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ON A RIEMANNIAN MANIFOLD ADMITTING A
CERTAIN VECTOR FIELD

By ISUKE SaTO

Introduction. In the previous paper [3] the author defined the notion of
manifolds with normal paracontact Riemannian structure and studied some pro-
perities of the manifolds which are closely similar to the ones of Sasakian
manifolds. As is well known, odd-dimensional spheres and then elliptic spaces
give us typical examples of Sasakian manifolds. Corresponding to this, we shall
show that pseudo-spheres and then hyperbolic spaces may be regarded as normal
paracontact Riemannian manifolds.

In the present paper we shall show the good knowledge of the manifolds in
consideration. §1 is a general survey of our manifolds. In §2, we make a
study of maximal integral submanifolds lying in our manifolds. In §3, we
speak of the remarkable subclasses of our manifolds which we call to be special.
Finally, in §4 we show examples of special paracontact Riemannian manifolds.
We shall see here that hyperbolic spaces are regarded as typical examples of
our manifolds in consideration.

1. Normal paracontact Riemannian manifolds ([2], [3]). An n-dimensional
C=-manifold is called to have an almost paracontact structure if there is given
the triple (¢, & 5) of (1, 1)-tensor ¢, vector field § and 1-form 7 defined over
the manifold which satisfy the following

7]251:1 2
SD]hgoi]:éih_ 7]th s

where the indices 4, 1, j run over the range 1, 2, -, n.
Every C~-manifold with almost paracontact structure has a positive definite
Riemannian metric g such that

Ne=ginf",
2P, ot =817, -

We call such a metric g an associated Riemannian metric of the almost para-
contact structure. Almost paracontact manifolds admit always four tensors
N;* N, N, and N,. If N," vanishes, then the other three tensors reduce to
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zero. So, we call N;;* the torsion tensor of the almost paracontact structure ([2]).
If, in an almost paracontact Riemannian manifold, the following equation

20;:=N 1+, (0;5=90,"8r)

holds, then we say that an almost paracontact Riemannian manifold is a para-
contact Riemannian manifold, where V, denotes the operator of covariant differen-
tiation with respect to the Riemannian connection.

We now define an operator H on a paracontact Riemannian manifold by

.1 : :
Hy'= 5 lple Mo o) =0 oa' + 275 4"}

If a tensor T; satisfies
H;*"Te:=Tjs (or =0),

then T;; is said to be hybrid (or pure) with respect to two indices : and ;. The
author proved the following.

THEOREM 1.1. ([3]). Suppose, in a paracontact Riemannian manifold, that 7
15 a closed 1-form and V,p;; 15 pure with respect to 1 and j, then we have

(LD vk@jizvkv;‘m:ﬁj(—gkz"‘ 7]1«77@)"” 7]1’(‘"ng+ 7]k7]j) s

and the torsion tensor N, vanishes.

According to Theorem 1.1 we call a paracontact Riemannian manifold together
with closed 1-form % satisfying (1.1) to be normal. A normal paracontact Rieman-
nian manifold is, for brevity, called to be P-Sasakian and it is characterized as
follows :

THEOREM 1.2 ([3]). Let (M, g) be a Riemanman manifold admitting a unit
vector field & Suppose that the 1-form % corrvesponding to & 1s closed and satisfies
(1.1). Then M has a P-Sasakian structure.

2. Maximal integral submanifolds. Let (M, g, §&) be an n-dimensional P-
Sasakian manifold. The Pfaffian equation

7=0
determines in M an (n—1)-dimensional distribution D. We say that a tangent
vector X of M belongs to the distribution D if and only if »(X)=0 is satisfied.
PROPOSITION 2.1. The distribution D determined by 7 1s nvolutive.

Proof. Let X and Y be tangent vectors belonging to D. Then it is easily
seen that ([ X, Y1)=0.

Now, differentiating covariantly ».,£*=1 and making use of the closedness of
7, we have §'V;£*=0 which means that the trajectories of the vector field £ are
geodesics. By Bianchi’s identity we can easily see that
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RMGI=—(n—1)5".

This shows that the trajectories are Ricci-curves. We denote by T(P) and A7I(P)
the trajectory of & and the maximal integral submanifold of the distribution D
through a point P of M respectively. In the following, we write T and M for
T(P) and M(P) for brevity. R

We take a local coordinate system (%) in M such that M is locally expressed
by parametric equation

2.1 xt=x"(u?),

where (x") denote a local coordinate system in a neighborhood of P€M and the
indices 4, g, v run over the range 1, 2, ---, n—1. If we put

B;*=0x"/ou*,
we have
(2.2) 7B"=0,

which means that the trajectory T and the maximal integral submamfold M are
perpendicular to each other. So & may be taken as the normal of M. The
induced metric tensor g,; of M and the second fundamental tensor H,; of M is
given respectively by

g;zl:gjinJBli »
H‘ulz(ﬁ,uBlh)vhz - Blelhvlvh .
Gauss and Weingarten’s equations are written as
{ V,.Bit=H,£",
ﬁﬂth_H lBlh ,

where V# indicates covariant differentiation along M. Covariantly differentiating
along M (2.2) we have, using (2.3),

2.3)

(2,4) VjﬂiBﬂ]le"_Hl_,]:O.

Furtheremore, covariantly differentiating (2.4), on account of (1.1) and (2.2), we
have

(2.5) V. H,:=0.

If we put V£*=¢,;", then the set (¢, &, 7, g) defines an almost paracontact
Riemannian structure ([2]). The transform ¢,"B;* of B;* by ¢;" is represented
as linear combination of B;* and &", that is,

(2'6) gDihBltzflﬁBph'l_fXEh s

where f# and f; is a (1,1)-tensor and a l-form on M respectively. Transvecting
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(2.6) with 7, and making use of (2.2) and 7,p,"=0, we have f;=0 and then we
have

@.7 o"B=f#B,".

Similarly transvecting (2.7) with ¢,’ and making use of ¢,’¢;"*=8;"—7:£’, we have
ByY=f#f"B.,

from which

2.8) Ftfpr=0z.

we now define a linear map ¢: Mp— Mp by v—'v, where ‘v=¢v (v: tangent
vector). Then the map ¢ restricted to the complementary subspace of 1-dimen-
sional subspace determined by & behaves just like the collineation of an almost
product structure ([2]). Therefore we have

goi"B[#B;h.
Accordingly, we have, from (2.7),

fl'uB,uh + Blh
i.e.,

2.9 S0

By (2.8) and (2.9), we see that fi* is an almost product structure on M. (24) is
also written as

ththZ—Hg”Bpn .
From (2.7) and the above equation, we have
f#t=—H

This means that —H;# defines an almost product structure on M. Hereafter in
this section we assume that

Hl'u:'tEZ# s

which means that M does not be totally umbilical hypersurface with mean
curvature 1. The characteristic roots of the tensor —H,* are +1 and —1. The
characteristic vectors corresponding to the root +1 span the distribution D, and
those corresponding to —1 span the distribution D_ and these distributions are
mutually complementary. The projection tensors on two complementary distribu-
tions D, and D_ are respectively given by

2.10) Pi=a B —HA, Qb= B ~(—H2)

and satisfy
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P#x'*‘Q/t :5#2 ’
PDZP‘up:P[lzi vaQﬂy:Q/ll) PVXQ,UD:QVXP#‘JZO .

We notice, by assumption H,'#4d,% that the projection tensors P,* and Q,* are
not trivial and so are meaningfull. Taking account of (2.5), the Nijenhuis tensor
constructed by the almost product structure —H,* vanishes. Hence it follows
that the distributions D, and D_ are completely integrable ([5]).

Now, let there is given a distribution D in an n-dimensional Riemannian
manifold (M, g). If VyX belongs always to D for any vector field X belonging
to D and any vector field Y, then the distribution D is said to be parallel.

To show that the distribution D, be parallel, we take any vector field X

~

belonging to D, and any vector field ¥ on M. Then we have
—H/ X*=X*,
from which, taking account of (2.5),
—HN,X*=Y,X*.
Making use of the above equation, we have
—HAYVN,X=Y"(—HN,X)=Y"V,X*.

This means that V7YX belongs to D,. Accordingly, we see that the distribution
D, is parallel and so is D_ also. Hence by the well-known theorems, we have
the following

THEOREM 2.1. Suppose every maximal wntegral submanifold M of a normal
paracontact Riemannian manifold does not be totally umbilical hypersurface with
mean curvature 1. Then MN 1s locally decomposable. Moreover, 1f M s sumply
connected and complete, then M is globally a product space.

3. Special P-Sasakian manifolds. Let (M, g) be an n-dimensional Riemannian
manifold with Riemannian metric g. Let there is given a unit vector field & and
suppose the 1-form 7 corresponding to & satisfies the following

CRY; Vini=—gntn;7.*

The equation (3.1) shows that % is a closed 1-form. Differentiating covariantly
(3.1) we can easily see the following

ViV =0~ grit0:n)+ 10— gesF10.) .

Thus our manifold is a P-Sasakian manifold. Such a P-Sasakian manifold is
called to be special or to be SP-Sasakian.

*)  We note that in spaces of constant curvature k we can always find a /local
vector field y satifying p p;=kg i+,
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Substituting (3.1) into (2.4) and making use of (2.2), we have
H;d:g;d;

which means that each maximal integral submanifold M is totally umbilical
hypersurface Nwith mean curvature 1. Conversely, if each maximal integral
submanifold M of P-Sasakian manifold is totally umbilical one with mean cur-
vature 1, we have, from (2.4),

(vjﬂz_'—gji)B//BXl: .
Transvecting the above equation with B#,B?%, we have

Vane=—8net a7,
where we have put

Bty=g"gyB7,
that is, it follows that our manifold is spacial. Thus we have the following.

THEOREM 3.1. In order that a P-Sasakian manifold be special, it 1s necessary
and sufficient that each maximal wntegral submanifold be totally umbilical one with
mean curvature 1.

Now we can choose a local coordinate system (y*) such that the curves
defined by the equations y*= constants are the trajectories of & and the hyper-
surfaces defined by the equation y"= constant are the maximal integral submani-
folds. Since the trajectories are orthogonal to the maximal integral submanifolds,
we have at first

an:gnl:0~
The trajectories being geodesics, we have the equations
_d_ dy { h },_dy’_ dy' __ d*
dy" dy "y i dy" dyr T dy”
along the last coordinate curves, where ¢ is a function of y". By means of
dy"/dy"=4d,", this equation reduces to

or
1 h l hn h
—‘—z_g 'ua‘ugnn‘*’ jg angnn=z'5n .

It follows from the above equation for A=A that the component g,, depends
only on y". Hence, by a suitable choice of the last coordinate y", we can suppose
that g,,=1. Then we have z=0 and y" may be regarded as the arc length of
the trajectories. Therefore the arcs of the trajectories cut off by two maximal
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integral submanifolds defined by y"=s, and y"=s, have the common length s,—s,
(sz>sy), that is, maximal integral submanifolds are geodisically parallel to one
another.

If we take the first n—1 coordinates (%) of (y*) as a local coordinate system
in each maximal integral manifold, then we have

Blh"—:alyhzalh and gplzg;zl:
on each maximal integral submanifold. Since the tensor g** has components
gnn:1 , gnz:gxn_:o s

the Weingarten’s equation

~~

ﬁ#Bzhzaﬂwa{jhi}»BﬂfB;—{#" Z}B,C”:HME”

reduces to

~

s

~~—

because of §"=4," with respect to the coordinate system ("), where {ﬂﬁ ]} is

the Christoffel’s symbol formed by &.,. The equation (3.2) for h=n reduces to

{#n Z}: - %ang,ulzg,ui .

Therefore it follows from the above equation that the components g, are writ-
ten in the form

gylze_zyngyl)
where g,; are functions of the n—1 coordinates y*. Since the tensor g, is
positive definite, so is the matrix (£,2). The metric form of M is witten in the
form

(3.3) ds*=e %" g,;(y")dy*dy*+-(dy™)? .

A local coordinate system (y™) having the above properities is called an adapted
coordinate system.

Let M be an (n—1)-dimensional manifold diffeomorphic to M and having £
as metric tensor. The manifold M and maximal integral submanifolds neighbor-
ing M are locally homothetically diffeomorphic to one another. Theref/o\/re, the

Christoffel’s symbol constructed by £,; of M has the same expression {#" ,2} as

that of the induced metric Z,; in M. The curvature tensor of &y in M is
denoted by R,.:", the Ricci tensor by R,; and the scalar curvature R, which is
defined by
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1 -

E:m R ;8 (n>2).

M is called to be associated with M.
With respect to an adapted coordinate system (y*), the components of the

Christoffel’s symbol {J.h i} of M are given by

fu == =0

R I L By
~ T~

{ﬂx z}:{;x}:{ﬂx ,2}’

the last of which follows from (3.2) for h=4, too. Moreover the curvature
tensor R,;;" of M has components

Rnlunxzafy R, Zn:_g s

(3.5) A/ ~ iz
Rv,ul'c:Rv#lx:(avxgplwayxgvl) ’
the other components being zero, the Ricci tensor R,, of M has components

Rnn=_<n'—"1); R;m:O;
(3.6) { ]
R,Ld:R,uZ_(n—l)g/tl ’
and the scalar curvature R of M is equal to
3.7 R=e?"R—n(n—1).

In the case of a two-dimensional manifold M, we can develop arguments in
just the same way as in the classical theory of surfaces in an ordinary Euclidean
3-space. The metric form of M is expressed as

dsz___e-zyZ(dy1)z+ (dyZ)Z

in an adpted coordinate system (3!, y?), and the Gaussian curvature of M is
given by

—Ryps/gn=-1,

from which we see that two-dimensional SP-Sasakian manifold is of constant
curvature —1. More generally from (3.5) we have the following

THEOREM 3.1. In order that a SP-Sasakian manifold be of constant curvature
—1, it is necessary and sufficient that the associated manifold M be locally flat.
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Proof. 1t is evident by (3.5).

THEOREM 3.2. Let an SP-Sasakian manifold be ssmply connected and complete.
Then the SP-Sasakia;z manifold 1s isometric to hyperbolic space if and only if the
associated manifold M is locally flat.

4. ExAMPLES. (1). As the model of the hyperbolic n-space H" we take the
upper half space x>0 in the sense of Poincare’s representation. Without any
loss of generality, we may assume that the sectional curvature of H" is —1. In
this case the metric tensor of H™ is given by

g5:=(x") %04

Let us now calculate the Christoffel’s symbol with respect to g;; and then
we have

{nh h}:_%:_{#"#} (h, ¢ be not summed),

the others being zero. The equation of geodesics in H™ is given by

[ wr = rerer=o,

4.1
l (xn)//+ x_ln{;g\l:<x1)/(x2)/_(xn)/(xn)/}zo,
or
(x‘)’ ’
oz ) =0
1y [ < (x™ )

l (LY Sevey=o,

x (xn)z

where the dashes denote differentiation with respect to arc length of geodesics.
From (4.1 we have

(x)

(")

=c*(const.),

4.2)
ﬂn)—— + nil c*c*=b(const.) .
x =

By (4.2),, if ¢*=0, we have
x*=constants

which is a geodesic. We may easily see that the components of tangent vectors
& of the geodisics are given by %0, 0, ---, 0, x). Obiously & is a unit vector
field on H™. Moreover, by simple calculation, we have
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Vini=—gjtn;m.

where 7,=g.,£" Thus it follows that the hyperbolic space H™ has an SP-Sasakian
structure.

(2). Let T"*' be an (n—1)-dimensional locally flat torus with coordinate
system (x!, x% -+, x™®"!) and R a real line with coordinate (x®). Consider the
warped product

M=RX,T"!
where f=¢~%*" ([1]). The Riemannian metric tensor is given by
gu=e"",  gu=0, gun=1,
and the Christoffel’s symbol by

{nz 4=t =

the others being zero. Hence for the components of the curvature tensor we
have

— A— p=227 A
Rlnyn—R,uZp =7 ’ Rlnn =—1 ’

the others being zero, from which we can easily see that M is a space of con-
stant curvature —1.

Let us now a vector field £ having components (0, ---, 1) such that the pro-
jection on R of € is a vector field 9/0x™. Then we can easily find that n;=g;,&"
satisfies the following

Vni=—gut 0,7,

Thus M is an SP-Sasakian manifold.

(3). We shall consider a torse-forming vector field &, that is, a vector field
which is always torse-forming along any curve traced in a Riemennian manifold
(M, g) ([4]). In this case, we have

(4.3) Vi&'=pd,"+0c.t",

where p and ¢, are any scalar and 1-form respectively. As we can assume that
the vector field £ is a unit one, (4.3) is written in the form

Vini=p(g5— 7.,

where 7,=gi&". When the scalar p takes especially the value —1, then the
manifold in consideration becomes an SP-Sasakian manifold.
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