TOTALLY REAL SUBMANIFOLDS OF A QUATERNIONIC KAEHLERIAN MANIFOLD

By Shōichi Funabashi

§ 0. Introduction.

A submanifold M immersed in a Kaehlerian manifold \tilde{M} is said to be totally real if each tangent space of M is mapped into the normal space by the almost complex structure of \tilde{M} (see Chen and Ogiue [3]). Recently, several authors have studied totally real submanifolds and obtained many interesting results from many points of view (Abe [1], Chen and Ogiue [3], Houh [5], Kon [9], Ludden, Okumura and Yano [10], [11], Yano [14], [15] and Yano and Kon [16], [17] and [18]).

In the present paper, totally real submanifolds of a quaternionic Kaehlerian manifold will be studied and quaternionic analogues of several properties of those immersed in a Kaehlerian manifold will be proved. Let $(\tilde{M}, \tilde{g}, \tilde{V})$ be a quaternionic Kaehlerian manifold with quaternionic Kaehlerian structure (\tilde{g}, \tilde{V}) and $\{\tilde{F}, \tilde{G}, \tilde{H}\}$ a canonical local basis in a coordinate neighborhood \tilde{U} of \tilde{M} (see § 1). We call a submanifold M immersed in \tilde{M} a totally real submanifold if each tangent space of M is mapped into the normal space by \tilde{F}, \tilde{G} and \tilde{H} (see Ishihara [7]). Recently, Chen and Houh ([2], [6]) have also studied this submanifold and showed many results. Our main result is stated in the following main theorem which will be proved in § 4.

MAIN THEOREM. Let HP^n be a quaternionic projective space of dimension 4n and M^n a connected and complete submanifold of dimension n immersed by $f: M^n \to HP^n$. Assume M^n is a compact, totally real and minimal submanifold satisfying the inequality $\|H\|^2 \leq (n+1)/2(3n-1)$ for the square of the length of the second fundamental form H of M^n . Then the Riemannian manifold M^n is an n-dimensional real projective space RP^n , and the immersion $f: M^n \to HP^n$ being congruent to the standard immersion $i: RP^n \to HP^n$ or, M^n is the unit sphere S^n , f being congruent to the standard immersion $i \circ \pi: S^n \to HP^n$, where $\pi: S^n \to RP^n$ is the natural projection.

In § 1, we give briefly definitions and some fundamental results concerning quaternionic Kaehlerian manifolds. In § 2, we prove some pinching theorems for

the second fundamental forms. In § 3, we give an example of totally real submanifolds immersed in a quaternionic space form. In the last section § 4, we give the proof of our main theorem stated above.

Manifolds, mappings and geometric objects under discussion are assumed to be differentiable and of class C^{∞} . Unless stated otherwise, we use the following conventions of indices: h, i, j=1, \cdots , 4n; a, b, c, d: \bar{a} , \bar{b} , \bar{c} , \bar{d} : a^* , b^* , c^* , d^* : a^* , b^* , c^* , a^* , $a^$

The author wishes to express his hearty thanks to Professor S. Ishihara and his colleague K. Sakamoto who gave him kind encouragement and valuable suggestions.

§ 1. Preliminaries.

Let \widetilde{M}^{4n} be a manifold of dimension 4n and assume that \widetilde{M}^{4n} satisfies the following conditions (a) and (b):

(a) \widetilde{M}^{4n} admits a 3-dimensional vector bundle \widetilde{V} consisting of tensors of type (1, 1) over \widetilde{M}^{4n} satisfying the condition that in any coordinate neighborhood \widetilde{U} of \widetilde{M}^{4n} there is a local basis $\{\widetilde{F}, \widetilde{G}, \widetilde{H}\}$ of \widetilde{V} such that

$$\begin{split} \widetilde{F}^2 = \widetilde{G}^2 = \widetilde{H}^2 = -\widetilde{I} \,, \\ \widetilde{G}\widetilde{H} = -\widetilde{H}\widetilde{G} = \widetilde{F} \,, \, \widetilde{H}\widetilde{F} = -\widetilde{F}\widetilde{H} = \widetilde{G} \,, \, \widetilde{F}\widetilde{G} = -\widetilde{G}\widetilde{F} = \widetilde{H} \,, \end{split}$$

where \tilde{I} is the identity tensor field of type (1, 1) in \tilde{M}^{4n} . Such a triplet $\{\tilde{F}, \tilde{G}, \tilde{H}\}$ is called a *canonical local basis* of \tilde{V} in \tilde{U} .

(b) There is a Riemannian metric \tilde{g} in \tilde{M}^{4n} such that, for any canonical local basis $\{\tilde{F},\,\tilde{G},\,\tilde{H}\}$ of \tilde{V} in \tilde{U} , the local tensor fields $\tilde{F},\,\tilde{G}$ and \tilde{H} are almost Hermitian with respect to \tilde{g} and the equations

(1.2)
$$\widetilde{\nabla}_{\tilde{x}}\widetilde{F} = \widetilde{r}(\widetilde{X})\widetilde{G} - \widetilde{q}(\widetilde{X})\widetilde{H},$$

$$\widetilde{\nabla}_{\lambda}\widetilde{G} = -\widetilde{r}(\widetilde{X})\widetilde{F} + \widetilde{p}(\widetilde{X})\widetilde{H},$$

$$\widetilde{\nabla}_{\tilde{x}}\widetilde{H} = \widetilde{q}(\widetilde{X})\widetilde{F} - \widetilde{p}(\widetilde{X})\widetilde{G}$$

are satisfied for any vector field \widetilde{X} in \widetilde{M}^{4n} , $\widetilde{\nabla}$ denoting the Riemannian connection determined by \widetilde{g} , where \widetilde{p} , \widetilde{q} and \widetilde{r} are 1-forms defined in \widetilde{U} . Such a triplet $(\widetilde{M}^{4n},\,\widetilde{g},\,\widetilde{V})$ is called a *quaternionic Kaehlerian manifold* with *quaternionic Kaehlerian structure* $(\widetilde{g},\,\widetilde{V})$ (see [4]). A quaternionic Kaehlerian manifold $(\widetilde{M}^{4n},\,\widetilde{g},\,\widetilde{V})$ will be sometimes denoted simply by \widetilde{M}^{4n} .

In a quaternionic Kaehlerian manifold $(\tilde{M}^{4n}, \tilde{g}, \tilde{V})$ we take arbitrary intersecting coordinate neighborhood \tilde{U} and \tilde{U}' and denote by $\{\tilde{F}, \tilde{G}, \tilde{H}\}$ and $\{\tilde{F}', \tilde{G}', \tilde{H}'\}$ canonical local bases of \tilde{V} respectively in \tilde{U} and \tilde{U}' . Then, taking account of the condition (a), we have in $\tilde{U} \cap \tilde{U}'$

(1.3)
$$\begin{pmatrix} \widetilde{F}' \\ \widetilde{G}' \\ \widetilde{H}' \end{pmatrix} = (\widetilde{s}_{\beta\alpha}) \begin{pmatrix} \widetilde{F} \\ \widetilde{G} \\ \widetilde{H} \end{pmatrix},$$

where the (3, 3)-matrix $S_{\widetilde{U},\widetilde{U}'}=(\widetilde{s}_{\beta\alpha})$, (α , $\beta=1$, 2, 3) is a function defined in $U\cap U'$ and taking values in the special orthogonal group SO(3) of degree 3.

When we take an orthonormal basis $\{e_1, \dots, e_n, \tilde{F}e_1, \dots, \tilde{F}e_n, \tilde{G}e_1, \dots, \tilde{G}e_n, \tilde{H}e_1, \dots, \tilde{H}e_n\}$ of the tangent space $T_x(\tilde{M}^{4n})$ at each point x in \tilde{U} , we say such orthonormal basis a *symplectic frame* of $(\tilde{M}^{4n}, \tilde{g}, \tilde{V})$ at x.

A real space form is a Riemannian space with constant sectional curvature. Similarly, we give the following concept. If a quaternionic Kaehlerian manifold \tilde{M}^{4n} has constant Q-sectional curvature \tilde{c} , then \tilde{M}^{4n} has the curvature tensor \tilde{K} of the form

(1.4)
$$\widetilde{K}(\widetilde{X}, \, \widetilde{Y}) = \frac{\widetilde{c}}{4} \left\{ \widetilde{X} \wedge \widetilde{Y} + \widetilde{F} \widetilde{X} \wedge \widetilde{F} \widetilde{Y} + \widetilde{G} \widetilde{X} \wedge \widetilde{G} \widetilde{Y} + \widetilde{H} \widetilde{X} \wedge \widetilde{H} \widetilde{Y} \right. \\ \left. - 2\widetilde{g}(\widetilde{F} \widetilde{X}, \, \widetilde{Y}) \widetilde{F} - 2\widetilde{g}(\widetilde{G} \widetilde{X}, \, \widetilde{Y}) \widetilde{G} - 2\widetilde{g}(\widetilde{H} \widetilde{X}, \, \widetilde{Y}) \widetilde{H} \right\}.$$

 \widetilde{X} and \widetilde{Y} being arbitrary vector fields in \widetilde{M}^{4n} , where $\widetilde{X} \wedge \widetilde{Y}$ is a tensor field of type (1,1) defined as $(\widetilde{X} \wedge \widetilde{Y})\widetilde{Z} = \widetilde{g}(\widetilde{Y},\widetilde{Z})\widetilde{X} - \widetilde{g}(\widetilde{X},\widetilde{Z})\widetilde{Y}$ for any vector field \widetilde{Z} in \widetilde{M}^{4n} (see [4]). Such an \widetilde{M}^{4n} is calld a *quaternionic space form* and denoted it by $\widetilde{M}^{4n}(\widetilde{c})$. As is well known, each quaternionic projective space HP^n of dimension 4n is a quaternionic space form with constant Q-sectional curvature 4 by a suitable normalization.

§ 2. Totally real submanifolds.

Let $(\widetilde{M}^{4n}, \widetilde{g}, \widetilde{V})$ be a 4n-dimensional quaternionic Kaehlerian manifold and M^m a Riemannian manifold of dimension $m(m \leq n)$ immersed in \widetilde{M}^{4n} by a isometric immersion $f: M^m \to \widetilde{M}^{4n}$. Assume \widetilde{M}^{4n} is covered by a system of coordinate neighborhoods with canonical local basis of the vector bundle \widetilde{V} . For any point x in M^m , we denote by $\{\widetilde{F}, \widetilde{G}, \widetilde{H}\}$ a canonical local basis in a coordinate neighborhood around f(x). We call M^m a totally real submanifold of \widetilde{M}^{4n} if M^m satisfies

$$(2.1) T_x(M^m) \perp \widetilde{F}(T_x(M^m)), \ T_x(M^m) \perp \widetilde{G}(T_x(M^m), \ T_x(M^m) \perp \widetilde{H}(T_x(M^m))$$

for any point x in M^m , $T_x(M^m)$ denoting the tangent space to M^m at x and the symbol \bot showing to be orthogonal, where $T_x(M^m)$ is identified with its image under the differential f_* of the isometric immeresion f. This condition is independent of choice of canonical local bases because of (1.1).

By a plane section of a differentiable manifold, we mean a 2-dimensional linear subspace of a tangent space of the differentiable manifold. A plane section σ in M^m is said to be *anti-quaternionic* if $\widetilde{F}\sigma$, $\widetilde{G}\sigma$ and $\widetilde{H}\sigma$ are respec-

tively perpendicular to σ . As a quaternionic analogue of a proposition proved in [2], we can easily prove

PROPOSITION 2.1. Let $(\tilde{M}^{4n}, \tilde{g}, \tilde{V})$ be a 4n-dimensional quaternionic Kaehlerian manifold and M^m an m-dimensional submanifold immersed in \tilde{M}^{4n} $(m \leq n)$. Then M^m is a totally real submanifold of \tilde{M}^{4n} if and only if every plane section of M^m is anti-quaternionic.

Let $\tilde{M}^{4n}(\tilde{c})$ be a 4n-dimensional quaternionic space form and M^n an n-dimensional totally real minimal submanifold of $\tilde{M}^{4n}(\tilde{c})$. We now take a local fields of symplectic frame $\{e_1, \cdots, e_n; e_{\bar{1}} = \tilde{F}e_1, \cdots, e_{\bar{n}} = \tilde{F}e_n; e_{1*} = \tilde{G}e_1, \cdots, e_{n*} = \tilde{G}e_n; e_{\bar{1}} = \tilde{H}e_1, \cdots, e_{\bar{n}^*} = \tilde{H}e_n\}$ such that e_1, \cdots, e_n are tangent to M^n and $e_1, \cdots, e_{\bar{n}^*}$ normal to M^n . We denote respectively by $\tilde{\nabla}$ and ∇ the Riemannian connection on $\tilde{M}^{4n}(\tilde{c})$ and the connection induced on $T(M^n) \oplus N(M^n)$. Where $T(M^n)$ and $N(M^n)$ are the tangent bundle and the normal bundle of M^n respectively. When we restrict ∇ to $T(M^n)$, the connection ∇ coincides with the Riemannian connection on M^n . Then the Gauss-Weingarten formulas are given by

$$(2.2) \hspace{1cm} \widetilde{\nabla}_{e_{c}} e_{b} = \nabla_{e_{c}} e_{b} + \sum_{a} (H_{cb}^{\overline{a}} e_{\overline{a}} + H_{cb}^{a*} e_{a^{*}} + H_{cb}^{\overline{a}*} e_{\overline{a}^{*}}),$$

$$\begin{array}{ll} \widetilde{\nabla}_{e_{c}}e_{\overline{b}}=-A_{\overline{b}}e_{c}+D_{e_{c}}e_{\overline{b}}, & \widetilde{\nabla}_{e_{c}}e_{b^{\star}}=-A_{b^{\star}}e_{c}+D_{e_{c}}e_{b^{\star}}, \\ \widetilde{\nabla}_{e_{c}}e_{\overline{b^{\star}}}=-A_{\overline{b}^{\star}}e_{c}+D_{e_{c}}e_{\overline{b^{\star}}}, & \end{array}$$

where $H(e_c, e_b) = \sum_a (H_{cb}{}^{\overline{a}} e_{\overline{a}} + H_{cb}{}^{a^*} e_{a^*} + H_{cb}{}^{\overline{a}^*} e_{\overline{a}^*})$ for the second fundamental form H of M^n . Furthermore g is the metric induced in M^n and $A_{\overline{b}}$ is a local field of symmetric linear transformation of the tangent space of M^n defined by $g(A_{\overline{b}}X, Y) = \tilde{g}(H(X, Y), e_{\overline{b}})$ for any tangent vectors X and Y and so on. And then D is the connection induced in the normal bundle $N(M^n)$. Taking account of (1.2) and (2.2), we have

$$(2.4) A_{\overline{b}}e_c = \sum H_{cb}{}^{\overline{a}}e_{\overline{a}}, A_{b^*}e_c = \sum H_{cb}{}^{a^*}e_{a^*}, A_{\overline{b}^*}e_c = \sum H_{cb}{}^{\overline{a}^*}e_{\overline{a}^*}$$

because of (2.3), or equivalently

$$(2.5) H_{cb\bar{a}} = H_{bc\bar{a}} = H_{ca\bar{b}}, H_{cba^*} = H_{bca^*} = H_{cab^*}, H_{cb\bar{a}^*} = H_{bc\bar{a}^*} = H_{ca\bar{b}^*}.$$

Let \widetilde{K} and K be the curvature tensors of $\widetilde{M}^{4n}(\widetilde{c})$ and M^n respectively. Then the structure equation of Gauss is given by

$$(2.6) K_{dcba} = \frac{\tilde{c}}{4} (\delta_{da} \delta_{cb} - \delta_{db} \delta_{ca}) + \sum_{e=1}^{n} (H_{da\bar{e}} H_{cb\bar{e}} + H_{dae^*} H_{cbe^*} + H_{da\bar{e}^*} H_{cb\bar{e}^*} + H_{da\bar{e}^*} H_{cb\bar{e}^*} + H_{da\bar{e}^*} H_{ca\bar{e}^*} + H_{da\bar{e}^*} H_{ca\bar{e}^*}),$$

where $K_{dcba} = g(K(e_d, e_c)e_b, e_a)$ and δ_{da} is the Kronecker delta. Since M^n is assumed to be minimal, the Ricci tensor S of M^n is represented by the following

$$(2.7) S_{cb} = \frac{1}{4} (n-1) \tilde{c} \delta_{cb} - (\operatorname{tr} A_{\overline{c}} A_{\overline{b}} + \operatorname{tr} A_{c^*} A_{b^*} + \operatorname{tr} A_{\overline{c}^*} A_{\overline{b}^*}),$$

where $S_{cb}=S(e_c, e_b)$. Thus, for the scalar curvature ρ of M^n , we have

(2.8)
$$\rho = \frac{1}{4} n(n-1)\tilde{c} - \|H\|^2,$$

 $||H||^2$ being the square of the length of the second fundamental form H. Since M^n is totally real, we have from (1.4)

(2.9)
$$\widetilde{K}(X, Y)Z = \frac{\widetilde{c}}{4}(X_{\wedge}Y)Z$$

for any vectors X, Y and Z tangent to M^n . Therefore $[\widetilde{K}(X,Y)Z]^N=0$, where the left hand side means the normal parts of $\widetilde{K}(X,Y)Z$. If we put $(\nabla H)(e_a,e_c,e_b)=\sum_a(\nabla_aH_{cb}^{\overline{a}}e_{\overline{a}}+\nabla_aH_{cb}^{\overline{a}}e_{\overline{a}}+\nabla_aH_{cb}^{\overline{a}}e_{\overline{a}})$, then we have the following equation of Codazzi.

(2.10)
$$(\nabla_X H)(Y, Z) - (\nabla_Y H)(X, Z) = 0$$
,

or equivalently

$$(2.11) \qquad \nabla_{d}H_{cb}^{\overline{a}} - \nabla_{c}H_{db}^{\overline{a}} = 0, \quad \nabla_{d}H_{cb}^{a^{*}} - \nabla_{c}H_{db}^{a^{*}} = 0, \quad \nabla_{d}H_{db}^{\overline{a}^{*}} - \nabla_{c}H_{db}^{\overline{a}^{*}} = 0.$$

Let X and Y be any vectors tangent to M^n and ξ and η any vectors normal to M^n . We denote by K^N the curvature tensor of the normal bundle $N(M^n)$, namely, $K^N(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - D_{(X,Y)}\xi$. Hence we have the following equation of Ricci.

$$(2.12) KN(X, Y, \xi, \eta) = \widetilde{K}(X, Y, \xi, \eta) + g([A_{\xi}, A_{\eta}](X), Y),$$

where $K^N(X, Y, \xi, \eta) = \tilde{g}(K^N(X, Y)\xi, \eta)$ and $[A_{\xi}, A_{\eta}] = A_{\xi}A_{\eta} - A_{\eta}A_{\xi}$. If we put $K^N_{\ ac\overline{b}a} = K^N(e_d, e_c, e_{\overline{b}}, e_{\overline{a}})$, $K^N_{\ ac\overline{b}a} = K^N(e_d, e_c, e_{\overline{b}}, e_{a^*})$ and so on, then we have

$$K^{N}_{dc\overline{b}\,\overline{a}} = \frac{\tilde{c}}{4} (\delta_{da}\delta_{cb} - \delta_{db}\delta_{ca}) + \sum_{e=1}^{n} (H_{de\overline{a}}H_{ce\overline{b}} - H_{ce\overline{a}}H_{de\overline{b}}),$$

$$K^{N}{}_{dcb^{*}a^{*}} \!\!=\! \frac{\tilde{c}}{4} (\delta_{da}\delta_{cb} \!-\! \delta_{db}\delta_{ca}) + \sum_{e=1}^{n} (H_{dea^{*}}\!H_{ceb^{*}} \!-\! H_{cea^{*}}\!H_{deb^{*}}) \,.$$

$$(2.13) K^{N}{}_{dc\overline{b}^{*}\overline{a}^{*}} = \frac{\tilde{c}}{4} (\delta_{da}\delta_{cb} - \delta_{db}\delta_{ca}) + \sum_{e=1}^{n} (H_{de\overline{a}^{*}}H_{ce\overline{b}^{*}} - H_{ce\overline{a}^{*}}H_{de\overline{b}^{*}}),$$

$$K^{N}_{dc\overline{b}a^*} = \sum_{e=1}^{n} (H_{dea^*}H_{ce\overline{b}} - H_{cea^*}H_{de\overline{b}})$$
,

$$K^{N}{}_{dc\overline{b}a^{\overline{\epsilon}}} = \sum_{e=1}^{n} (H_{de\overline{a}^{\overline{\epsilon}}} H_{ce\overline{b}} - H_{ce\overline{a}^{\overline{\epsilon}}} H_{de\overline{b}})$$
,

$$K^{N}{}_{dcb^*\bar{a}^*} = \sum_{e=1}^{n} (H_{de\bar{a}^*} H_{ceb^*} - H_{ce\bar{a}^*} H_{deb^*})$$
.

Now we dompute the Laplacian of $||H||^2$. First we notice that M^n is assumed to be minimal. Using (2.6), (2.7), (2.11), (2.13) and the identities of Ricci for H, we can obtain the following equation (for detailed calculations, see [2]).

$$(2.14) \qquad \frac{1}{2}\Delta\|H\|^2 = \|\nabla H\|^2 + \frac{1}{4}(n+1)\tilde{c}\|H\|^2 + \sum_{x,y} \operatorname{tr}(A_xA_y - A_yA_x)^2 - \sum_{x,y} (\operatorname{tr}A_xA_y)^2.$$

Consider a (3n, 3n)-matrix (tr A_xA_y). Then it is a symmetric matrix and it can be represented by a diagonal matrix for a suitable choice of symplectic frame. Using this property and the well known inequality (Lemma 1) in [4], we have

$$\begin{split} (2.15) \qquad & \frac{1}{2}\Delta\|H\|^2 \geqq \|\nabla H\|^2 + \frac{1}{4}(n+1)\tilde{c}\|H\|^2 - 2\sum_{x,y}(\operatorname{tr}A_x^2)(\operatorname{tr}A_y^2) - \sum_x(\operatorname{tr}A_x^2)^2 \\ = & \|\nabla H\|^2 + \frac{1}{4}(n+1)\tilde{c}\|H\|^2 - 2(3n-1)\sum_a\left\{(\operatorname{tr}A_a^{-2})^2 + (\operatorname{tr}A_a\cdot^2)^2 + (\operatorname{tr}A_a\cdot^2)^2 + (\operatorname{tr}A_a\cdot^2)^2 + (\operatorname{tr}A_a\cdot^2 - \operatorname{tr}A_b\cdot^2)^2 + (\operatorname{tr}A_a\cdot$$

Using this inequality and a well known theorem of E. Hopf, we obtain

THEOREM 2.2. Let $\widetilde{M}^{4n}(\widetilde{c})$ ($\widetilde{c}>0$) be a 4n-dimensional quaternionic space form and M^n a compact totally real minimal submanifold of dimension n immersed in $\widetilde{M}^{4n}(\widetilde{c})$. If the second fundamental form H of M^n satisfies the inequality $||H||^2 < (n+1)\widetilde{c}/8(3n-1)$, then M^n is totally geodesic and of constant curvature $\widetilde{c}/4$.

Next we assume that M^n is an Einstein space. Then the scalar curvature ρ is constant. Thus $\|H\|^2$ is also constant because of (2.8). Furthermore, we have the following (see Lemma 2 in [2]);

(2.16)
$$\operatorname{tr} A_{\overline{a}^2} + \operatorname{tr} A_{a^{*2}} + \operatorname{tr} A_{\overline{a}^{*2}} = \frac{\|H\|^2}{n}.$$

Therefore, rewriting the inequality (2.15), we have

$$(2.17) \qquad \frac{1}{2}\Delta \|H\|^{2} = 0 \ge \|\nabla H\|^{2} + \frac{1}{4}(n+1)\tilde{c}\|H\|^{2} - \sum_{a}(\operatorname{tr} A_{\overline{a}}^{2} + \operatorname{tr} A_{a^{*}}^{2} + \operatorname{tr} A_{\overline{a^{*}}}^{2})^{2} \\ -6(n-1)\sum_{a}\left\{(\operatorname{tr} A_{\overline{a}}^{2})^{2} + (\operatorname{tr} A_{a^{*}}^{2})^{2} + (\operatorname{tr} A_{\overline{a^{*}}}^{2})^{2}\right\}$$

$$\begin{split} &+\sum_{a\neq b} \{(\operatorname{tr} A_{\overline{a}}{}^2 - \operatorname{tr} A_{\overline{b}}{}^2)^2 + (\operatorname{tr} A_{a}{}^2 - \operatorname{tr} A_{b}{}^2)^2 + (\operatorname{tr} A_{\overline{a}}{}^2 - \operatorname{tr} A_{\overline{b}}{}^2)^2 \\ &+ (\operatorname{tr} A_{\overline{a}}{}^2 - \operatorname{tr} A_{b}{}^2)^2 + (\operatorname{tr} A_{\overline{a}}{}^2 - \operatorname{tr} A_{\overline{b}}{}^2)^2 + (\operatorname{tr} A_{a}{}^2 - \operatorname{tr} A_{\overline{b}}{}^2)^2 \} \\ &\geq \Big\{ \frac{1}{4} (n+1) \tilde{c} - \frac{6n-5}{n} \|H\|^2 \Big\} \|H\|^2. \end{split}$$

Thus we have

THEOREM 2.3. Let $\tilde{M}^{4n}(\tilde{c})(\tilde{c}>0)$ be a 4n-dimensional quaterinionic space form and M^n an Einstein totally real minimal submanifold of dimension n immersed in $\tilde{M}^{4n}(\tilde{c})$. If the second fundamental form H satisfies the inequality $||H||^2 < n(n+1)$ $\tilde{c}/4(6n-5)$, then M^n is totally geodesic and of constant curvature $\tilde{c}/4$.

§ 3. Standard totally real submanifolds.

In this section, we give an example of totally real submanifolds of a quaternionic projective space HP^n . Let S^{4n+3} be the unit sphere of dimension 4n+3 in a (4n+4)-dimensional Euclidian space R^{4n+4} . We denote by $\{I, J, K\}$ the standard quaternionic structure given in R^{4n+4} by

E being the unit matrix of degree n+1. For simplicity, we denote coordinates of a point or components of a vector in R^{4n+4} by (x, y, z, w), where $x=(x^0, \cdots, x^n)$, $y=(y^0, \cdots, y^n)$, $z=(z^0, \cdots, z^n)$ and $w=(w^0, \cdots, w^n)$. We denote simply by N=(x, y, z, w) the outer normal vector of S^{4n+3} at each point $(x, y, z, w) \in S^{4n+3}$. Let $i_0: S^{4n+3} \to R^{4n+4}$ be the natural isometric imbedding. Then a triple $\{\xi, \eta, \zeta\}$ of vectors defined by $IN=i_0.\xi$, $JN=i_0.\eta$ and $KN=i_0.\zeta$ form a Sasakian 3-structure on S^{4n+3} , where $i_0.$ is the differential of i_0 (see [8], and [13]). Let g be the induced metric on S^{4n+3} and ∇ a Riemannian connection on S^{4n+3} with respect to g. We now put $\varphi=\nabla\xi$, $\psi=\nabla\eta$ and $\theta=\nabla\zeta$.

Consider the well known Hopf fibration $\tilde{\pi}: S^{4n+3} \to HP^n$ over the quaternionic projective space HP^n . Then the Riemannian metric \tilde{g} of HP^n is induced by $\tilde{g}(\tilde{X}, \tilde{Y}) \circ \tilde{\pi} = g(\tilde{X}^L, \tilde{Y}^L)$ for any vector fields \tilde{X} and \tilde{Y} tangent to HP^n , \tilde{X}^L

being the unique horizontal lift of \widetilde{X} . Then $\widetilde{\pi}$ is a Riemannian submersion (see [8], [12]) and $\widetilde{\pi}$ gives arise a quaternionic Kaehlerian structure of HP^n for which each canonical local basis $\{\widetilde{F}, \widetilde{G}, \widetilde{H}\}$ of HP^n is given by $\widetilde{F}\widetilde{X} = \widetilde{\pi}_*(\varphi \widetilde{X}^L)$, $\widetilde{G}\widetilde{X} = \pi_*(\varphi \widetilde{X}^L)$ and $\widetilde{H}\widetilde{X} = \pi_*(\theta \widetilde{X}^L)$ for any vector field \widetilde{X} tangent to HP^n (see [8]). As stated in § 1, HP^n is a quaternionic space form of constant Q-sectional curvature 4.

Let $\tilde{\imath}$ be the natural isometric immersion of the n-dimensional unit sphere S^n into S^{4n+3} given by $\tilde{\imath}(x){=}(x,0,0,0){\in}S^{4n+3}$ for any point $x{\in}S^n$. Then $\tilde{\imath}$ is totally geodesic. We denote by $T_x(S^n)$ the tangent space to S^n at a point x in S^n and by $\tilde{\imath}_*$ the differential of the immersion $\tilde{\imath}$. Then $\tilde{\imath}_*(T_x(S^n))$ is a linear subspace of the horizontal space at i(x) in S^{4n+3} , because any element $(u,0,0,0){\in}T_x(S^n)$ at $\tilde{\imath}(x){=}(x,0,0,0)$ is trivially orthogonal to $\xi{=}(0,x,0,0)$, $\eta{=}(0,0,x,0)$ and $\zeta{=}(0,0,0,x)$ at $\tilde{\imath}(x)$. With respect to the quaternionic structure of R^{4n+4} restricted to S^{4n+3} , we see that $T_x(S^n) \perp I(T_x(S^n))$, $T_x(S^n) \perp J(T_x(S^n))$ and $T_x(S^n) \perp K(T_x(S^n))$ and that each of $T_x(S^n)$, $I(T_x(S^n))$, $J(T_x(S^n))$ and $K(T_x(S^n))$ is contained in the horizontal space at $\tilde{\imath}(x)$ in S^{4n+3} for any point x in S^n , where we have identified $T_x(S^n)$ with its image by $\tilde{\imath}_*$.

Let $\pi: S^n \to RP^n$ be the natural projection of S^n onto the n-dimensional real projective space RP^n . Then, it is easily see that π coincides with the restriction $\tilde{\pi}|S^n$ of $\tilde{\pi}$ to S^n . Let us now define the natural isometric immersion $i: RP^n \to HP^n$ by i(x)=(x,0,0,0) in terms of homogeneous coordinates. Then i is also a totally geodesic immersion. We see easily that RP^n is totally real and totally geodesic as a submanifold of constant curvature 1 immersed in HP^n . Similarly, a real projective space RP^m of dimension m ($m \le n$) is connected and complete and that it is a totally real and totally geodesic submanifold of constant sectional curvature 1 immersed naturally in HP^n . We call such a RP^m the standard totally real submanifold of HP^n and its immersion, i. e., the standard immersion by $i: RP^m \to HP^n$.

§ 4. Proof of the main theorem.

In this section, we discuss a rigidity of totally real submanifolds immersed in a quaternionic projective space HP^n and give a proof of our main theorem stated in $\S 0$.

 given symplectic frame of HP^n at q.

Let x be arbitrary point in $S^n = \hat{M}^n$. Take a canonical local basis $\{\tilde{F}, \tilde{G}, \tilde{H}\}$ around the point $\Phi(x)$ and an anothor canonical local basis $\{\tilde{F}', \tilde{G}', \tilde{H}'\}$ around the point $f \circ \hat{\pi}(x)$. We take now an arbitrary symplectic frame $\{e_1, \cdots, e_n, \tilde{F}e_1, \cdots, \tilde{F}e_n, \tilde{G}e_1, \cdots, \tilde{G}e_n, \tilde{H}e_1, \cdots, \tilde{H}e_n\}$ of HP^n at $\Phi(x)$ in such a way that e_1, \cdots, e_n are tangent to $\Phi(S^n)$. We take next an arbitrary symplectic frame $\{e'_1, \cdots, e'_n, \tilde{F}'e'_1, \cdots, \tilde{F}'e'_n, \tilde{G}'e'_1, \cdots, \tilde{G}'e'_n, \tilde{H}'e'_1, \cdots, \tilde{H}'e'_n\}$ of HP^n at $f \circ \hat{\pi}(x)$ in such a way that e'_1, \cdots, e'_n are tangent to $f \circ \hat{\pi}(S^n)$. Since HP^n is frame homogeneous in the sense of quaternionic geometry, there exists an automorphism Ψ of HP^n such that $\Psi \circ \Phi(x) = f \circ \hat{\pi}(x)$, $\Psi_*e_a = e'_a$, $\Psi_*Fe_a = F'e'_a$, $\Psi_*Ge_a = G'e'_a$, and $\Psi_*He_a = H'e'_a$ which imply that $(\Psi \circ \Phi)_{*x} = (f \circ \hat{\pi})_{*x}$. Thus, identifying $\Psi \circ \Phi$ with Φ , we can assume that $f \circ \hat{\pi}(S^n)$ intersects to $\Phi(S^n)$ and that at a point of $f \circ \hat{\pi}(S^n) \cap \Phi(S^n)$ the tangent space of M^n immersed in HP^n coincides with that of RP^n imbedded in HP^n . Since both M^n and RP^n are complete and totally geodesic in HP^n , the image of S^n by $f \circ \hat{\pi}$ coincides with that of S^n by Φ . Therefore, when M^n is simply connected, $M^n = S^n$ and $f = f \circ \hat{\pi} = \Phi$. When M^n is not simply connected, $M^n = RP^n$ and $f \circ \hat{\pi} = \Phi$. Thus we obtain our main theorem because of Theorem 2.2.

Remark. Let $\widetilde{M}^{2n}(\widetilde{c})$ be a real 2n-dimensional complex space form of constant holomorphic sectional curvature \widetilde{c} and M^m a totally real submanifold of dimension m $(m \le n)$ immersed in $\widetilde{M}^{2n}(\widetilde{c})$. If M^m is totally geodesic, then M^m is a real space form of constant curvature $\widetilde{c}/4$ (see [1], [3], [11] and [16]).

Let M^m be a connected and complete submanifold immersed in the complex projective space $\mathbb{C}P^n$ of complex dimension n with constant holomorphic sectional curvature 4. Assume M^m is totally real and totally (geodesic). Then M^m is a real space form of constant curvature 1. It is easily verified that the m-dimensional real projective space $\mathbb{R}P^m$ ($m \leq n$) is a standard example of such totally real submanifolds of $\mathbb{C}P^n$, which is totally geodesic (c. f. [1]). Therefore, by the same argument as stated above, we can prove that M^m is congruent to \mathbb{S}^m or $\mathbb{R}P^m$ in the sense of Theorem 4.1.

BIBLIOGRAPHY

- [1] K. Abe, Applications of a Riccati type differential equations to Riemannian manifolds with totally geodesic distributions, Tôhoku Math. J., 25 (1973), 425-444.
- [2] B. Y. Chen and C. S. Houh, Totally real submanifolds of a quaternion projective space, to appear in Ann. di Mat.
- [3] B.Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. of Amer. Math. Soc., 193 (1974), 257-266.
- [4] S.S. CHERN, M.P. DE CARMO AND S. KOBAYASHI, Minimal submanifolds of sphere with second fundamental form of constant length, Functional analysis and related fields, Springer, New York, 1970, pp. 59-75.
- [5] C.S. Houh, Some totally real minimal surface in CP², Proc. Amer. Math. Soc., 40 (1973), 240-244.

- [6] C.S. Houh, Some totally real submanifolds in a quaternion Projective space, to appear.
- [7] S. ISHIHARA, Quaternion Kählerian manifolds, J. Diff. Geom., 9 (1974), 483-500.
- [8] S. ISHIHARA AND M. KONISHI, Differential geometry of fibred spaces, Publications of the study group of geometry, vol. 9, Japan Math. Soc., 1973.
- [9] M. Kon, Totally real submanifolds in a Kaehler manifold, to appear in J. Diff. Geom.
- [10] G.D. LUDDEN, M. OKUMURA AND K. YANO, A totally real surface in CP^2 that is not totally geodesic, Proc. Amer. Math. Soc., 53 (1975), 186-190.
- [11] G.D. LUDDEN, M. OKUMURA AND K. YANO, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur. 58 (1975) 346-353.
- [12] B. O'NEILL, The fundamental equations of submersion, Michigan Math. J., 13 (1966), 495-469.
- [13] S. SASAKI, Spherical space forms with normal contact metric 3-structure, J. Diff. Geom., 6 (1972), 307-315.
- [14] K. YANO, Note on totally real submanifolds of a Kaehlerian manifold, Tensor N.S., 30 (1976), 89-91.
- [15] K. Yano, Differential geometry of totally real submanifolds, to appear in J. diff. Geom.
- [16] K. YANO AND M. KON, Totally real submanifolds of complex space forms, Tôhoku Math. J., 28 (1976), 215-225.
- [17] K. Yano and M. Kon, Totally real submanifolds of complex space forms II, Kōdai Math. Sem. Rep., 27 (1976), 385-399.
- [18] K. YANO AND M. KON, Anti-invariant submanifolds, Marcel dekker, 1976.

Tokyo Metropolitan Technical College Higashiohi, Shinagawa-ku Tokyo, Japan