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ON A RIEMANNIAN MANIFOLD ADMITTING A

CERTAIN VECTOR FIELD

BY ISUKE SATO

Introduction. In the previous paper [3] the author defined the notion of
manifolds with normal paracontact Riemannian structure and studied some pro-
perities of the manifolds which are closely similar to the ones of Sasakian
manifolds. As is well known, odd-dimensional spheres and then elliptic spaces
give us typical examples of Sasakian manifolds. Corresponding to this, we shall
show that pseudo-spheres and then hyperbolic spaces may be regarded as normal
paracontact Riemannian manifolds.

In the present paper we shall show the good knowledge of the manifolds in
consideration. § 1 is a general survey of our manifolds. In § 2, we make a
study of maximal integral submanifolds lying in our manifolds. In § 3, we
speak of the remarkable subclasses of our manifolds which we call to be special.
Finally, in § 4 we show examples of special paracontact Riemannian manifolds.
We shall see here that hyperbolic spaces are regarded as typical examples of
our manifolds in consideration.

1. Normal paracontact Riemannian manifolds ([2], [3]). An n-dimensional
C°°-manifold is called to have an almost paracontact structure if there is given
the triple (φ, ξ, η] of (1, l)-tensor φ, vector field ξ and 1-form η defined over
the manifold which satisfy the following

where the indices h, i, j run over the range 1, 2, •••, n.
Every C°°-manifold with almost paracontact structure has a positive definite

Riemannian metric g such that

We call such a metric g an associated Riemannian metric of the almost para-
contact structure. Almost paracontact manifolds admit always four tensors
Njih, Nji, Nτ

h and Nτ. If N^ vanishes, then the other three tensors reduce to
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zero. So, we call Njf the torsion tensor of the almost paracontact structure ([2]).
If, in an almost paracontact Riemannian manifold, the following equation

holds, then we say that an almost paracontact Riemannian manifold is a para-
contact Riemannian manifold, where 7^ denotes the operator of covariant differen-
tiation with respect to the Riemannian connection.

We now define an operator H on a paracontact Riemannian manifold by

If a tensor Tjt satisfies
Hji9rT.r=TJi (or -0),

then Tji is said to be hybrid (or pure) with respect to two indices i and j. The
author proved the following.

THEOREM 1.1. ([3]). Suppose, in a paracontact Riemannian manifold, that η
is a closed I- form and ^kψji is pure with respect to i and j, then we have

(l.l) Vkφjί=VkVjηi=ηj(-gkι+ηkηι)+ηi(-gkj+ηkηj),

and the torsion tensor N jτ

h vanishes.
According to Theorem 1.1 we call a paracontact Riemannian manifold together

with closed 1-form η satisfying (1.1) to be normal. A normal paracontact Rieman-
nian manifold is, for brevity, called to be P-Sasakian and it is characterized as
follows :

THEOREM 1.2 ([3]). Let (M, g) be a Riemannian manifold admitting a unit
vector field ξ. Suppose that the l-form η corresponding to ξ is closed and satisfies
(1.1). Then M has a P-Sasakian structure.

2. Maximal integral submanifolds. Let (M, g, ξ) be an n-dimensional P-
Sasakian manifold. The Pfaffian equation

determines in M an (n— l)-dimensional distribution D. We say that a tangent
vector X of M belongs to the distribution D if and only if η(X)=Q is satisfied.

PROPOSITION 2.1. The distribution D determined by η is involutive.

Proof. Let X and Y be tangent vectors belonging to D. Then it is easily
seen that η([X, 7])=0.

Now, differentiating covariantly ηtξl=l and making use of the closedness of
η, we have ξj^jξ

l=Q which means that the trajectories of the vector field ξ are
geodesies. By Bianchi's identity we can easily see that
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This shows that the trajectories are Ricci-curves. We denote by TCP) and M(P)
the trajectory of £ and the maximal integral submanifold of the distribution D
through a point P of M respectively. In the following, we write T and M for
TCP) and M(P) for brevity.

We take a local coordinate system (uλ) in M such that M is locally expressed
by parametric equation

(2.1) jcA=JcV),

where (*A) denote a local coordinate system in a neighborhood of PeM and the
indices λ, μ, v run over the range 1, 2, ••• , n— 1. If we put

we have

(2.2) 7*5^=0,

which means that the trajectory T and the maximal integral submanifold M are
perpendicular to each other. So, ξ may be taken as the normal of M. The
induced metric tensor gμλ of M and the second fundamental tensor Hμχ of M is
given respectively by

Gauss and Weingarten's equations are written as

(2.3) r
1

where 7« indicates covariant differentiation along M. Covariantly differentiating
along M (2.2) we have, using (2.3),

(2.4) 7,7l5/l>5/+£k=0.

Furtheremore, covariantly differentiating (2.4), on account of (1.1) and (2.2), we
have

(2.5) 7^=0.

If we put ^iξh=φih, then the set (̂ ?, ξ, η, g) defines an almost paracontact
Riemannian structure ([2]). The transform ψiΈf of Bλ

l by φf is represented
as linear combination of 5/ and fΛ, that is,

(2.6) φιhBϊ

where // and fλ is a (l,l)-tensor and a 1-form on M respectively. Transvecting
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(2.6) with ηh and making use of (2.2) and ηhφih=Q, we have fλ— 0 and then we
have

(2.7) ψi

hBΐ=ffBμ

h.

Similarly transvecting (2.7) with φh

3 and making use of φhjφih=δi:'—ηiξj, we have

from which

(2-8) ////=£/.

we now define a linear map φ: MP-*MP by v «-»'ι;, where 'v=φv ( v : tangent
vector). Then the map φ restricted to the complementary subspace of 1-dimen-
sional subspace determined by ξ behaves just like the collineation of an almost
product structure ([2]). Therefore we have

Accordingly, we have, from (2.7),

i. e.,

(2.9)

By (2.8) and (2.9), we see that // is an almost product structure on M. (2.4) is
also written as

From (2.7) and the above equation, we have

This means that —Hj* defines an almost product structure on M. Hereafter in
this section we assume that

which means that M does not be totally umbilical hypersurface with mean
curvature 1. The characteristic roots of the tensor —Hj* are +1 and —1. The
characteristic vectors corresponding to the root +1 span the distribution D+ and
those corresponding to —1 span the distribution D- and these distributions are
mutually complementary. The projection tensors on two complementary distribu-
tions D+ and D- are respectively given by

(2.10) Pμ

λ=\{dμ

λ+(-Hμ*}}> Qμ

λ=^{dμ

λ~(-Hμ

λ)}

and satisfy
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P Λ ι _ n Λ _ s λΓ μ \^£μ — υμ >

p λp v=.p λ o λo v=o λ p λo v—o λp y— o•*• v •*• μ J μ > ^cv *°c μ V μ > •*• ι> ^c μ V ι> •*• μ v

We notice, by assumption Hμ

λφδμ

λ, that the projection tensors Pμ

λ and Qμ

λ are
not trivial and so are meaningfull. Taking account of (2.5), the Nijenhuis tensor
constructed by the almost product structure —Hμ

λ vanishes. Hence it follows
that the distributions D+ and D- are completely integrable ([5]).

Now, let there is given a distribution D in an n-dimensional Riemannian
manifold (M, g). If 7FZ belongs always to D for any vector field X belonging
to D and any vector field Y, then the distribution D is said to be parallel.

To show that the distribution D+ be parallel, we take any vector field X
belonging to D+ and any vector field Y on M. Then we have

-Hμ*X"=X2,

from which, taking account of (2.5),

Making use of the above equation, we have

This means that ^YX belongs to D+. Accordingly, we see that the distribution
D+ is parallel and so is D- also. Hence by the well-known theorems, we have
the following

THEOREM 2.1. Suppose every maximal integral submamfold M of a normal
paracontact Riemannian manifold does not be totally umbilical hypersurface with
mean curvature 1. Then M is locally decomposable. Moreover, if M is simply
connected and complete, then M is globally a product space.

3. Special P-Sasakian manifolds. Let (M, g) be an n-dimensional Riemannian
manifold with Riemannian metric g. Let there is given a unit vector field ξ and
suppose the 1-form -η corresponding to ξ satisfies the following

(3.1) V^i=-£jt+^t*>

The equation (3.1) shows that η is a closed 1-form. Differentiating covariantly
(3.1) we can easily see the following

Thus our manifold is a P-Sasakian manifold. Such a P-Sasakian manifold is
called to be special or to be SP-Sasakian.

*) We note that in spaces of constant curvature k we can always find a local
vector field η satifying pjηi = kg
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Substituting (3.1) into (2.4) and making use of (2.2), we have

which means that each maximal integral submanifold M is totally umbilical
hypersurface with mean curvature 1. Conversely, if each maximal integral
submanifold M of P-Sasakian manifold is totally umbilical one with mean cur-
vature 1, we have, from (2.4),

Transvecting the above equation with Bμ

hB
λ

k, we have

V/^*=— ,gΛ*+W?ft>

where we have put

Bt*h=g^ghiBf ,

that is, it follows that our manifold is spacial. Thus we have the following.

THEOREM 3.1. In order that a P-Sasakian manifold be special, it is necessary
and sufficient that each maximal integral submanifold be totally umbilical one with
mean curvature 1.

Now we can choose a local coordinate system (yh) such that the curves
defined by the equations yλ= constants are the trajectories of ξ and the hyper-
surfaces defined by the equation yn— constant are the maximal integral submani-
folds. Since the trajectories are orthogonal to the maximal integral submanifolds,
we have at first

gλn—gnλ = ̂

The trajectories being geodesies, we have the equations

d dyh f h \ dy3 dyl __ dyh

dyn dyn ' I ; ϋ dyn dyn dyn

along the last coordinate curves, where τ is a function of yn. By means of
dyh/dyn=δn

h, this equation reduces to

or

It follows from the above equation for h=λ that the component gnn depends
only on yn. Hence, by a suitable choice of the last coordinate yn, we can suppose
that gnn—l Then we have τ=Q and yn may be regarded as the arc length of
the trajectories. Therefore the arcs of the trajectories cut off by two maximal
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integral submanifolds defined by yn=s1 and yn=sz have the common length s2—Si
(s2>Sι), that is> maximal integral submanifolds are geodisically parallel to one
another.

If we take the first n— 1 coordinates (yλ) of (yh] as a local coordinate system
in each maximal integral manifold, then we have

B?=d2yh=δΛ

h and gμλ=gμλ,

on each maximal integral submanifold. Since the tensor gih has components

the Weingarten's equation

reduces to

(3.2)

because of ξh=dn

h with respect to the coordinate system (yh\ where j [ i s
I fJL A)

the ChristoffeΓs symbol formed by gμλ. The equation (3.2) for h—n reduces to

Therefore it follows from the above equation that the components gμλ are writ-
ten in the form

σ p-2yn$
&μλ—K δ μλ y

where gμλ are functions of the n—1 coordinates jΛ Since the tensor ^ is
positive definite, so is the matrix (gμϊ). The metric form of M is witten in the
form

(3.3) d^e-^e^rtdydf+wr.
A local coordinate system (yh) having the above properities is called an adapted
coordinate system.

Let M be an (n— l)-dimensional manifold diffeomorphic to M and having gμλ

as metric tensor. The manifold M and maximal integral submanifolds neighbor-
ing M are locally homothetically diffeomorphic to one another. Therefore, the

ChristoffeΓs symbol constructed by gμλ of M has the same expression | κ | as

that of the induced metric gμλ in M. The curvature tensor of gμλ in M is
denoted by ^y^/, the Ricci tensor by Rμλ and the scalar curvature R, which is
defined by
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M is called to be associated with M.
With respect to an adapted coordinate system (yh\ the components of the

ChristoffeΓs symbol j . 1 of M are given by

f » j r n 1 r . J
In nJ Iμ nJ In nJ

μ
the last of which follows from (3.2) for h—M, too. Moreover the curvature
tensor Rkji

h of M has components

(3.5)

the other components being zero, the Ricci tensor Rvμ of M has components

(3.6)
r n n = — - ,
{
1 Rμλ=Rμλ-(n-l

and the scalar curvature R of M is equal to

(3.7) R=e*ynR-n(n-ΐ).

In the case of a two-dimensional manifold M, we can develop arguments in
just the same way as in the classical theory of surfaces in an ordinary Euclidean
3-space. The metric form of M is expressed as

in an adpted coordinate system (y1, y2\ and the Gaussian curvature of M is
given by

Rl212/gll= 1 9

from which we see that two-dimensional SP-Sasakian manifold is of constant
curvature — 1. More generally from (3.5) we have the following

THEOREM 3.1. In order that a SP-Sasakian manifold be of constant curvature
— 1, it is necessary and sufficient that the associated manifold M be locally flat.
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Proof. It is evident by (3.5).

THEOREM 3.2. Let an SP-Sasakian manifold be simply connected and complete.
Then the SP-Sasakian manifold is isometric to hyperbolic space if and only if the
associated manifold M is locally flat.

4. EXAMPLES. (1). As the model of the hyperbolic n-space Hn we take the
upper half space xn>Q in the sense of Poincare's representation. Without any
loss of generality, we may assume that the sectional curvature of Hn is —1. In
this case the metric tensor of Hn is given by

Let us now calculate the ChristoffeΓs symbol with respect to gjt and then
we have

j , \= -- ^r = — I r (h, μ be not summed),
(n h) x (μ μj

the others being zero. The equation of geodesies in Hn is given by

(4.1)

or

(xnγ

where the dashes denote differentiation with respect to arc length of geodesies.
From (4.iy we have

(xκY
)-—=c*(const.),

(4.2)

Xn

By (4.2)!, if c*=0, we have

which is a geodesic. We may easily see that the components of tangent vectors
ζ of the geodisics are given by f(0, 0, ••• , 0, xn). Obiously £ is a unit vector
field on Hn. Moreover, by simple calculation, we have
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where ηi=gϊflξ
h. Thus it follows that the hyperbolic space Hn has an SP-Sasakian

structure.
(2). Let Tn~l be an (n— l)-dimensional locally flat torus with coordinate

system (x1, x2, •••, xn~l) and R a real line with coordinate (xn\ Consider the
warped product

M=RxfT
n~1

where f=e~2χn ([!]). The Riemannian metric tensor is given by

and the ChristoffeΓs symbol by

the others being zero. Hence for the components of the curvature tensor we
have

the others being zero, from which we can easily see that M is a space of con-
stant curvature —1.

Let us now a vector field ξ having components (0, •••, 1) such that the pro-
jection on R of ξ is a vector field d/dxn. Then we can easily find that r]i=gιhζ

h

satisfies the following

Thus M is an SP-Sasakian manifold.
(3). We shall consider a torse-forming vector field ξ, that is, a vector field

which is always torse-forming along any curve traced in a Riemennian manifold
(M, g) ([4]). In this case, we have

(4.3) V£h=pδih+σ£h,

where p and στ are any scalar and 1-form respectively. As'we can assume that
the vector field ξ is a unit one, (4.3) is written in the form

where r]i=gihζh When the scalar p takes especially the value —1, then the
manifold in consideration becomes an SP-Sasakian manifold.
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