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§ 0. Introduction.

It is now well known that a submanifold of codimension 3 of an almost
Hermitian manifold admits an (/, g, u, v, w, λ, μ, p)-structure induced from the
almost Hermitian structure of the ambient manifold, a submanifold of codimen-
sion 2 of an almost contact metric manifold admits a same kind of structure
induced from the almost contact metric structure of the ambient manifold and
a hypersurface of a manifold with (/, g, u, v, ^-structure admits a same kind
of structure induced from that of the ambient manifold.

In the present paper we show that under a certain condition a submanifold
of codimension 3 of an almost Hermitian manifold admits an almost contact
metric structure and study the properties of this almost contact metric
structure.

In § 1, we define the (/, g, u, v, w, λ, μ, v)-structure and in § 2, we show
that this kind of structure gives an almost contact metric structure when
λ2+μ2jrv2—l, and find condition under which the almost contact metric structure
is normal, contact or Sasakian.

In §3, we study the case in which the vector field p appeared in §2,
vanishes identically and show that in this case the submanifold admits also an
almost contact metric structure.

§4 is devoted to the study of submanifolds of codimension 3 of an almost
Hermitian or Kaehlerian manifold admitting an almost contact metric structure,
and §5 to the study of those of an even-dimensional Euclidean space.

The authors would like to express here their sincere gratitude to Professors
S. Ishihara and M. Okumura who gave them many valuable suggestions to im-
prove the paper. The second author wishes to express his gratitude to Nihon
Kokusai Kyoiku Kyokai who gave him the opportunity to study at Tokyo
Institute of Technology.

§ 1. (/, g, u, v, w, λ, μ, v)-structures.

Let M2n+4 be a (2n+4)-dimensional almost Hermitian manifold covered by a
system of coordinate neighborhoods {U;ξA} and denote by GCB components of
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the Hermitian metric tensor and by FB

A those of the almost complex structure
tensor of M2ri+4, where and in the sequel the indices A, B, C, ••• run over the
range {1, 2, --•, 2n+4}. Then we have

(1.1) Fc*FB

A=-δA,

(1.2) FcEFB

DGSD=GCB,

δc being the Kronecker delta.

Let M2n+1 be a (2n+l)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {V ηh} and immersed isometrically in
M2n+* by the immersion i: M2n+1 —> M2n+4, where and in the sequel the indices
h, i, j, k, ••- run over the range [ I ' , 2f, —, (2n+!)'}. In the sequel we identify
z(M27l+1) with M2n+1 itself and represent the immersion by

(1.3) ζA=ξA(ηh).

We put

(1.4) BA=dtξ
A, di=d/dY

and denote by CA, DA and EA three mutually orthogonal unit normals to
M2n+1. Then denoting by gjt the fundamental metric tensor of M2n+1, we have

(1.5) g»=B,cB*GCB,

since the immersion is isometric.

As to the transforms of Bτ

A, CA, DA and EA by FB

A we have respectively
equations of the form

(1.6) FB

ABτ

B=fl

hBh

A+ulC
A+υiD

A+wlE
A,

(1.7) FB

ACB=-uhBh

A -vDA+μEA,

(1.8) FB

ADB=-vhBh

A+vCA -λEA,

(1. 9) FB

A EB=-wh Bh

A-μCA+λDA,

where fτ

h is a tensor field of type (1, 1), ulf vif wl 1-forms and λ, μ, v functions
in M2n+1, uh, vh and wh being vector fields associated with ult Vι and wt

respectively.
Applying the operator F to both sides of (1. 6), (1. 7), (1. 8) and (1. 9), using

(1.1) and these equations and comparing tangent part and normal part of both
sides, we find
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(1.10) ft

tft

h=-dϊ+ulu
h+viv

h+wtw
h,

( utfl

t = —vvi

jτμwlί

(1. ID ' vtft<= vut-λwt,

ιvtfι
t=—μui+λvί,

ft^u1— vvh—μwh,

(1.12)
I
fthwt= μuh—λvh,

(1.13)

Also, from (1. 2), (1. 5) and (1. 6), we find

(1. 14) fjtfιsgts=gji-ujui-vjvί-wjwl.

Putting

(1.15) Λi=Λ'if t*

and comparing (1. 10) with (1. 14), we see that

(1. 16) Λi=-Λ,

In general, we call an (/, g, u, v, w, λ, μ, y)-structure a structure given by
a set of a tensor field fτ

h of type (1, 1), a Riemannian metric tensor gjif three
1-forms ulf viy wτ and three functions λ, μ, v in M2n+1 satisfying equations
(1.10) -(1.14) ([6]).

Considering a submanifold M2n+1 of codimension 2 of an almost contact
metric manifold M2n+3 or a hypersurface M2n+1 of a manifold with (/, g, u, v,
^-structure ([11]), we also obtain an (/, g, u, v, w, λ, μ, v)-structure as the
structure induced from that of the ambient manifold ([6]).

An (/, g, M, v, w, λ, μ, v)-structure is said to be normal if the tensor field
Sjt

h of type (1, 2) defined by

(1.17) SJi

h=Nj

vanishes identically, where Nji1 is the Nijenhuis tensor formed with /t

Λ, that is,

(1. 18) ΛO<

Λ=//3 tΛ
A-Λ ί3 tΛ

Λ~(3,/ t

t-3 l//)/ t

Λ.
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§ 2. Vector field p and almost contact metric structure (/*, g, p).

From (1.12), we find

(2.1) fthP'=0,

where

(2.2) ph=λuh+μvh+vwh.

From (2.2) we have

ut p
t=λut u

tjrμut yt+vut wl,

from which, using (1.13), we find utp
t:=λ. Similarly we can find

(2.3) utp
l=λ, vtp'=μ, wtp'=v.

Thus we have

(2.4) λ2+μ2+v2=c2,

where ptp
t=c2 (c^O).

3
We easily see from (1.13) that Q^λ2jrμ2jrv2^—. But we can prove here

that

(2.5) Q^λ*+μ*+v*^L

In fact, if c^l, then λ2-c2(l-μ2-v2)=-(μ2+v2)(l-c2)~^Q. Consequently con-

sidering the square of the length of the vector c2u^—(λ+Vλ2—c2(l—μ2—v2))pi,
we have

where we have used (1. 13) and (2. 3) . Thus we have

Transvecting the last equality with pτ and using (2.3), we have c2—!.
Thus (2. 5) is proved.

Suppose that the set (/, g, p) of the tensor field of type (1, 1), the Rieman-
nian metric tensor g^ and the vector field ph given by (2. 2) defines an almost
contact metric structure, that is, in addition to (2. 1), the set (/, g, p) satisfies

(2.6) fSfth=-δί+ptp\
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(2.7) f3

tf^sgts=gji-p3Pi,

(2.8) ί t/>'=l,

where p^gup1. Then we find from (2.4) and (2.8)

(2.9) λz+μz+u2=L

Conversely suppose that the functions λ, μ, v satisfy (2. 9). Then we have
(2. 8) and consequently (1.13) reduces to

(2.10)

tu
l—λz, utv

t=λμ,

Using (2. 3) and (2. 10) and computing the squares of lengths of vectors
Ui—λpi, Vi—μpi and wi—ι>pl> we find

(2. 11) Ui=λpτ, Vi=μpif Wi=upi.

Substituting (2. 11) into (1. 10) and using (2. 9), we find

Kftκ=-St+Pip\

Also substituting (2. 11) into (1. 14) and using (2. 9), we have

Thus we see that the set (/, g, ρ\ where p is given by (2. 2), defines an
almost contact metric structure. Hence we have

THEOREM 2. 1. Let M2n+1 be a differentiable manifold with an (/, g, u, v, w,
λ, μ, ^-structure. In order for the set (/, g, p), p being given by (2. 2), to define
an almost contact metric structure, it is necessary and sufficient that λ2-\-μ2jrv2= 1.

Suppose that the set (/, g, p) defines an almost contact metric structure.
Then we have (2. 11) and consequently

uh+(dj Vi—di Vj) vh+(d} Wi—di Wj) w

from which, using λ2+μ2+ι>2= 1 and λdj
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(2. 12) Njt

h+(d3 uτ~di Uj} uh+(djvi-di v,) vh+(d, wτ-di wj) wh

=Nji

h+(dJpί-dipj)ph.

Thus we have

THEOREM 2. 2. Let M2n+1 be a differenhable manifold with an (/, g, u, v, w,
λ, μ, ^-structure and suppose that the set (f, g, p\ p being given by (2. 2), defines
an almost contact metric structure. In order for the almost contact metric struc-
ture (/, g, p) to be normal, it is necessary and sufficient that the (/, g, u, v, w, λ,
μ, v)-structure is normal.

We now suppose that the set (/, g, p} defines an almost contact metric
structure and the structure is contact, that is,

(2.13) 2/,1=a,/>,-91/>,.

Then from (2. 11) and (2. 13), we have

2λfji=dJul-diuJ—(pidJλ-pjdiλ),

i=dj Vi—di v3—(pi 33 μ—pj 3* μ),

from which, using λ2+μ*+vz= 1 and λdjλ+μdjμ+vdjV=Q, we find

(2. 14) 2fji=λ (dj ul—Si uί)~}-μ(dj Vi—dt v})+v (3; wl—di Wj) .

Conversely suppose that the (/, g, u, v, w, λ, μ, ^-structure satisfies (2. 14)
and the set (/, g, p), p being given by (2. 2), defines an almost contact metric
structure. Then we have (2. 9) and (2.11). Consequently substitution of (2. 11)
into (2. 14) yields

from which, using λ2+μ2-\-uz—l and

Thus we have

THEOREM 2. 3. Let M2n+1 be a differentiate manifold with an (/, g, u, v, w,
λ, μ, ^-structure and suppose that the set (/, g, p), p being given by (2. 2), defines
an almost contact metric structure. In order for the almost contact metric struc-
ture (f, g, p) to be contact, it is necessary and sufficient that the (/, g, u, v, w, λ,
μ, ^-structure satisfies (2. 14).
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From Theorems 2. 2 and 2. 3, we have

THEOREM 2. 4. Let M2n+1 be a differentiable manifold with an (/, g, u, v, w,
λ, μ, ^-structure and suppose that the set (/, g, p), p being given by (2. 2), defines
an almost contact metric structure. In order for the almost contact metric struc-
ture to be Sasakian, it is necessary and sufficient that the (/, g, u, vy w, λ, μ, v)-
structure is normal and satisfies (2. 14).

§ 3. The case in which p vanishes identically.

Suppose that the vector field ph defined by (2. 2) vanishes identically. Then
from λuJl+μvh+vwh=Q, we have

(3. 1) l=μ=v=Q.

Consequently equations (1. 11), (1. 12) and (1. 13) reduce respectively to

(3.2) «,/,'=<>, v«/t'=0, WtfS^O,

(3.3) fthu'=Q, fthv<=0, ft

hwl=0f

and

(3.4) Vtvl=l, vtw'=Q,

wtw
t=l.

Thus the (/, g, u, v, w, λ, μ, v)-structure reduces to the so-called framed
/-structure ([4]).

In this case, we put

(3.5) φi

h=fl

h+vlw
h-wlv

h.

Then we can easily check that

(3.6) φSφS^-δϊ+UtU*1,

(3.7) utφS=Q, φthu<=0,

(3. 8) φf ψis gts^gji— ujul.

Thus we have

THEOREM 3. 1. Let M2n+1 be a differentiable manifold with an (/, g, u, v, w,
λ, μ, ^-structure and suppose that the vector field ph defined by (2. 2) vanishes
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identically. Then the manifold M2n+1 admits an almost contact metric structure
(ψ, g> u\ ψi1 being given by (3. 5).

The following theorem is proved in [3].

THEOREM 3.2. Suppose that the assumptions in Theorem 3.1 hold. If the
(f> g> u> v, w, λ, μ, ^-structure is normal, then the almost contact metric structure
(φ, g, u) is also normal.

% 4. Submanifolds of codimension 3 of an almost Hermitian manifold

admitting an almost contact metric structure.

Suppose that the set (/, g, p) of fτ

h, gjt and ph=λuhjrμvhjrvwh defines an
almost contact metric structure, then we have (2.11) and consequently from (1. 6)

(4.1) FB

ABl*=fSBh

A+piN
A,

where

(4.2) NA=λCA+μDA+vEA

is an intrinsically defined unit normal to M2n+1 because CA, DA and EA are
mutually orthogonal unit normals to M2n+1 and λ2+μ2+»2=l.

When a submanifold of an almost Hermitian manifold satisfies equation of
the form (4.1), NA being a unit normal to the submanifold, we say that the
submanifold is semi-invariant with respect to NA ([1], [9]). We call NA the
distinguished normal to the semi-invariant submanifold.

We also have, from (1. 7), (1. 8) and (1. 9),

(4.3) FB

ANB=-phBh

A,

which shows that the transform of the distinguished normal NA by the almost
complex structure tensor of the ambient manifold is tangent to M2n+1.

Conversely suppose that a submanifold M2n+1 of codimension 3 of an almost
Hermitian manifold M2n+4 is semi-invariant with respect to a unit normal NA

whose transform by F is tangent to M2n+1. Then we have

(4.4) FB

ABl

B=fl

hBh

A+qiN
A

f

(4.5) FB

ANB=-qhBh

A

for a vector field qh of M2n+l. Applying F to (4.4) and using (4.4) and (4. 5),
we find

-fl/=/,' (ΛΛ BS+qt NA)-qt
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from which

/,'/,*=-#+?* 9*, fc/,'=0.

Applying F to (4. 5) and using (4. 4), we find

-NA=-q'(ffBh

A+qtN
A),

from which

ΛV=0, <?* <?<-!.

We also have from (4.4)

Thus we see that the set (/, g, q) defines an almost contact metric structure.

Now comparing (4. 4) with (1. 6), we find

(4.6) qtNA=utC
A+ViDA+wtE

A,

from which, transvecting with q1,

(4. 7) NA=aCA+βDA+ γEA,

where

(4.8) a^Uttf, β=υtq
l

f γ =

Thus we have

(4.9) α2+/32+r2=l,

NA being a unit normal.

Substituting (4. 7) into (4. 6), we find

i-βqί} DA+(wt- γqύ EA=Q,

from which

(4.10) Ui=aqif Vi=βqif Wi=γqif

or, using (4. 9)

(4. 11) qi=aui+βvi+γwt.

Transvecting (4. 6) with u1 and using (1. 13) and (4. 8), we find

aNA=(l-μ2- v2) CA+λμDA+λ»EA.
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Comparing this equation with (4.7), we obtain

(4.12) a2=l-μ2-v2, aβ=λμ, aγ=λv.

Similarly we have

(4.13) β2=l-v2-λ2, γ2=l-λ2-μ2, βγ=μu.

Thus

az+β2+ γ2=3-2 (22+μ2+v2),

from which, using (4. 9),

(4.14) λ2+μ2+v2=l.

Consequently equations (4.12) and (4.13) give

α»=j«, β*=μ\ f=v\

βγ=μv, γa=v2, aβ=2μ,

which show that

a=±λ, β = ±μ, γ = ±v.

Thus (2.2) and (4.11) give qi=±pτ. Thus we have

THEOREM 4.1. In order for a submanifold M2n+l of codimension 3 of an
almost Hermitian manifold M2n+* with structure tensor F and G to admit an
almost contact metric structure (/, g, q), f and g being the tensor field of type
(1, 1) and the Riemannian metric tensor induced from F and G of M2n+4 res-
pectively, it is necessary and sufficient that the submanifold M2n+1 is semi-invariant
with respect to a unit normal vector field whose transform by F is tangent to the
submanifold. Moreover, in this case the almost contact metric structure (/, g, q)
coincides with (/, g, p) stated in Theorem 2.1.

Now suppose that the condition λ2-\-μ2+v2=l in Theorem 2.1 is satisfied
and take NA=λCA+μDA+vEA as CA. Then we have Λ=l, μ=Q, v=Q and con-
sequently uh=ph, Vi=Q, Wi=0 because of (1.13) and (2.2). Thus (1.6)~(1.9)
become respectively

(4.15) FB

AB*=f*Bh*+ptCA

9

(4.16) FB

ACB=-phBh

A,

(4.17) FB

ADB=-EA,

(4.18) FB

AEB=DA.
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Thus we have

THEOREM 4. 2. Let M2n+1 be a submamfold of codimenswn 3 of an almost
Hermitian manifold M2n+4 with structure tensor F and G and suppose that M2n+1

admits an almost contact metric structure (f, g, p), f and g being tensors induced
from F and G respectively. Then there exists, in the normal bundle, a holomorphic
plane which is invariant by F.

Now denoting by V, the operator of van der Waerden-Bortolotti covariant
differentiation with respect to gjif we have equations of Gauss for M2n+1 of
M2tt + 4

(4. 19) VJBl

A=hjlC
A+kjiD

A+ljiE
A,

where hjif kjίf ljt are the second fundamental tensors with respect to normals
CA, DA, EA respectively. The mean curvature vector is then given by

(4.20)

where

ht

l=gjihjit k^

gjί being the contravariant components of the metric tensor.

The equations of Weingarten are given by

(4.21) ^jC
A=-hJ

hBh

A + lJD
A+mJE

A,

(4.22) VJD
A=-kJ

hBh

A-ljC
A + n}E

A,

(4.13) ^jEA=-lJ

hBh

A-mjC
A-nJD

A,

where h3

h=hjtg
th, kj

h=kjtg
th

) ljh=ljtg
th, /,, m3 and n3 being the third

fundamental tensors.

In the sequel, we denote the normal components of V^ C by Vj C. The
normal vector field C is said to be parallel in the normal bundle if we have
Vj1 C=0, that is, /, and m3 vanish identically.

We now assume that M2n+4 is Kaehlerian and differentiate (4. 15) covariantly
along M2n+1. We then have

FB

A (h3i C
B+kjt DB+ljt £a)=(7,ΛΛ) Bh

A+fS (hjt CA+kJt DA+lJt

from which, using (4. 16) ~ (4. 18),

(4.24) ^Jf^
h
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(4.25) ^,Pi=-hitfl
t,

(4.26) kjt=- I j t f f - m , pi,

(4.27) l^kitfS+liPi.

The last two relations give

(4.28) kitp'=-m),

(4.29) /*/>'=/„

(4.30) *,'=-»!,/>«,

(4.31) /,«=/, £'.

Transvecting (4. 27) with V and using (4. 26), we find

from which, taking the skew-symmetric part with respect to i and k,

or, transvecting with pk and using (4.30)

(4.32) ltfS=kt'p

If we transvect (4. 32) with /' and make use of (4. 31), then we have

(4.33) *,'/.'+ m t/'=0.

Transvecting (4. 26) with lh
l and substituting (4. 27), we find

or, using (4. 28) and (4. 29) and remembering (2. 6) ~ (2. 8),

(4. 34) kjt /,'+*« //=-(/, mi+l, mj) .

If we transvect (4.27) with /** and substitute (4.26), we have

from which, using (4. 28) and (4. 29),

(4.35) ljtll
t-kjt
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Now suppose that the (/, g, u, v, w, λ, μ, v)-structure and consequently
(/, g, £)-structure is normal, that is,

Substituting (4. 24) and (4. 25) into this equation, we find

(ffhf-hW

and consequently

/ ί A Λ L t -f h _
J j f ^ t — tϊj ft —

for a certain vector field qh. From these two equations, we have qh— 0, and
consequently

(4.36) //A.^V/Λ

Thus we have

THEOREM 4. 3. Suppose that the (/, £, w, v, w, λ, μ, ^-structure induced on a
submanifold M2n+1 of codimension 3 of a Kaehlerian manifold M2n+* satisfies
λ2+μ2+v2— 1 and consequently (/, g, p) defines an almost contact metric structure.
Then in order for these structures to be normal, it is necessary and sufficient that
the second fundamental tensor h with respect to the distinguished normal and f
commute.

Now suppose that the (/, g, u, v, w, λ, μ, v)-structure satisfies λ2-\-μ2+v*=l
and the almost contact metri; structure (/, g, p) is contact, that is,

Then we substitute (4. 25) into this equation and get

(4.37) hSft

h+fSht

h=2fS.

From (4. 36) and (4. 37) we have

(4.38) /^/^-/Λ

from which, transvecting with ρ%, we get (hl

t pί')ft

h= 0, which shows that
hl

tpl=apt, where a—hjip3pτ.

Transvecting (4.38) with //Λ we find

or equivalently

(4.39)
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In this case we say that the submanifold M2n+1 is p-umbilical with respect
to the distinguished normal CA. The converse being evident, we have

THEOREM 4.4. Suppose that the (./, g, u, v, w, λ, μ, ^-structure induced on
the submanifold M2n+1 of codimension 3 of a Kaehlerian manifold M2n+4 satisfies
λ2+μ2+v2=l and consequently (f, g, p) defines an almost contact metric structure.
In order for the almost contact metric structure (f, g, p) to be Sasakian, it is
necessary and sufficient that M2n+1 is p-umbilical with respect to the distinguished
normal CA.

§5. Submanifolds of codimension 3 of an even-dimensional Euclidean

space admitting an almost contact metric structure.

In this section we assume that the (/, g, u, v, w, λ, μ, y)-structure induced
on a submanifold M2n+1 of codimension 3 of an even-dimensional Euclidean
space £27l+4 satisfies λ2+μ2jπ>2=l and consequently (/, g, p) defines an almost
contact metric structure.

Then equations of Gauss are given by

(5.1) K^^h^hji-h^h^+k^kji-k^k^+l^ljt-l^l^

where Kkji

h is the Riemann-Christoffel curvature tensor of M2n+1, those of
Codazzi by

(5.2) Vkhji-Vj

(5.3) Vkkji-Vj

(5.4) Vklji-VJl

and those of Ricci by

(5. 5) V f c lj—^J3 lk + h ktkjt—h ,tkkt+ m k n3— m3 n k— 0,

(5.6) Vtmj-Vjmt + hSljt-hj'lH+nklj-njl^O,

(5. 7) V, n-Ί3 nk+kk

l Ijt-k3

l lkt+lk m3-l, mk=0.

We first prove

LEMMA 5. 1. Suppose that M2n+1 is a submanifold of codimension 3 with
(ft g> u> v> w> λ, μ, ^-structure of an even-dimensional Euclidean space E2n+*
satisfying λz+μ2+vz=l. Then in order for the submanifold M2n+1 to be um-
bilical with respect to the distinguished normal, that is, choosing CA as the dis-
tinguished normal,

(5.8)
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it is necessary and sufficient that the distinguished normal CA is concurrent.
In this case the submanifold M2n+l is pseudo-umbilical and the mean curvature
is constant.

Proof. Suppose that (5. 8) is satisfied. Then (4. 30) ~ (4. 33) imply that

(5.9) ltp*=mtpt=ltmt=b

and (4.25) becomes ^jpi—pfa, which shows that

Substituting (4. 24) into this and taking account of (5. 8), we obtain

from which, using the Ricci identity,

From this, using the Bianchi identity, we find

(5. 10)

Transvecting (5.10) with pkfjί, we get (7^)^—0. Moreover, transvection
of (5. 10) with /•>* yields

Therefore we see /othat is constant. Thus (5. 2) reduces to

If we transvect p k to this and make use of (4. 28), (4. 29) and (5. 9), then we
have lJml~mJlί=Q. Thus it follows that lj= πij— 0, that is, V, C^=0, because
of ltm

t=0. From this fact and (4.21) we verify that VjCA=pBjA.
Conversely if the distinguished normal CA to M2n+1 is concurrent, that is,

^7tC
A=τBjA for some function τ, then we have from (4.21),

which show that

because of (4. 30) and (4. 31). Consequently the distinguished normal CA is in
the direction of the mean curvature vector HA. From hji=τgjit we see that
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ρ=^τ=-y——γht

t. Thus M2n+1 is pseudo-umbilical. This completes the proof of

the lemma.
We now assume that the assumptions of Lemma 5. 1 hold. Then (4. 24) and

(4. 25) become

Thus the set (/, g, p) defines a Sasakian structure if pφΰ. We may consider
p=l because p is a constant.

On the other hand, we see from (4. 15) and (4. 16) that the direct sum of
the tangent space of M2n+1 and CA is invariant. Then the ambient space being
Euclidean, M2n+1 is an intersection of a complex cone with generator CA and a
(2?z+3)-dimensional sphere. Thus we have

THEOREM 5. 2. Let M2n+1 be a pseudo-umbilical submamfold of an even dimen
sional Euclidean space E2n+* with (/, g, u, v, w, λ, μ, ^-structure satisfying
λ2+μ2+u*=l. Then M2n+1 is an intersection of a complex cone with generator
CA and a sphere.

We suppose that the (/, g, u, v, w, λ, μ, v)-structure induced on a submani-
fold M2n+l of codimension 3 of E2n+4: defines a normal almost contact metric
structure (/, g, p} and the distinguished normal CA is parallel in the normal
bundle of M2n+1. Then (4. 36) holds, that is,

(5.11) A*/*'+λ*ι//=0.

Transvecting (5. 11) with //, we have

from which, taking the skew-symmetric part,

(hjtp^pi-^up^pj^V,

which shows that

(5.12) hitp'=ap,,

where a—htsp* Ps

Differentiating (5. 12) covariantly and substituting (4. 25), we find

from which, taking the skew-symmetric part and using (5. 11)
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On the other hand, we have from the fact that 7j-CM=0 and (5.2)

(5.13) 7AA,,-7,A«=0.

Thus we have

(5. 14) 2hJ

thtsfk

s=(^ka)pJ-C7ja)pk+2ahjtfk

t.

Transvecting (5. 14) with pj and using (5. 12), we get

(5.15) Vj<*=Ap,9

for a certain scalar A. Thus (5. 14) gives

hj

tht,fk'=ahjtfk*.

If we transvect this with // and use (5. 12), then we get

(5.16) hjt^'^ahji.

Differentiating (5. 15) covariantly and substituting (4. 25), we find

from which, using (5. 11),

(

which implies that

The last two equations mean that

AhJtfk'=Q.

Transvecting // to this and using (5. 12), we have

(5.17)

On the other hand, we can prove, using (5. 13) and (5. 16) with α— const.
that ([5])

(5.18) 7^=0.

We now assume that M2n+1 is complete and locally irreducible. Then we
have from (5. 18)
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(5. 19) hji=Bgji

for a certain scalar B. From this and (5. 16) we see that

(5. 20) B2=aB.

But if hji=apjpl or Λ^=0, then we see from (4.25) that ph is a parallel
vector field and consequently

which contradicts the fact that M2n+1 is locally irreducible.

Thus we see from (5. 15) and (5. 17) that a is a constant and hence from
(5. 19) and (5.20) that a=B^Q. Thus (5. 19) becomes

According to Theorem 5.2, we have

THEOREM 5. 3. Let M2n+1 be a complete and locally irreducible submamfold
of co dimension 3 of a Euclidean space E2n+* such that the distinguished normal
CA is parallel in the normal bundle and the (/, g, u, v, w, λ, μ, ^-structure defines
a normal almost contact metric structure (/, g, p\ p being given by (2. 2). Then
we have the same conclusion as that of Theorem 5. 2.

We now prove

LEMMA 5. 4. Let M2n+1 be a submamfold of codimension 3 with (/, g, u} v,
w, λ, μ, ^-structure of a Euclidean space E2n+4 satisfying λz+μz+vz=l. If the
third fundamental tensors satisfy

(5.21)

for a certain scalar β and lj—mj—^y then we have β=Q.

Proof. Since /,= m^=0, we have, from (4.34), (5.7) and (5.21),

(5.22)

Transvecting (5. 22) with fk\ we find

or, using (4.27) with /,=(),

(5.23)
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from which

(5.24) kjik
iί

We prove first that β is a constant. In fact, if we differentiate (5. 21)
covariantly and substitute (4. 24), then we have

Using the Ricci identity, we have

-(/Γ^+tf^+tf,^

which shows that

Thus as in the proof of Lemma 5. 1, we can easily see that B is^a constant.

Differentiating (5. 23) covariantly, we have

(5. 25) (V**/)fe«+*/(7Λfe«)=

from which, taking the skew-symmetric part with respect to k and j,

=-β [(V* pj-Vj pk) pi+Wk P^ Pj-Wj Pi) Pkl ,

from which, substituting (4. 25) and (5. 3) with /,-— 0,

or, using (4.34) with lj=mj=Q,

Interchanging the indices k and i, we have

(5. 26) £/ (V, *„)-*.' (V, feyί)-
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Adding (5. 25) and (5. 26) and using (4. 25), we find

(5.27) 2k^kkit-2nkkJΠit

Transvecting (5.3) with gkl and using the fact that ^=0 and ^ ί

ί=/ ί

t=
we find

(5.28) Φkjt^ljtn*.

Thus, by transvecting (5.27) with gkl, we get

(5.29) 0λ t ίί '//=().

If we transvect (5. 27) with p3 and make use of (5. 29), we obtain

(5.30)

Hence, (5. 27) becomes

(5.31) k^kku

On the other hand, differentiating (4. 28) with πij=0 covariantly and sub-
stituting (4. 25), we find

(V**,t) />'=*/ WΛ

or, using (4. 27) with lj=Q,

(5.32) Φkkjάp^-ljthS.

Transvecting (5. 31) with pτ and taking account of (4. 29) with /,=0, (5. 29)
and (5. 32), we find

from which, using (4.34) with lj=Q, /3/ι^t//— 0, which shows that

(5.33) β(hjt-ap,pύ=Q.

Thus (5. 31) reduces to

(5.34) V(V**«-**J«)=0.

Transvecting (5.34) with k^ and using (5.23), we find
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from which, using (5.32), (5.33) and the fact that litp
t=^

(5.35)

From (4.35) with lj=mj=0 and (5.23), we have

(5.36) lJtl^t

from which

(5.37)

Using the same method as that used to derive (5. 35) from (5. 23), we can
derive from (5. 36) the following :

(5.38) 0(7A/,H-n*fey«)=0.

If β is not zero, then (5. 33), (5. 35) and (5. 38) reduce respectively to

(5.39) h^ap pi,

(5.40) Vkkji=nklji

and

(5.41) ^klji^

Differentiating (5.40) covariantly and substituting (5.41), we find

V Λ 7 Λ f e j i = ( V Λ n Λ ) / j i — nk nhkjif

from which, using the Ricci identity and taking account of (5.21),

or, using (5. 1) and (5. 39),

+ (kh

tkkί-kk

tkhί+lh

tlkί-lk

tlhjkjt=-2βfhkljί.

Transvecting this with fhk and using (4.26) with πij= 0 and (4.27) with
lj=Q, we obtain

from which, using (5.23) and the fact that ljtp
t=Qf

(71+2)^=0
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since β is assumed to be non-zero. This contradicts (5. 37). Thus β must be
zero and this completes the proof of the lemma.

Under the same assumptions as those stated in Lemma 5. 4, we have, from

(5.24) and (5. 37),

(5.42) *,i=/,*=0,

and (5. 21) reduces to

(5.43) 7,n,-7tn,=0.

Thus we have

THEOREM 5. 5. Let M2n+1 be a submanifold of codimension 3 of a Euclidean

space E2n+4i with (/, g, u, v, w, λ, μ, v)-structure satisfying λ2jrμ2+v2=l. If the

distinguished normal CA is parallel in the normal bundle and the third funda-

mental tensor n3 satisfies ^Jnl—^lnj=2βfji for a certain function β, then M2n+1

is a hypersurface of E2n+2.

From (4.34), (4. 35), (5.7) and Theorem 5. 5 we have immediately

COROLLARY 5. 5. Let M2n+1 be a submanifold of codimension 3 of a Eucli-
dean space E2n+* with (/, g, u, v, w, λ, μ, u)-structure satisfying λ2jrμ2+»2=l. If
the distinguished normal CA is parallel in the normal bundle and the connection

induced in the normal bundle of M2n+l in E2n+* is trivial, then M2n+1 is a hyper-
surface of E2n+2.
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