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TOTALLY REAL SUBMANIFOLDS OF A QUA-

TERNIONIC KAEHLERIAN MANIFOLD

BY SHOICHI FUNABASHI

§ 0. Introduction.

A submanifold M immersed in a Kaehlerian manifold M is said to be totally
real if each tangent space of M is mapped into the normal space by the almost
complex structure of M (see Chen and Ogiue [3]). Recently, several authors
have studied totally real submanifolds and obtained many interesting results
from many points of view (Abe [1], Chen and Ogiue [3], Houh [5], Kon [9],
Ludden, Okumura and Yano [10], [11], Yano [14], [15] and Yano and Kon [16],
[17] and [18]).

In the present paper, totally real submanifolds of a quaternionic Kaehlerian
manifold will be studied and quaternionic analogues of several properties of those
immersed in a Kaehlerian manifold will be proved. Let (M, g, V) be a quater-
nionic Kaehlerian manifold with quaternionic Kaehlerian structure (g, V) and
{F, G, H} a canonical local basis in a coordinate neighborhood 0 of M (see § 1).
We call a submanifold M immersed in M a totally real submanifold if each
tangent space of M is mapped into the normal space by F, G and H (see Ishi-
hara [7]). Recently, Chen and Houh ([2], [6]) have also studied this submanifold
and showed many results. Our main result is stated in the following main
theorem which will be proved in §4.

MAIN THEOREM. Let HPn be a quaternionic protective space of dimension 4n
and Mn a connected and complete submanifold of dimension n immersed by f:Mn

—* HPn. Assume Mn is a compact, totally real and minimal submanifold satisfying
the inequality ||//]|2^(n+l)/2(3n—1) for the square of the length of the second
fundamental form H of Mn. Then the Riemannian manifold Mn is an n-dimen-
sional real protective space RPn, and the immersion f: Mn -> HPn being congruent
to the standard immersion i: RPn-* HPn or, Mn is the unit sphere Sn, f being
congruent to the standard immersion i° π: Sn-*HPn, where π. Sn —»RP n is the
natural projection.

In § 1, we give briefly definitions and some fundamental results concerning
quaternionic Kaehlerian manifolds. In § 2, we prove some pinching theorems for
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the second fundamental forms. In § 3, we give an example of totally real sub-
manifolds immersed in a quaternionic space form. In the last section § 4, we
give the proof of our main theorem stated above.

Manifolds, mappings and geometric objects under discussion are assumed to
be differentiable and of class C°°. Unless stated otherwise, we use the following
conventions of indices: h, i, j = l, •••, 4n a, b, c, d: a, b, c, d: a*, b*, c*, d*: a*,
5*, c*, <5*—1, •••, n x=ά, α*, #*, y=b, 6*, 5*. The summation convention will be
used with respect to these systems of indices.

The author wishes to express his hearty thanks to Professor S. Ishihara
and his colleague K. Sakamoto who gave him kind encouragement and valuable
suggestions.

§ 1. Preliminaries.

Let M4n be a manifold of dimension 4n and assume that M471 satisfies the
following conditions (a) and (b) :

(a) M47Z admits a 3-dimensional vector bundle V consisting of tensors of
type (1, 1) over M4n satisfying the condition that in any coordinate neighborhood
0 of M4n there is a local basis {F, G, H} of V such that

,
(1.1)

GH=-HG=F, HF=-FH=G, FG = -GF=ίϊ,

where / is the identity tensor field of type (1, 1) in M4n. Such a triplet {F, G, H}
is called a canonical local basis of V in 0.

(b) There is a Riemannian metric g in M4ri such that, for any canonical
local basis {F, G, H} of V in U, the local tensor fields F, G and H are almost
Hermitian with respect to g and the equations

7^= f(X)G-q(X)H,

(1.2) VλG =

are satisfied for any vector field X in M4n, 7 denoting the Riemannian connection
determined by g, where p, q and r are 1-forms defined in U. Such a triplet
(M47i, ,̂ F) is called a quaternionic Kaehlerian manifold with quaternionic Kaeh-
lenan structure (g, V) (see [4]). A quaternionic Kaehlerian manifold (M4n, g, V)
will be sometimes denoted simply by M4n.

In a quaternionic Kaehlerian manifold (M4n, g, V) we take arbitrary inter-
secting coordinate neighborhood 0 and U/ and denote by {F, G, //} and
{Fx, G' ', H'} canonical local bases of V respectively in 0 and Uf. Then, taking
account of the condition (a), we have in Oc\U/
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/ f ' \ If

(1.3) G' = (%«) G

\ ff' I \ H

where the (3, 3)-matrix Su,uι=(3βa), (<*> β— 1, 2, 3) is a function defined in Ur\Uf

and taking values in the special orthogonal group SO(3) of degree 3.
When we take an orthonormal basis {elt •••, en, Felf •••, F£n, G^, •••, G0n,

//#!, ••• , Hen] of the tangent space Tx(Mίn) at each point x in £/, we say such
orthonormal basis a symplectic frame of (M4n, g, V) at x.

A real space form is a Riemannian space with constant sectional curvature.
Similarly, we give the following concept. If a quaternionic Kaehlerian manifold
M471 has constant Q-sectional curvature c, then M471 has the curvature tensor K
of the form

(1.4) ft(X, Ϋ}=-^{X/\Ϋ+FX/\FΫ+GX/\GΫ+HX/\HΫ

-2g(FX, Ϋ}F-2g(GX, Ϋ}G-2g(HXf Ϋ}H} ,

X and Y being arbitrary vector fields in M471, where Xf\ Y is a tensor field of
type (1, 1) defined as (X/\Ϋ)Z= g(Ϋ, Z)X-g(X, Z)Ϋ for any vector field Z in
M471 Jsee [4]). Such an M4n is calld a quaternionic space form and denoted it
by M471(c). As is well known, each quaternionic projective space HPn of dimen-
sion 4n is a quaternionic space form with constant Q-sectiorial curvature 4 by a
suitable normalization.

§ 2. Totally real submanif olds.

Let (M47i, g, V) be a 4n-dimensional quaternionic Kaehlerian manifold and
Mm a Riemannian manifold of dimension m(m^n) immersed in M4n by a iso-
metric immersion /: Mm — > M4n. Assume M471 is covered by a system of coor-
dinate neighborhoods with canonical local basis of the vector bundle V. For
any point x in Mw, we denote by {F, G, H} a canonical local basis in a coor-
dinate neighborhood around f(x). We call Mm a totally real submanif old of M471

if Mm satisfies

(2.1) Tx(Mm) 1 F(Tx(Mm)\ Tx(Mm)

for any point * in Mm, Tx(Mm} denoting the tangent space to Mm at Λ: and the
symbol 1 showing to be orthogonal, where Tx(Mm) is identified with its image
under the differential /* of the isometric immeresion /. This condition is inde-
pendent of choice of canonical local bases because of (1.1).

By a plane section of a differentiable manifold, we mean a 2-dimensional
linear subspace of a tangent space of the differentiable manifold. A plane
section σ in Mm is said to be anti-quaternionic if Fσ, Gσ and Hσ are respec-
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tively perpendicular to σ. As a quaternionic analogue of a proposition proved
in [2], we can easily prove

PROPOSITION 2.1. Let (M4rι, g, V) be a ^n-dimensional quaternionic Kaehlerian
manifold and Mm an m-dimensional submanifold immersed in M4n (m^ri). Then
Mm is a totally real submanifold of M4n if and only if every plane section of
Mm is anti-quaternionic.

Let M4n(c) be a 4n-dimensional quaternionic space form and Mn an n-dimen-
sional totally real minimal submanifold of Min(c). We now take a local fields of
symplectic frame {elf ••• , en βι = Felf ••-, en — Fen\ e^=Gelf •••, en*=Gen\ e^=
Helf ••-, βή*=Hen} such that elf ••• , £n are tangent to Mn and ^*, •••, e^ normal

to Mn. We denote respectively by V and 7 the Riemannian connection on
M4n(c) and the connection induced on T(Mn}®N(Mn}. Where T(Mn] and N(M»)
are the tangent bundle and the normal bundle of Mn respectively. When we
restrict 7 to T(Mn), the connection V coincides with the Riemannian connection
on Mn. Then the Gauss- Weingarten formulas are given by

(2.2) Veceb=

(2.3) V<cef=

where H(ec, ^)=Σ(^c6αβα+^cδα^α*+^cδα^αO for the second fundamental form H
a

of Mn. Furthermore g is the metric induced in Mn and Ab is a local field of
symmetric linear transformation of the tangent space of Mn defined by g(A^X9 Y)
=g(H(X, Y\ eb) for any tangent vectors X and Y and so on. And then D is
the connection induced in the normal bundle N(Mn). Taking account of (1.2) and
(2.2), we have

(2.4) A»ee

because of (2.3), or equivalently

(2.5) Hcbz=HbCa
:=Hca^, Hcba* = Hbca* = Hcab* , Hcba* = Hl>ca*==Hcaϊ>i

Let K and K be the curvature tensors of M4n(c) and Mn respectively. Then
the structure equation of Gauss is given by

(2.6) Kdcϋa

where Kdcba=g(K(ed, ec}eb, ea} and δda is the Kronecker delta. Since Mn is
assumed to be minimal, the Ricci tensor S of Mn is represented by the following
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(2.7) S

where Scι>=S(ec, eb\ Thus, for the scalar curvature p of Mn, we have

(2.8)

|| H\\2 being the square of the length of the second fundamental form H.
Since Mn is totally real, we have from (1.4)

(2.9) ft(X, Y)Z=~(XΛY)Z

for any vectors X, Y and Z tangent to Mn. Therefore \jt(X, F)Z]*=0, where
the left hand side means the normal parts of K(X, Y)Z. If we put (7//)(ed, ec, eb)

=Σl(VdHcb°'ea+VdHcba*ea*+VdHcb

Έ*ea*'), then we have the following equation of
II

Codazzi.

(2.10) (7χff)(r, Z)-(7y#)(*, Z)=0 ,

or equivalently

(2.11) 7d//rt«-7β/yd5
5=0, Vd#cδ

α*-Vc//dδ

α*=0, ViH^-VcH^Q.

Let Z and F be any vectors tangent to Mn and £ and 37 any vectors normal
to Mn. We denote by /f ^ the curvature tensor of the normal bundle N(Mn),
namely, KN(X, Y)ξ = ^l x^γξ-^γ^xξ-DLX,YΊξ. Hence we have the following
equation of Ricci.

(2.12) KN(X, Y, ξ, η}=K(X, Y, f, η)+g(LAξ9 A^(X\ Y) ,

where K»(X, Y, ξ, η) = g(KN(X, Y)ξ, η) and [̂ , A^^AξA^A^. If we put
KNdrtά=KN(ed, ec, &b, βά\ KN

arta.*=KN(ed, ec, eb, ea*) and so on, then we have

c n

K dcba — ~r($da$cb~ddb$ca)Jr Σ (
rl β— i

K dcb*a*—~Γ\δdaδcb ^db^ca)JΓ Σ
4 e=ι

(2.13) K dcδ"*ά*— ~7~(δdaδcb ^cZδ^cα)+ Σ
4 e=ι

K deb a*— Σ

K dcba*— Σ (Hdea*HCeb Hcea'Hdeb ) >
e=l
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K dcb*a*= Σ
β=ι

Now we dompute the Laplacian of ||#||2. First we notice that Mn is assumed
to be minimal. Using (2.6), (2.7), (2.11), (2.13) and the identities of Ricci for H,
we can obtain the following equation (for detailed calculations, see [2]).

Λ?14Λ —-All/ 1/!! 2— ||V/7ΊI2-r- —-ίVi-MV^I J7ΊI24- V tr( A A A A \2 V (tr A A V\ίJ JL^J ~ t Λ | | J j £ | | (I V I I II \ . \fL^JLJL I) J. 1 || π^ /1 LL\*ιιχSΊ.y JΛ.yΓ\χ) — ^j \LI f\.χjΓ\y) .
Δ 4 x,y x,y

Consider a (3n, 3n)-matrix (tr AxAy). Then it is a symmetric matrix and it can
be represented by a diagonal matrix for a suitable choice of symplectic frame.
Using this property and the well known inequality (Lemma 1) in [4], we have

(2.15) ^-L\\H\\2^ ||V//|Γ+4-(n+l)c||7/||2-2 Σ (tr ̂ /)(tr Ay

2}- Σ (tr A,2)2

Δ 4 x,y x

2-2(3«-l) Σ {(tr A?γ
α

+(trΛα.2)2+(trΛί.2)2}

+ Σ {(tr ̂ 2-tr ,V)2+(tr Aa,
2-tr ^6.

2)2+(tr A^-ίr AS??}

Σ {(tr ̂ 2-tr Λ6.
2)2+(tr ^"-tr A^)2+(ir Aa,

2-tτ Λ- 2

a,b

Using this inequality and a well known theorem of E. Hopf, we obtain

THEOREM 2.2. Let M4n(c) (c>0) be a 4n-dimensional quaternίomc space form
and Mn a compact totally real minimal submanifold of dimension n immersed in
Min(c). If the second fundamental form H of Mn satisfies the inequality \\H\\2

<(n+l)c/8(3w— 1), then Mn is totally geodesic and of constant curvature c/4.

Next we assume that Mn is an Einstein space. Then the scalar curvature
p is constant. Thus \\H\\2 is also constant because of (2.8). Furthermore, we
have the following (see Lemma 2 in [2])

(2.16) tr A
n

Therefore, rewriting the inequality (2.15), we have

(2.17) ^Δ||W=0^||Vtf||2+^(n+l)M
Δ 4 α

-6(n-l)Σ {(tr 4
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+ Σ {(tr A^-tr ,V)2+(tr 4,.»-tr A 2)2+(tr A^-
a&b

+(tr A^-tr A.2)2+(tr Az*-

\\H\\\

267

Thus we have

THEOREM 2.3. L#ί M4n(c)(c>0) £<? α kn-dimensional quatennionic space form
and Mn an Einstein totally real minimal submanifold of dimension n immersed in
M4n(c). // the second fundamental form H satisfies the inequality \\H\\2 <n(njrl)
c/4(βn— 5), then Mn is totally geodesic and of constant curvature c/4.

§ 3. Standard totally real submanif olds.

In this section, we give an example of totally real submanifolds of a qua-
ternionic projective space HPn. Let S47i+3 be the unit sphere of dimension 4n+3
in a (4tt-f4)-dimensional Euclidian space R*n+*. We denote by {/, /, K] the
standard quaternionic structure given in ^47l+4 by

(3.1) T

( 0 -E

E 0

0
\

/
0

0 E '

. -E o :

0

0

-E

0

-E

0

E

0,

E\

0

/

J=
(

E

, 0

)

0

E \

-E 0

0 -E

0

κ=

E being the unit matrix of degree n+L For simplicity, we denote coordinates
of a point or components of a vector in ^47l+4 by (x, y, z, w), where x—(x°, •••, xn),
y=(y*, ~ ,yn\ z=(έ°, — , zn) and w=(w°, — , w;71). We denote simply by 7V=
(^,3;, z, u;) the outer normal vector of S4n+3 at each point (x,y, z, w/)eS4n+3.
Let x 0 : S4re+3 -» ^4W+4 be the natural isometric imbedding. Then a triple {£, 97, ζ}
of vectors defined by IN=ιQ*ξ, JN=ι0*η and KN=i0*ζ form a Sasakian 3-structure
on S4n+3, where v is the differential of z0 (see [8], and [13]). Let g be the
induced metric on S4n+3 and V a Riemannian connection on 54n+3 with respect
to g. We now put φ=^ξ, ψ^^Jη and #—Vζ.

Consider the well known Hopf fibration π : Sίn+B-*HPn over the quater-
nionic projective space HPn. Then the Riemannian metric g of HPn is induced
by g(X, f) o π=g(XL, ΫL} for any vector fields X and f tangent to HP", XL
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being the unique horizontal lift of X. Then π is a Riemannian submersion (see
[8], [12]) and π gives arise a quaternionic Kaehlerian structure of HP71 for which
each canonical local basis {F, G, H} of HPn is given by FX=π*(φXL}, GX=
π*(ψXL) and HX=π*(ΘXL} for any vector field X tangent to HP71 (see [8]). As
stated in § 1, HP71 is a quaternionic space form of constant ζ)-sectional curvature 4.

Let ϊ be the natural isometric immersion of the n-dimensional unit sphere Sn

into S4n+s given by ϊ(x)=(x, 0, 0, 0)eS4n+3 for any point x^Sn. Then i is totally
geodesic. We denote by Tx(Sn) the tangent space to Sn at a point x in Sn and
by z* the differential of the immersion L Then ί*(Ta.(Sn)) is a linear subspace
of the horizontal space at i(x) in S4n+3, because any element (w, 0, 0, 0)eTa.(Sn)
at ί(jt)=(jc, 0, 0, 0) is trivially orthogonal to £=(0, x, 0, 0), 37=(0, 0, *, 0) and ζ=
(0, 0, 0, x) at ί( c). With respect to the quaternionic structure of /?4n+4 restricted
to S4n+B, we see that T*(Sn) 1 /(TΛ(Sn)), TΛ(SB)i/(TΛ(SB)) and T*(Sn) 1 K(Tx(Sn»
and that each of T*(Sn), I(Tx(Sn}\ J(Tx(Sn^ and K(Tx(Sn)) is contained in the
horizontal space at z(jc) in S4n+3 for any point t in Sπ, where we have identified
Tx(Sn) with its image by ?*.

Let π : Sn -+ RPn be the natural projection of Sn onto the n-dimensional real
projective space RPn. Then, it is easily see that π coincides with the restriction
π\Sn of π to Sn. Let us now define the natural isometric immersion ι: RPn-*
HPn by i(x)=(x, 0, 0, 0) in terms of homogeneous coordinates. Then i is also a
totally geodesic immersion. We see easily that RPn is totally real and totally
geodesic as a submanifold of constant curvature 1 immersed in HPn. Similarly,
a real projective space RPm of dimension m (m^ri) is connected and complete
and that it is a totally real and totally geodesic submanifold of constant sec-
tional curvature 1 immersed naturally in HP71. We call such a RPm the standard
totally real submanifold of HPn and its immersion, i. e., the standard immersion
by x : RPm-+HPn.

§4. Proof of the main theorem.

In this section, we discuss a rigidity of totally real submanifolds immersed
in a quaternionic projective space HPn and give a proof of our main theorem
stated in § 0.

Let Mn be a connected and complete submanifold of dimension n immersed
in HPn by /: Mn-+HPn. Denote by Mn the universal covering manifold of
Mn and by π : Mn —»M n the covering projection. Assume Mn is totally real and
totally geodesic. By (2.6), Mn is a real space form of constant curvature 1 and
hence Mn is so. Then, as is well known, Mn is the unit sphere Sn. Let π : S47l+3

-»HP7 1 be the Hopf fibration and ϊ : Sn —»S4n+3 the natural isometric immersion
stated in § 3. Consider a composite mapping Φ=π ° ι: Sn —* HPn which is an
immersion. Then, as is well known, HPn is frame homogeneous in the sense of
quaternionic geometry, that is, for any two points p and q of HPn, there exists
an automorphism Ψ: HPn -»HPn such that Ψ(p)=q and the differential Ψ* of
Ψ maps an arbitrary given symplectic frame of HPn at p into another arbitrary



TOTALLY REAL SUBMANIFOLDS 269

given symplectic frame of HPn at q.
Let x be arbitrary point in Sn=Mn. Take a canonical local basis {F, G, H]

around the point Φ(x) and an anothor canonical local basis {F', G7, ίϊ'} around
the point /° π(x). ^We take now an arbitrary symplectic frame {elf ~-, en, Felf

—, Fen, Gelf •••, Gen, Helt —, /&„} of #Pn at Φ(*) in such a way that ,̂ •-,
en are tangent to Φ(Sn). We take next an arbitrary symplectic frame {e[, •••, en,
P'e(, -, F'<4 G'eί, -, G'ei, #'4, -, #Vn} of #P* at /«»£(*) in such a way
that eί, •••, ^ are tangent to foπ(Sn). Since HPn is frame homogeneous in the
sense of quaternionic geometry, there exists an automorphism Ψ of HPn such
that Ψ^Φ(x)=f^π(x\Ψ^ea = ef

afΨή:Fea = F/e'afΨ^Gea = G/e^ and Ψ*Hea=H'&
which imply that (¥ ° φ)s|eα,=(/o π)^. Thus, identifying ?Γ ° Φ with Φ, we can
assume that /° π(Sπ) intersects to Φ(SW) and that at a point of /° π(Sn)r\Φ(Snϊ
the tangent space of Mre immersed in .HP7* coincides with that of RPn imbedded
in HP71. Since both Mn and RPn are complete and totally geodesic in HPn, the
image of Sn by / ° π coincides with that of Sn by Φ. Therefore, when Mn is
simply connected, Mn=Sn and f=f° π=Φ. When Mn is not simply connected,
Mn=RPn and /*> π—Φ. Thus we obtain our main theorem because of Theorem
2.2.

Remark. Let M2n(c) be a real 2n-dimensional complex space form of con-
stant holomorphic sectional curvature c and Mm a totally real submanifold of
dimension m (m^ri) immersed in M2n(c). If Mm is totally geodesic, then Mm is
a real space form of constant curvature c/4 (see [1], [3], [11] and [16]).

Let Mm be a connected and complete submanifold immersed in the complex
projective space CPn of complex dimension n with constant holomorphic sectional
curvature 4. Assume Mm is totally real and totally <geodesic>. Then Mm is
a real space form of constant curvature 1. It is easily verified that the m-
dimensional real projective space RPm (m^ri) is a standard example of such
totally real submanifolds of CPn, which is totally geodesic (c. f. [1]). Therefore,
by the same argument as stated above, we can prove that Mm is congruent to
Sm or RPm in the sense of Theorem 4.1.
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