structure and suppose that the wvector field p" defined by (2.2) vanishes
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identically. Then the manifold M?*"*' admits an almost contact metric structure
(¢, g, w), p;" being given by (3.5).

The following theorem is proved in [3].

THEOREM 3.2. Suppose that the assumptions in Theorem 3.1 hold. If the
(f, & u, v, w, A, g, v)-structure 1s normal, then the almost contact metric structure
(¢, g, u) is also normal.

§4. Submanifolds of codimension 3 of an almost Hermitian manifold
admitting an almost contact metric structure.

Suppose that the set (f, g, p) of f,*, g; and p*=2Au"+pv*+yw" defines an
almost contact metric structure, then we have (2. 11) and consequently from (1. 6)

@0 Fg* B.B=f* B,*+ p; N4,
where
“.2) NA=2C*+ uD44-vE4

is an intrinsically defined unit normal to M2**! because C4, D4 and E“ are
mutually orthogonal unit normals to M*"*! and A*+p*4v*=1.

When a submanifold of an almost Hermitian manifold satisfies equation of
the form (4.1), N4 being a unit normal to the submanifold, we say that the
submanifold is semi-invariant with respect to N4 ([1], [9]). We call N4 the
distinguished normal to the semi-invariant submanifold.

We also have, from (1.7), (1.8) and (L.9),

“.3) Fgd NB=—p" B,4,

which shows that the transform of the distinguished normal N4 by the almost
complex structure tensor of the ambient manifold is tangent to M?®**,

Conversely suppose that a submanifold M?**** of codimension 3 of an almost
Hermitian manifold M?**** is semi-invariant with respect to a unit normal N4
whose transform by F is tangent to M?"*!, Then we have

(4 4) FBABtBZfthnA'I‘QiNA:
.5) FsANB=—q" B,*

for a vector field ¢ of M?®**'. Applying F to (4.4) and using (4.4) and (4.5),
we find

—BA=f!(f" By*+q, N*)—q:q" Bp*,
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from which
L ft==0ttqiq", ¢ fS=0.
Applying F to (4.5) and using (4.4), we find
—N4=—¢"(f" Bx*+q. N¥),
from which
[*qg'=0, q.q'=1.
We also have from (4.4)
I ge=84i—4i s

Thus we see that the set (f, g, ¢) defines an almost contact metric structure.
Now comparing (4.4) with (1.6), we find

4. 6) qg; NA=u,C*+v, D44 w, E4,

from which, transvecting with ¢,

%)) NA=qCA+ BD4+ 1 EX,
where
4.9 a=u,q", B=v.q", r=w.q".

Thus we have
.9 @+ B4 =1,

N4 being a unit normal.
Substituting (4.7) into (4.6), we find

(wi—ag) C*+wi—pg) D*+(wi—rq:) E4=0,
from which
4. 10) ui=aq;, vVi=Bq¢, Wi=7q;,
or, using (4.9)
(4.11) gi=au+puit-rw,.

Transvecting (4.6) with »* and using (1. 13) and (4. 8), we find
aN4=(1—p?—v?) CA4-2uD4+Av E4.
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Comparing this equation with (4.7), we obtain

4.12) a?=1—pP—V?, af=Ay, ar=A.

Similarly we have

(.13 B=1—v =2, p'=1-2—p, Br=pw.

Thus

a’+ Bi+ri=3—2(1+pt+r?),
from which, using (4.9),
4.14) A4 pi4i=1
Consequently equations (4.12) and (4. 13) give

a’=x, Br=pt, ri=

Br=m, ra=vi, af=iu,

which show that

a=+2 B=+p, 7=+

Thus (2.2) and (4. 11) give ¢;==+p,. Thus we have

THEOREM 4. 1. In order for a submanifold M?***' of codimension 3 of an
almost Hermitian manifold M?*"** with structure tensor F and G to admit an
almost contact metric structure (f, g, q), f and g being the tensor field of type
(1, 1) and the Riemannian metric tensor induced from F and G of M?*"** res-
pectively, it is necessary and sufficient that the submanifold M?*"*! is semi-invariant
with respect to a unit normal vector field whose transform by F is tangent to the
submanifold. Moreover, in this case the almost contact metric structure (f, g, q)
coincides with (f, g, p) stated in Theorem 2. 1.

Now suppose that the condition A*4p*+v*=1 in Theorem 2.1 is satisfied
and take N4=21C*+pD*+vE* as C% Then we have 1=1, ¢=0, y=0 and con-
sequently u"=p", v,=0, w;=0 because of (1.13) and (2.2). Thus (1.6)~(L.9)
become respectively

@. 15 Fg* BP=f" By*+ p;C4,
(4. 16) Fg* CP=—p" B»*,
@.17) FzADB=—F4,

(4.18) Fpt EB=DA,
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Thus we have

THEOREM 4.2. Let M?*"*' be a submanifold of codimension 3 of an almost
Hermitian manifold M?"** with structure tensor F and G and suppose that M*"*!
admaits an almost contact metric structure (f, g, p), f and g being tensors induced
from F and G respectively. Then there exists, in the normal bundle, a holomorphic
plane which is invariant by F.

Now denoting by V, the operator of van der Waerden-Bortolotti covariant
differentiation with respect to g;;, we have equations of Gauss for M?***! of
M2n+4
(4. 19) V] BtA:hjl CA‘{'kji DA‘l'lji EA,

where hj;, kj;, l; are the second fundamental tensors with respect to normals
C4, D4, E4 respectively. The mean curvature vector is then given by

(4. 20) gfiv,BtA:Z—nlﬁ(h/CA+ngA+ngA),

2n+1
where
=8 hji, k'=g"ky, L'=g""l;,
g’t being the contravariant components of the metric tensor.
The equations of Weingarten are given by

(@.21) V;CA=—h," B, +1,D4+m, E4,
(4.22) V,DA=—F," B,A—1,CA +n, E4,
(4. 13) V,EA=—1"B,A—m;Ci—n, D4,

where h,*=h;, g*, kr=k;g'*, I*=l,g", 1,, m, and n, being the third
fundamental tensors.

In the sequel, we denote the normal components of V;C by V;C. The
normal vector field C is said to be parallel in the normal bundle if we have
V; C=0, that is, [, and m, vanish identically.

We now assume that M?2"** is Kaehlerian and differentiate (4. 15) covariantly

along M***!, We then have
Fp*(h,; C®+kji DP+1; EB)=(N, f,*) By*+f.t (hj, CA+k;, DA+ 1,, E4)
+(V, p.) C*+pi(—h,* Bp*+1,D*4-m; E4),
from which, using (4.16) ~ (4. 18),
(4.24) V,fit=—hu p"+ R, by,
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(4.25) V,pi=—hu fi,
(4. 26) kji=—1i fi!—m; ps,
4.27) L=k fi'+1; pae

The last two relations give

(4.28) k. pt=—m,,
(4.29) Ly p'=1,,
(4. 30) kit=—m,p",
(4.31) L=, pt.

Transvecting (4.27) with f,’ and using (4.26), we find
—kis—m, pr=Rks ' [1*+(fat 1) ps,
from which, taking the skew-symmetric part with respect to : and %,
—mprtmy pe=pi (L [1)—pa (L D),
or, transvecting with p* and using (4. 30)
(4. 32) L ft=kt pitm,.
If we transvect (4.32) with /* and make use of (4.31), then we have
(4.33) k1S4 m, 1f=0.
Transvecting (4.26) with [,* and substituting (4.27), we find
kilt=—ys f+m, p) Rar fT+1k DY),
or, using (4.28) and (4.29) and remembering (2. 6)~ (2. 8),
4.34) kil k)t =—, m+-l,my).
If we transvect (4.27) with [,* and substitute (4.26), we have
L let=kj (Rt my pO)+1;(Lee DY),
from which, using (4.28) and (4. 29),

(4. 35) L L=k bt=1,li—m, m,.
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Now suppose that the (f, g, u, v, w, 4, g, v)-structure and consequently
(f, g, p)-structure is normal, that is,

SN S =EN S =V fE =N O e+ (N, 0= py) p*=0.
Substituting (4.24) and (4.25) into this equation, we find
(it he"=h, fM) bt (fif he* =Rt ") py=0
and consequently
=t =piq"

for a certain vector field ¢". From these two equations, we have ¢"=0, and
consequently

(4. 36) it h"=h,t fi"

Thus we have

THEOREM 4.3. Suppose that the (f, g, u, v, w, 4, g, v)-structure nduced on a
submanifold M*®**** of codimension 3 of a Kaehlerian manifold M*®*"** satisfies
A+ +v*=1 and consequently (f, g, p) defines an almost contact metric structure.
Then in order for these structures to be normal, it is necessary and sufficient that
the second fundamental tensor h with respect to the distinguished normal and f
commute.

Now suppose that the (f, g, u, v, w, 4, g, v)-structure satisfies A*+p*+41*=1
and the almost contact metri: structure (f, g, p) is contact, that is,

V0=V p=2f .
Then we substitute (4.25) into this equation and get

4.37) ht ft R =210

From (4.36) and (4.37) we have
(4.38) k=12

from which, transvecting with p*, we get (h,'p?)f,*=0, which shows that
h.! pr=apt, where a=hy; p’ p*.
Transvecting (4.38) with f,*, we find
h*(=0t+p, p*)=—0k+p. p*,
or equivalently

(4.39) hji=g,+(a—1)p, p;.
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In this case we say that the submanifold M?"*! is p-umbilical with respect
to the distinguished normal C4. The converse being evident, we have

THEOREM 4.4. Suppose that the (f, g, u, v, w, A, g, v)-structure induced on
the submanifold M*"** of codimension 3 of a Kaehlerian manifold M*"** satisfies
A+ 2 +v*=1 and consequently (f, g, p) defines an almost contact metric structure.
In order for the almost contact metric structure (f, g, p) to be Sasakian, it 1s
necessary and sufficient that M®***' is p-umbilical with respect to the distinguished
normal C4.

§5. Submanifolds of codimension 3 of an even-dimensional Euclidean
space admitting an almost contact metric structure.

In this section we assume that the (f, g, u, v, w, 4, g, v)-structure induced
on a submanifold M?2?**! of codimension 3 of an even-dimensional Euclidean

space E®"** satisfies A*4p®+v®=1 and consequently (f, g, p) defines an almost
contact metric structure.

Then equations of Gauss are given by
(5. 1) Kkjih:/’lkh hﬁ—h]h hki+kkhkji-k]hkki+lkhlji_ljh lkz,

where K,;* is the Riemann-Christoffel curvature tensor of M?2**!, those of
Codazzi by

(5 2) Vk /lj,;—vJ hk,——lkkﬂ—i—ljkm—mklﬁ—l— mjlki:O,
(5. 3) Vk kji—vjkki—l_lk hﬂ_lj hki_nk lj,--l-njlki:O,
(5- 4) Ve lji_vjlkz+ Mmpe hji_m; hki“l‘nkkji“njkki:(),

and those of Ricci by

(5.5) Vkl,—VJlk—l—hk‘kjt—h,’kk,—}-mkn,—m]nkzo,
(5. 6) Vk mJ—V]mk—I—hk‘ljt-—hj‘lk;—I—nkl,—n,lk———O,
(5.7) VknJ—V,nk—l-kk‘lj;—k]tlkrl—lkm,—l;meO.

We first prove

LEMMA 5.1. Suppose that M>***' is a submanifold of codimension 3 with
(f, g, u, v, w, A, p, v)-structure of an even-dimensional FEuclidean space E*"**
satisfying A*+p*+v?’=1. Then in order for the submanifold M®"** to be um-
bilical with respect to the distinguished normal, that is, choosing C* as the dis-
tinguished normal,

(5.8) hji=pgj, k=0, [;’=0,
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it is necessary and sufficient that the distinguished normal C# is concurrent.
In this case the submanifold M?®***' 1s pseudo-umbilical and the mean curvature
1s constant.

Proof. Suppose that (5.8) is satisfied. Then (4.30)~ (4.33) imply that
5.9 L pt=m,p'=l, m'=0
and (4. 25) becomes V, p;=pf;;, which shows that
VeV, 0=V p) fiit 0V e f e
Substituting (4.24) into this and taking account of (5.8), we obtain

VeV, 0=V o) f7+ 02 (Gra D= 81 Do)

from which, using the Ricci identity,

— K" 0= 0) f5i—= (N, 0) e+ 0*(Gra Dy— &1 D) -

From this, using the Bianchi identity, we find
(5.10) (Ve p)fji+(vj P)fzk+(vz P)ka:O'

Transvecting (5. 10) with p*f7%, we get (V,p) p*=0. Moreover, transvection
of (5.10) with f7% yields

2nV e p+2(V, 0) (— 0%+ pr p?)=0.
Therefore we see pthat is constant. Thus (5.2) reduces to

lkkﬁ—ljkkl—i-mklﬁ— m]lki:().

If we transvect p* to this and make use of (4.28), (4.29) and (5.9), then we
have [,m,—m,[;=0. Thus it follows that [;=m;=0, that is, V;C4=0, because
of I, m'=0. From this fact and (4.21) we verify that V,C*=pB A

Conversely if the distinguished normal C4 to M3?"*! is concurrent, that is,
V,C4=tB,* for some function 7, then we have from (4.21),

hji:‘l'gji, lj=mj=0,
which show that
ktt:[ttzo

because of (4.30) and (4.31). Consequently the distinguished normal C# is in
the direction of the mean curvature vector H4 From h;=rg,;, we see that
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p:ﬂ::?nl—l—_lh’t' Thus M?***! is pseudo-umbilical. This completes the proof of

the lemma.
We now assume that the assumptions of Lemma 5.1 hold. Then (4.24) and
(4. 25) become

V,fi"=p(—gup"+0} b)),
Y, p:=pf.

Thus the set (f, g, p) defines a Sasakian structure if p+0. We may consider
p=1 because p is a constant.

On the other hand, we see from (4.15) and (4.16) that the direct sum of
the tangent space of M?"*! and C“4 is invariant. Then the ambient space being
Euclidean, M2*** is an intersection of a complex cone with generator C4 and a
(2n+3)-dimensional sphere. Thus we have

THEOREM 5.2. Let M***' be a pseudo-umbilical submanifold of an even-dimen
swonal Euclidean space E®**** with (f, g u, v, w, A, y, v)-structure satisfying
24 prv*=1. Then M*®**' 1s an intersection of a complex cone with generator
C* and a sphere.

We suppose that the (f, g, u, v, w, 4, g, v)-structure induced on a submani-
fold M?*** of codimension 3 of E?"** defines a normal almost contact metric
structure (f, g, p) and the distinguished normal C# is parallel in the normal
bundle of M?2"*1, Then (4.36) holds, that is,

(5.11) hjsfret+ R f,'=0.
Transvecting (5. 11) with f,*, we have
hje (=0 P )+ hso £, [2°=0,
from which, taking the skew-symmetric part,
(hje p°) pi—(ha p°) p;=0,
which shows that
(.12) hy p'=ap,,

where a=h, p* p°.
Differentiating (5. 12) covariantly and substituting (4.25), we find

(Nehy) pt4h,f (—hes f)=Nwa) p,—ah. 1},
from which, taking the skew-symmetric part and using (5. 11)

(Vihjs—=Vha) pP 420, b [P =N a) p;—V;a) pet2ahy fi.
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On the other hand, we have from the fact that V:C4=0 and (5.2)
(5.13) Vi hji—V, h i =0.
Thus we have

(6.14) 2h, hes [i'=(Vsa) p;—(V;a) pet2ah;e fi'.

Transvecting (5. 14) with p? and using (5. 12), we get
(5.15) Via=Ap,,
for a certain scalar A. Thus (5. 14) gives

h;t htsfkszahjtfkt-

If we transvect this with f,* and use (5. 12), then we get

(5. 16) h.jg /n‘=ahﬁ.

Differentiating (5.15) covariantly and substituting (4.25), we find
ViVia=N A) pi—Ahr f)5
from which, using (5. 11),
(Ve ) p,—(V, A) prt2Ah; f4'=0,
which implies that
Ve A=(p'V, A) ps.

The last two equations mean that

Ah.j;fkt:O.

Transvecting f,* to this and using (5.12), we have
(.17 A(hji—ap, p,)=0.

On the other hand, we can prove, using (5.13) and (5.16) with a=const.
that ([5])
(5.18) V4 hj=0.

We now assume that M?*"*! is complete and locally irreducible. Then we
have from (5. 18)
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(5. 19) h;;=Bgj;

for a certain scalar B. From this and (5. 16) we see that
(5.20) B*=aB.

But if hj;=ap,p, or h;;=0, then we see from (4.25) that p* is a parallel
vector field and consequently
Kkjih pIZO,
which contradicts the fact that M?*"**! is locally irreducible.

Thus we see from (5.15) and (5.17) that a is a constant and hence from
(5.19) and (5.20) that a=B=0. Thus (5.19) becomes

hﬂ-:ag,i.

According to Theorem 5.2, we have

THEOREM 5.3. Let M?*"*!' be a complete and locally irreducible submanifold
of codimension 3 of a Euclidean space E*"** such that the distinguished normal
C4 1s parallel in the normal bundle and the (f, g, u, v, w, A, p, v)-structure defines
a normal almost contact metric structure (f, g, p), p being gwen by (2.2). Then
we have the same conclusion as that of Theorem 5. 2.

We now prove

LEMMA 5.4. Let M?***' be a submanifold of codimension 3 with (f, g, u, v,
w, A, p, v)-structure of a Euclidean space E*®*"** satisfying A*+p’-+v:=1. If the
third fundamental tensors satisfy

(5.21) V,n,—V,n;=2f,
for a certawn scalar B and l;=m;=0, then we have 8=0.
Proof. Since [;=m;=0, we have, from (4.34), (5.7) and (5.21),
5. 22) Bf itk l,'=0.
Transvecting (5.22) with f,*, we find

,B(g]k_pj pk)—l_k;t litfklzoy
or, using (4.27) with [,=0,
(5.23) k)tky=p(gs—b,01),
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from which
(5. 24) kji k’i=2n‘8.

We prove first that B is a constant. In fact, if we differentiate (5.21)
covariantly and substitute (4.24), then we have

VeV, n,~Ve Vo, =2V, B) f1 2B (—hy, pit-hr D))

Using the Ricci identity, we have

— (K" + K"+ Kin,") na=2L( B) f1s+(, B) fir+ (V. B) fr,],
which shows that
Ve B) [N, B) firt+ (N B) fr;=0.

Thus as in the proof of Lemma 5.1, we can easily see that 8 isTa constant.

Differentiating (5.23) covariantly, we have
(. 25) (Ve k)Y kit ke, (Ve ki) =—BL(V p7) pit0;(Ve 9],
from which, taking the skew-symmetric part with respect to & and j,
(Vikj—Vske) Rk, (Vi) — Ryt (Vsksy)
=—BL(Ve ,=, 08 i+ (Ve ) p,—(V; p3) P41,
from which, substituting (4.25) and (5.3) with [;=0,
melj—n, Le) B4R (Vo kg ng =1 L) — ke (Vo ke, le— 10 L)

=BLharf—=hiuf6®) pit (R .5) p,—(hse [21) Dads

or, using (4.34) with [;=m;=0,
k;t (V:k re)— k" (Y, k]t)—znt k;t i
=B hs [t =hs fo®) pit-(hue [.5) Dy~ C(hs [o5) Pl
Interchanging the indices %k and i, we have
(5. 26) k)t (Vb)) =Rt (Nukj)—2n4 k)t Ly

=BL i [t —=h .5 pat(ha o) D~ (hje f") pid.
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Adding (5.25) and (5.26) and using (4.25), we find

(5.27) 2k N by —2n, k)t L,

=BL(hieff—h i) et (e fif—hje f28) pit(hae fot+hee f21) P,].

Transvecting (5.3) with g** and using the fact that [;=0 and #k,'=[,'=0,

we find

(5. 28) Vikj=l;n'

Thus, by transvecting (5.27) with g**, we get

(5. 29) Bhs p*f,"=0.

If we transvect (5.27) with p’ and make use of (5.29), we obtain

(5. 30) BLhufrt+he f,¥1=0.
Hence, (5.27) becomes
(5.31) BV ky—ne k) =Bl (R f,5) prt(hee f,7) pal.

On the other hand, differentiating (4.28) with m;=0 covariantly and sub-
stituting (4. 25), we find

(Ve kje) p'=Fk," has 12°,
or, using (4.27) with [;=0,
(5.32) (Vikj) pt=—1 ha'.
Transvecting (5.31) with p* and taking account of (4.29) with [;=0, (5.29)
and (5.32), we find
—k) s h* =Bl ]
from which, using (4.34) with [;=0, Bh,,f,’=0, which shows that
(5.33) B(hji—ap, p)=0.
Thus (5. 31) reduces to
(5.34) k)t (Vi kyy—mny 13)=0.

Transvecting (5.34) with £, and using (5. 23), we find
BOh—Dn ) (Ve ksy—n4 1;)=0,
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from which, using (5.32), (5.33) and the fact that [;; p*=0,
(5. 35) ‘8 (vk kﬂ——nk lji)=0.

From (4.35) with [;=m ;=0 and (5.23), we have

(5. 36) Lilh!=B(gsi— b, 0.,
from which
(5. 37) lj,; ljizznﬂ.

Using the same method as that used to derive (5.35) from (5.23), we can
derive from (5.36) the following:

(5.38) BNy lj4n4 kj)=0.

If B is not zero, then (5. 33), (5.35) and (5.38) reduce respectively to
(5.39) hji=ap; ps,

(5.40) Vekji=nglj;

and

(5.41) Vilji=—ng k.

Differentiating (5.40) covariantly and substituting (5.41), we find
VaVikj=nne)lji—ngnnk;,
from which, using the Ricci identity and taking account of (5.21),
Knwst et Knw kp=—2Bfnx Ly,
or, using (5.1) and (5. 39),
(Rrtlp,— ke Ryt 1nt Ly — 1" ln) beo
-kt lri—kit lri 1t =1 In) e =—28nx Ljs.
Transvecting this with f** and using (4.26) with m,;=0 and (4.27) with
1;=0, we obtain
4k 1 byt kst L k) =—4nply;,
from which, using (5.23) and the fact that /;, p*=0,
(n+2)1;=0
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since S is assumed to be non-zero. This contradicts (5.37). Thus B must be
zero and this completes the proof of the lemma.

Under the same assumptions as those stated in Lemma 5.4, we have, from
(5.24) and (5.37),

(5. 42) kji=1;=0,
and (5. 21) reduces to

(5. 43) V] ni—Vl nj=0.

Thus we have

THEOREM 5.5. Let M***! be a submanifold of codimension 3 of a Euclidean
space E*™** with (f, g, u, v, w, 4, p, v)-structure satisfying 2*+p*+v:*=1. If the
distinguished normal C# is parallel in the normal bundle and the third funda-
mental tensor n, satisfies N,n,—V,n;=28f;; for a certain function B, then M?>"*!
is a hypersurface of E?"*2.

From (4.34), (4.35), (5.7) and Theorem 5.5 we have immediately

COROLLARY 5.5. Let M?"*! pe a submanifold of codimension 3 of a Eucli-
dean space E*™** with (f, g, u, v, w, A, g, v)-structure satisfying 2>+ p*+v*=1. If
the distinguished normal C# 1s parallel in the normal bundle and the connection
induced wn the normal bundle of M**** in E®**** 1s trunal, then M?"*! 1s a hyper-
surface of E?"*Z,

BIBLIOGRAPHY

[1] D. E. BLaIr, G. D. LubDEN AND K. YANO, Semi-invariant immersions, Kodal
Math. Sem. Rep., 27 (1976), 313-319.

[2] D.E.Brair, G. D. LupbpEN aND M. OKuMuRA, Hypersurfaces of an even-
dimensional sphere satisfying a certain commutative condition, J. of Math.
Soc. of Japan, 25 (1973), 202-210.

[3] S.I1. GoLDBERG AND K. YanNo, On normal globally framed f-manifolds.
Téhoku Math. J., 22 (1970), 362-370.

[4] S.I. GoLDBERG AND K. YaNo, Globally framed f-manifolds, Illinois J. of
Math., 15 (1971), 456-474.

[5] S. IsHiHARA aAND U-HanG K1, Complete Riemannian manifolds with (f, g, u, v,
A)-structure. J. of Diff. Geom., 8 (1973), 541-554.

[6] U-Hanc K1, J. S. Pax anND H. B. Sun, On (f,g, %, ac)-structure, Kodai
Math. Sem. Rep., 26 (1975), 160-175.

[7] U-Hanc K1 anp H. B. SuH, On hypersurfaces with normal (f,g, 4y, ac)-
structure in an even-dimensional sphere. Kodai Math. Sem. Rep., 26 (1975),
424-437.

[8] U-Hang Kir anp J. S. Pak, Intrinsic problems on S*(1/4/2)xS™1(1/4/72),
Kyungpook Math. J., 13 (1973), 287-298.



(f, g, u, v, w, A, ¢, v)-STRUCTURES 307

[9] Y. TasHiRO, On relations between the theory of almost complex spaces and
that of almost contact spaces- mainly on semi-invariant subspaces of almost
complex spaces (in Japanese), Sugaku 16 (1964-1965), 54-61.

[10] K. YaNo, On a structure defined by a tensor field f of type (1,1) satisfying
fi+f=0, Tensor, N.S., 14 (1963), 99-109.

[11] K. YaNo anD M. OKuMmuURA, On (f,g,u,v, d)-structures, Kodai Math. Sem.
Rep., 22 (1970), 401-423.

ToKYO INSTITUTE OF TECHNOLOGY
AND
KYUNGPOOK UNIVERSITY





