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A CERTAIN DERIVATIVE IN FIBRED RIEMANNIAN
SPACES, AND ITS APPLICATIONS
TO VECTOR FIELDS

By ICHIRO YOKOTE

Introduction. Recently, Ishihara [1] studied vector fields in fibred Rieman-
nian spaces with 1-dimensional fibre. The main purpose of the present paper
is to study these problems in fibred Riemannian spaces with higher dimensional
fibre.

For this purpose, we define a kind of derivatives which are closely related
to Lie derivative, to describe some properties of vector fields in fibred Rieman-
nian spaces with higher dimensional fibre.

In the first section, we shall give some preliminaries for fibred Riemannian
spaces following to the sense of Ishihara-Konishi [2]. In the second section,
we shall derive the so-called structure equations of fibred Riemannian spaces,
which were mainly obtained in a previous paper [9]. In the third section, we
shall define the (*)-Lie derivative for later use. Section 4, 5 and 6 are devoted
to the study of vector fields, Killing, affne Killing and projective Killing res-
pectively.

§1. Preliminaries on fibred spaces

In this section, we shall recall definitions and properties concerning fibred
spaces in the sense of Ishihara-Konishi [2].

Let M and M be two differentiable manifolds of dimension r and n respec-
tivelg, where s=r—n>0, and suppose that there exists a differentiable mapping
w: M — M which is onto and maximal rank n everywhere. Throughout the
paper, the differentiability of manifolds, mappings and geometric objects we
discuss are assumed to be of C*. The manifolds we discuss are assumed to be
connected. Then the inverse image = *(P) of any point P of M is an s-dimen-
sional submanifold of M which is called the fibre over P and denoted by Fp, or
smply by F. Moreover we assume that each fibre is connected. Such a set
(M, M, z} is called a fibred space, M the total space, M the base space and &
the projection. N N

Let there be given a Riemannian metric & in M of a fibred space {M, M, «}.
Then the set {M, M, g, m} is called a fibred space with Riemannian metric § and
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the Riemannian space (A7I, Z) the total space. In the total space (]\71, g), we
denote by 4 the n-dimensional distribution which is perpendicular and comple-
mentary to the tangent space to the fibre at each point.

We take coordinates neighborhoods {U, x#} of M and coordinates neighbor-
hoods {U, v*} of M such that n(J)=U, where x# and v* are coordinates in i)
and U, respectively?. Then the projection x : M — M be expressed with respect
to {U, x#} and {U, v, by certain equations of the form

(1.1) ve=0%x¥),

where v*(xf) denote the coordinates of the projection P=x(P) of a point p
with coordinates x# in UJ and are differentiable functions of variables x# with
Jacobian (0v?/0x™) of maximum rank n. Take a fibre F such that Fmﬁ$¢.
We may assume that F mﬁ is connected and that there are in F/\U coordinates
u® in such a way that (v*, u%) is a system of coordinates in U, v* being coordi-
nates of the point n(F) of U. Differentiating (1.1) by x’, we put

(1.2) Ela:afl}a 5

where 6,=0/0x’. Then, for each fixed index a, E,* are components of a local
covector field E® defined in 0. On the other hand, if we put C,=d/0u* which
is a local vector field in U for each fixed index «, then C, form a natural frame
of each fibre F along FAU. We denote by C¥, components of C, in {U, x7}.
Denoting by &,; the components of & in {U, x¥}, we put

(1.3) 8,5=87,C"Cl3.

Then Z,; are components of the induced metric tensor g of F along FN U. 1t
we put

C/*=g1,8%°C7 ¢,

where (§%%) is the inverse matrix of (82p), and denote by C* the local covector
ﬁeldN with components C;* in U for each index a, then (E%, C%) forms a coframe
in U. Denoting by (E¥,, C#g) the inverse matrix of (E;% C;%), we have

EfEl,=8¢,  E°Cly=0,

(1.4)

CIQEI(;ZO 3 cIaCIﬁ:(Sg
and
(1.5) E“E" +4C,*CH ,=0%.

Denoting by (§77) the inverse matrix of (g,;) and putting

1) Throughout this paper, the indices H, I, J, K, L run from 1 to . This system
of indices is mainly used with respect to the coordinates xH. The indices a, b, ¢, d, e
run from 1 to n, and the indices a, 8, 7, §, ¢ run from n+1 to n+s=r. We use the
summation convention with respect to these systems of indices.
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1.6) gov=811E’E"y,
we obtain
1.7 Ho=g"guE.

EH, are components of a local vector field E, defined in {U, x#}, for each fixed
index a. Thus, we find that the set (E,, Cp) forms in U a frame dual to the
coframe (E¢ C%). We shall often denote by (Bjp) (resp. (B4)) the frame (E,, Cp)
(resp. the coframe (E¢, C#)), where B,=FE, and Bz=Cg (resp. B*=E® and B*=C*)".
As the similar notation to the above, we often denote by (Bfz) (resp. (B,%)) the
matrix (E7,, C'p) (resp. the matrix (E,% C;%). Then we can express (1.4) and
(1.5) as

1.4y B;*B'p=0%,
and
(1.5 B*B¥ 4=,

respectively. Moreover, we easily obtain
(1.8 Bs=B'3d;, BA=B,4dx’,

where 9,=0/0x! and (dx”) denotes the coframe dual to the frame (3,) in {U, x'}.
We often use 9; as differential operators in U if there is no fear of confu-
sion. In this case, from the first equation of (1.8), we have

(1.9) abza/avbIE’,ﬁI ’ 8ﬁ=a/8u‘9=C1ﬁ51 .

From now on, we shall often denote by (0z) the set of differential operators

(05, 0p).
Let there be given an arbitrary tensor field in M, say T of type (1, 2) with

local expression
(1.10) T=T,dx’ Qdx' @iy

in {{/, x’}. Taking account of (1.8), we see that T is also represented as fol-
lowings :

(1 10)/ ?v‘:ch“E0®Eb®Ea+chaEc®Eb®ca+

| +T"°CTQCPRE,+Trs*CTQCPRCy,

where
Tw*=E’.E"WEx*T, /", Too*=E’ E"Cy®T ™, -

1) Throughout this paper, the indices A, B, C, D, E run from 1 tor. This system
of indices is mainly used with respect to the coordinates (v%, u®). We use the summa-
tion convention with respect to this system of indices.
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T, 5°=C’,C1Ex*T /%,  Typ*=C’,C1eCux*T ;"

In the right-hand side, the first term T.,°E‘Q E*Q E, determines a global tensor
field in M, which is called the horizontal part of T and denoted by 7. The last
term T,5*C"QCPRC, determines also a global tensor field, Wthh is called the
vertical part of T and denoted by 7. For a function f in M, we define its
horizontal part f and vertical part f by f——f—-f
A tensor field T in M is said to be projectable if it satisfies
T

(LHT)=0
for any vertical vector field V in ]\71, f;—, denoting the Lie derivation with respect

to V. A function f in M is said to be projectable if T7f=0 for any vertical
vector field V in M.

Given a projectable function 7 in M, we can define a function f in M in
such a way that, for any point P of M, f(P)=7(P), where P is a point of M
such that z(P)=P. We call f the projection of 7 and denote it by pf.

A tensor field, say T of type (1,2) with local expression (1.10), in M is
projectable if and only if T.,% are projectable, or equivalently, if and only if

0
ou”

Then, for a projectable tensor field 7' of this type, we can define a local tensor
field Ty in U having p(T.,*) as components with respect to {U, v*}. The local
tensor field Ty determines a global tensor field 7 of the same type as that of
T, which is called the projection of 7" and denoted by T=pT.

N For simplicity, from now on, any projectable function 7, global or local, in
M is identified with its projection pf.

Given a tensorNﬁeld T in M, there is a unique horizontal and projectable
tensor field 7' in M such that p7=T. This 7 is called the lift of T.

When the metric tensor g is projectable in a fibred space {M M, g, w} with
Riemannian metric g, {M M, g, =} or simply (M £) or more simply M is called
a fibred Riemanman space.

From now on, we restrict ourselve to a fibred Riemannian space M. If we
put g=pg, then g is a Riemannian metric in M, which is called the wnduced
metric of M and has components g, defined by (1.6). The Riemannian manifold
(M, g) thus introduced is called the base space.

If we put

(1.11) 0uTor?= T,,%=0.

gcb_.__EJcElngI

in 1\71, then (g¢) is the inverse matrix of (g,) in M, where we identify any
projectable function with its projection.

Let V be the Riemannian connection of the Riemannian space (M, &) and
o~

denote by { ]HI} the Christoffel’s symbols constructed from &, in {U, x#}. Let
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V and ¥V be the Riemannian connections determined by the induced metric g=pg
in M and by the induced metric g in F, respectively.

We denote by {cab} and { @ } the Christoffel’s symbols constructed from

7B
8o in {U, v*} and g, in {FAU, u<}, respectively.
If we put
(1.12) V,BH =TI o*3B,°B",

in U, where I";4; are local functions defined in UJ, then we have the following
results :

a
@) Fcab:{c b} :
w _[a
(b) F?’ ﬁ—{r ‘3}
() Rewriting I',%, and I'.*3(=I"s%) into h,* and h®.; respectively, we have
hep®+hy =0, h®5=8" Ny Bap -

Along each fibre F, h%, are connection coefficients of the induced connection
of the normal bundle of the submanifold F embedded in (1\71, g) with respect to
normals E,.

(d) Rewriting I'/*s(=I"s%) and I}, into L,;* and —L,*, respectively, we
have

Lrab:Lrﬁagabgiga s Fcaﬁ:Pcﬁa_Lﬂac s

where P.* are the functions appearing in
LogE=0,  LosEe=—PeCa,  LciC=0, Lo Cx=P 5 E*.

Along each fibre F, L,* are components of the second fundamental tensor
of the submanifold F embedded in (]\71, g) with respect to normals E,. If the
equations L;;*=0 hold, then {M, M, g, =} is called a fibred Riemanman space
with isometric fibre. If the equations L;3*=A%Z;; hold, where A=A"E, is the
mean curvature vector along each fibre and a horizontal vector field in M, then
(M, M, § =} is called a fibred Riemannian space with conformal fibre.

Summing up the results mentioned above, we have

a o _pa
Fcab:{c b} ’ Fca{:’:F,S c—h B
(1.13) Fraﬁ:L‘flsa ’ Fcab:hcba ) Frab:_LTab )
a — a__ a a, — _Cl_
Pet=Pes*—Lg*,  I'/% {T,B}'

Moreover, it is known that the following identities hold (see [2]):
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(1.14) (adhch,a‘f'Pdeahcbe)+(achbda'f'Pcs“hde)‘f‘(abhdca‘f‘Pbeahdce)=0 s
(115) zafhcba—l'(acpbra_achra+Pcsanre_PbeaPcrs)':O »
(1-16) aa.g;‘ﬁ_Pangsﬁ—PaﬂegTa:_ZLTﬁegea ’

where 0,=d/0v* and 0,=0/0u®. Furtheremore, using the identity
(1.17) a,Pd@“—85Pd7“=0 »
we find that there exist local functions /7,% in J such that

(118) Pdfg”':a(gﬂd“ .

§2. Structure equations

In this section, we derive the so-called structure equations of a fibred
Riemannian space {A7[, M, g n}. To do so, we now define two covariant deri-
vative operators Y and "V of M.

Let & ”(M) be the space of all tensor fields of type (p, ¢) in M. Let Ti(hM)
(resp. ﬂ‘;(vM)) be the space_ of all horizontal (resp. vertical) tensor fields of type
(r, s) (resp. type (t, u)) in M. We now consider the formal tensor product in M

such as EI'P(M)#EIT(hM)#ﬂ'L(vM) We call an element T of this space a (p )
partial tensor in M and denote by srg;,f(M) the space of all (p )partlal tensors

in M We may identify & ggg(M), FUM) and EISS,Z(M) with & "(M), gr(hM) and
ﬂ‘,ﬁ(vM), respectively. For any element of I P"(M) say an element T of SZ'H}(M)
with components T,/,%*, we define the (*)-covariant derivative VT of T as a
partial tensor with components of the form

/\./ ~
%T 1,0 a__aKT _l_{K H}T ._TH.-...{KHJ}

2.1)
+([’caeT.'.e."‘{'FcasT.'.'.e—‘T.'e'.'rceb_T.'.' .chﬁ)BKc

in U, where I'’s are given by (1.13). For any element 7' of Q’g’sqf(M), v*T is an
element of I27%,(M). In particular, for any element of c_rggg(M) g P(M), we have
v T'=VT.

If we define two covariant derivations ‘V and ”V acting on elements of
TEAM) by
(2.2) N=EXN%,  "V=CKN%
respectively, then we have the folNlowing results : N

(a) For any element of g2Z(M), say an element 7 of TIHiI(M) with com-
ponents T,7,%%, T and "VT are respectively elements of THI(M) and T(M),
and have respectively, components of the forms
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I~ I~

T =T < {KI H}T.”.'.'—TH'.:.' {KH ]}) EX,

@9 Y AR (NIRRT DR PED AN SR A
/7/ /\/
YN TR g 8
@24)

Lo T T T s e =T o T =T T

(b) For any projectable elements of ST'(hM) say an element T of Er‘(hM)
with components T,* 1n U, and for any projectable horizontal vector X in M
with components X° in U, we have

(2.5) XN Ty =p(X“VT5%)
in M, or equivalently,
(2.5) VxT=p('V:T),

where X=pX and T=pT.

(¢) For any element of ! (vM) say an element T of T vM) with com-
ponents 7,# in UJ, and for any vertical vector field X in M with components X%
in U, we have

(2.6) XN TFf=X"N,T/F
in F f\ﬁ, or equivalently,
2.6) 9 T="V%:T,

¥V denoting the Riemannian connection determined by the induced metric 2 in
F. We call 'V and ”V the van der Waerden-Bortolotti covariant deriwations for

M and for F respectively.
Making use of (1.4)" and (1.5)" and taking account of (1.12), we have

/\./

@7 Io*5=(00B" B+{ ; K} 7085\ Bt

Using (2.7) and taking account of (1.13), (2.3) and (2.4), we easily have the fol-
lowing equations

(28) /vcElb:hcbaCIa ’
2.9 "N Cle=h"sE" s,
(210) ”v)’cIﬁ:LrﬁaEta s

2.11) PNl =— L%Cly .
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We call the equations (2.8) and (2.9) the co-Gauss equations of the given fibred
Riemannian space and the co-Weingarten equations of the gwen fibred Riemannian
space respectively. Moreover, we may call the equations (2.10) and (2.11) the
Gauss equations for each fibre and the Weingarten equations for each fibre res-
pectively.

From the definition, we easily obtain

PROPOSITION 2.1. The equations
VE8ri=0,  Vigw=0,  VEZp=0, 'V&1=0, 'Vegu=0,
No8rs=0, "Va8;1=0, "Vags=0 and "Va8;3=0
hold i M.

Let X, K and K be the curvature tensors of £ in ]\71, gin M and Z in F,
respectively. We denote by Kes JER Ki® and K;;* components of K in (O, x2},
those of K in {U, v°} and those of K in {FN\U, u2}, respectively.

If we put

(2.12) Ppes*=B*pB’ cB'sBu*Kis 1",
then we easily see that Ppcg* satisfy
Ppeg*+Popp?=0,  Ppcs*+Pepp®+Pppc?=0.
On the other hand, from (2.7) we have
(0B p—0pB ) By =1"c*p—I'p*c .
Thus, taking account of (1.13), we have
(0cB?p—0pB¥c)Bu*=0,  (0.B¥,—0,B")Bu*=2hy",
@19 @.B"5—0B")Bu*=P,s*,  (3,B"5—:B")Bx*=0.

For any function f in M, taking account of (2.13), we have
(2.14) aCan_aDaCf:(aCBHD_aDBHC)(éHf>:(acBHD_aDBHC)BHa(aafN) s

from which we see that 7 is projectable if and only if 9¢0p7—0pdcf=0.
Taking account of (2.13) and (2.14), we see that (2.12) reduces to

(2'15) PDCBA:aDFCAB_aCFDAB+FDAEFCEB_FCAEFDEB
+ 1. 43Cs* 0B’ p—0pB’¢) .

Taking account of (1.13), (1.15) and (2.13), and using (2.15), we have the follow-
ing equations :

(2.16) Pyop®=Kaep®—2hath%e+ ey h%e—hap*h%.
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2.17) Poeg®="Vuh®g—'Voh®—2ha,* Los®

(2.18) Pies®=—"Voh%s+h%:Ls e+ L3Ry +h% Lty

(2.19) P ="Vsh%s5—'V Lsg*+ Ly Leg®+hesh%s,

(2.20) Py =" A% —" T h% s+ % hoys— A% sh%— L3 Ly*s+ Ly Lty

2.21) Piye="V5Ls*—"V;Lsg",

(2.22) P =K — Ls® Lys+ L% Ly,

(2.23) P =—"Y5L,%+"V:Ls%,

(2.24) P ="VsLs%— g g’ V. Ly’ ,

(2.25) Poos®=—"VLs® A"V Ls®s—2" Vshge® —hae® ozt heehlus
— L Lg A+ L% L',

(2.26) Pios® =" s+’ Vo L5~ Lys* L+ heshes® ,

2.27) Py ="V yh o~V has®+2hg L. .

We call the equations (2.16), (2.17) and (2.25) the co-Gauss equations, the co-
Codazzi equations and the co-Ricct equations of the given fibred Riemannian space,
respectively. On the other hand, we may call the equations (2.22), (2.23) and (2.20)
the Gauss equations for each jibre, the Codazzi equations for each fibre and the
Ricct equations for each fibre, respectively.

Taking account of (2.27), we have

PROPOSITION 2.2. The equations
(2.28) "Naheo® +'V ehoa® +'Vohao +haet L%+ heo® L% 4+ hpg* L% =0
hold wn M.

Remark. Using (1.14), we have also (2.28) (see [2]).

COROLLARY. If M has isometric fibres, then the equations

N iheo* +'V oo+ Voh g *=0

hold in M.

On the other hand, using (2.26), we have

ProPOSITION 2.3. The equations

Zea"Vsher® +85a"Veheo*=8ea' Vs L5%c— 8’ Ve L

hold in M.
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COROLLARY. If M has isometric fibres, then the equations
8ea"Vshey®+ 850" Vehep®=0,  "Vsh%e+"Veh%s=0,  "Vahe*=0
hold . M.

Concerning arguments developed in this section, see [9].

§3. The (*)-Lie derivative

In this section, we shall define the (*)-Lie derivation which operates on
projectable elements of I¥4(M) and closely related to the Lie derivation.

Let there be given a projectable vector field X in the total space M, which
has the components X# in {{/, x¥}. Then we have an expression of the form

3.1) XA=BH XA=FE" ,X°+-C¥ X,  3X°=0,

where X°=FE,*X’, X*=C,2X’. Since X is projectable, X* identified with the
projection pX* of X* are the components of X=pX in U.
Denoting by Lz the Lie derivation with respect to the vector field X in M,
and using (1.9), we have
(3 2) .ZXBKBIXNHéyBKB_BKggyXKZBHAXAéHBKB_BHBéH(BKAXA)
' :XAaABKB—aB(BKAXA)=XA(8ABKB—33BKA)—BKAagXA o

On the other hand, from (2.7) we have

(3.3) 04B%5—03B% 4=B¥o(I' s°3—1T'5°4) .
Taking account of (1.3) and (3.3), we find that (3.2) reduces to
(3.4) [EXy=—FE¥,0,X°—CX .2,

(3.5) L3CK5=—CX¥ (35 X*—Po*X %),

where we have put

(3.6) Zyt ="V X+ 2hy* X+ L% X7 .
Operating £z on BXzBx4=04 and using (3.4) and (3.5), we have
3.7) L3E;*=E;*8,X°,

3.8 I3Cr*=E"Zy*+Cf0sX%—Pog*X°) .

If we take a frame (B,)=(F,, Co) and the coframe (BZ)=(E® CP) dual to
(B, in U, then we see that equations (3.4), (3.5), (3.7) and (3.8) are equivalent to

(3.4) L3Ey=—0,XEy—Z,*Ca,
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(3.5) L3Cs=—(0sX—Pos*X*)Cq,

@7y LiE*=3,X")E®,

(3.8) L3C*=Z,*E*+(05X°— P g X9C?,
respectively.

For any projectable horizontal vector field ¥ with the components Y* in 0,
taking account of (3.4)’, we have

LY=LV E)=Y"L3E,+(LzY ) Ey=—(Y"0,X)E,—(Y"Z,*)Ca
+(X49,Y)E,=(X"0,Y *—Y "0, XY E,—(Y"Zy*)Ca,
because of dzY*=0.
The horizontal part of LY is called the (*)-Lze* derivative of horizontal
projectable vector Y with respect to X and denoted by _E,ff/, that is,
N *
3.9) L2V =(L3Y E=(X"3,Y *— Y3, X)E,.

Next, for any vertical vector field ¥ with components Y< in U, taking
account of (3.5)/, we have

L2V =C(YPCH=Y?L3Cs+ (LY ?)Co=— V33 X*— Pyg®X*)Ca
+ (X494 YP)Cp={XP05 V4 — Y0 X*—Pos*X*)} Cy .
~ *
Considering that £zY is verticgl, we define the (*)-Lie derwative LxY of
vertical vector ¥ with respect to X by
(3.10) TiP=157,
or equivalently, by
*
(3.10) LY *=XB0pY2— VP9 X*—Pug®X ) .

Py

Similarly, for any horizontal projectable 1-form ® with components w, in
U and for any vertical 1-form @ with components w, in U taking account of
(3.7) and (3.8)/, we have

(3.11) Li=(X"0ywa+ws0e X")E®,
(3.12) L5i0=(wpZ L) E“+ { X2 s o+ ws(02 XP— P XO)} C .
The horizontal part of £3®% and the vertical part of L 4 are called respectively

the (*)-Lie derwative of horizontal projectable 1-form @ with respect to X and the
- Lze derwatwe of vertical 1-form @ with respect to X and denoted respectively

by .L’Xw and .L’Xw that is

(3.13) Lyh= T
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and

(3.14) L30= (L 3wa)C* = { X P50t We3a X — Poo X2} C .
(3.13) is easily seen to be equivalent to

313y T rwa= X 05w,+ w,d. X"

For any projectable element of 33;,5(1\71), say an element 7 of 98}}(1\71) with
components T,%* in U, considering the equatlons (3.9), (3.10), (3.13) and (3.14),

we can define inductively the (*)-Lie derivative _E'XT‘ of T with respect to X as
a partial tensor with components of the form
*
(3 15) Iszaﬁa:XCachaﬁq_Tbcﬂaach+ Tcaﬂaach
' —To%7 (0, X— Py X°) + To% (0 X"— Peg' X°) .

Taking account of (2.3) and (2.4), we see that the relation (3.15) is equivalent to

*
—E)?Tbaﬂa :Xc/chbaﬁa + Xr//VrTbaﬁa — Tbcﬁa(/cha_,_ hachr)
(3.15)
FT 2N X+ hoy XT)— T % ("N X*— L* . X°)
+ Ty ("VeX7— Lg X°) .

From this definition, we see the following results: N
(a) NDenoting by X and by X the horizontal part of X and the vertical
part of X respectively, we have

* * *
Ly=Lz+L%.

(b) Denoting by Ly the Lie derivation with respect to the vector field X
in M, we have for any projectable element 7 of T7(hM)

L T=p( LT

in M, where X=pX and T=pT.
(cl Denoting by L3 the Lie derivation with respect to the vertical vector
field X in F, we have for any element T of T4 (vM)

_ *
Lx =.[’§T.

For any projectable element 7 of IYL(M), we say that X leaves T (%)-

*
wmvariant if the equation £3T=0 holds in M.
We shall now give some identities obtained from (3.15) for later use. In the
first, for the elements A%, h%;, Lg*, and L,;®% we have
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-thcba:Xe/vehcbaJl'XE”vehcba‘l" heba(,Vch+ heceXe)

(3.16)
F e (Vo XA hoe X&) —hoy ("N X*— L% X0,
o T ih®y= X T hyt X7V h— BT X B, X)
F 1O (N XA e Xo)+ A% ("N X — L5 X9) ,
318) j.‘gLB“c=X3’VCL5"¢+X5”V5L/3“C—I— Lg*('N o X+he. X°)
— L (" X*— LX)+ L ("Ve X — Lg X9,
(3.19) I # L =XV Lyg®+ X"V Lys®— Lyg" (VN X *+ % X*)
F L ("N X — L2 X+ Ly *("NpX— Lgf X9,
respectively.
Next, taking account of (2.3) and (3.16), and noting the relation
(3.20) 0.0, X% —0p0, X*=2h 0. X% ,

we have the Ricci-type formula

(3 21) /vc/vb)(a—/Vblvc)(“:‘2 {_:thcba—/vc(hbeaXe)_l'/vb(hceaXe)

+(Leabhcee_Lsachbee)Xe} —(/chsab—/vaeac—LrabLsTc+ LracLsTb)XE

Moreover, by virtue of Proposition 2.2, (3.21) is expressed as followings :
(3.21), ’Vc’VbX“—’V,,’VcX“:2(—2ghcb“—hbe“’Vch+hce“’VbXe)
F2('Vohey®+ L hey) X®
—('V L2~ 'V LS+ L% LTy — Ly LT ) X¢ .
Similarly, we obtain the following formulas of the same type as (3.21):

n levaa — /VDI/ VTXC{ _ LTEb/lveXa — hebr/veXa

(3.22)
+ (”ve Lrab _gaﬂgab” vﬁLrea"l' Lr'xeheb.-: + hbeaLrse)Xs »
(3.23) ”Vr”VﬁX“—”V,a”vaa-——KmsaXa ,
(324) /vc/VbXa._/Vb/Vch:chdaxd ,
(3.25) "N X0 — "V, X 0= —h, U, Xo—('Vph) X ¢,
(326) ”Vr”V,sX“—"V,a”VrX“=(”Vrh“e,e—”Vﬂh“er-l- hadﬁhder_had‘/hdeﬁ)Xe .

Taking account of (2.3), (3.6), (3.16) and (3.21), we have
(3.27) 9,25 — ", Z,5=2 L ph o+ L o — Lo 2. .

223
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§4. Killing vectors in a fibred space

Let X be a projectable vector ﬁeld in the total space M of a fibred Rieman-
nian space {M M, g, =} such that X has the components XH of the form (3.1).
From now on, we fix such a vector field X.

If we put

@D Vo=B%Vt,
then, from (2.2) we have
42) V.=V, V=Y.
Putting )?ngrJH)?H and noting the relation V}‘)?Izﬁ,)?b we have
43)  BIoBpY, X, =B VX, =Ve(B X )~ (WeB ) X1 =Vo X5—(VeB 5 X, .
Taking account of (2.8), (2.9), (2.10), (2.11) and (4.2), we see that (4.3) reduces to

4.4) E! EL X =" Xy—he* X,
4.5) E7CTV, X =" Xo—h® X,
(4.6) c«f,éf,,%;?,:v V, X+ L% X o
.7 C7CT N, X ="V, Xs— L, X, ,
respectively.

We now assume that X is a projectable Killing vector in M, and therefore,
we see that the condition
(4~8) ‘-E_?zg‘/I:ﬁJ)?I""ﬁIXJ:O

holds in {U, x¥}. Transvecting B’¢B’5 to both sides of (4.8), and taking account
of (4.4), (4.5), (4.6) and (4.7), we see that (4.8) is equivalent respectively to the
equations

4.9 ¥, X+, X, =0,
(4.10) ", Xot "X, =215 X
(4.11) o Xot" Vs X+ Lg* X a—h%sX0=0,

where X,=g,, X" and Xp=2p.X“.
On the other hand, since X is projectable, we obtain

(4.12) "NeXe=—h%pXa .
Transvecting 8¢ to both sides of (4.11) and taking account of (4.12), we have

(4.13) Z.2=0,
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where Z,* are given in (3.6). Substituting (4.13) into (3.27), we have
(4.14) Lehy =0,
Summing up, we have

THEOREM 4.1. Let X be a projectable Killing vector in the total space M o~f
a fibred Riemannian space {M, M, & =}. Then, X leaves hy* (¥)-invariant in U,
and X=pX is a Killing vector in M.

COROLLARY 1. Let X be a projectable Killing vector in the total space M of

a fibred Riemannian space (M, M, 8, =} _having isometric fibres. Then, X leaves

he® (M-invariant, and moreover, ——pX and X are Killing vectors m M and F
respectively, where X is the vertical part of X.

COROLLARY 2. Let X be a projectable Killing vector which is horizontal in
the total space M of a fibred Riemannian space {M, M, § ©}. Then we have the
following results:

(@) X=pX is a Killing vector in M.

) X leaves hg,*(*)-mvariant.

COROLLARY 3. Let X be a projectable Killing vector in the total space M of
a fibred Rzemanman space {M M, & =} having conformal fibres, that is, L;%=
Z:5A® hold in M Then we have the following results:

(a) X—pX is a Killing vector in M.

() X leaves he® (M-invariant.

() X is a conformal Killing vector in F, and moreover, if the vector A=A"E,
is projectable, then X is homothetic.

Next, we assume that Xisa projectable conformal Killing vector in ]\71, and
therefore, we see that the condition
(4.15) ji§J1=§JX1+61X'J=P§’u

holds in {U, x7}, where o is a scalar function in M.
Transvecting B7¢B’z to both sides of (4.15) and taking account of (4.4), (4.5),
(4.6) and (4.7), we see that (4.15) is equivalent to the following equations

(416) ,chb'l'/vac:chb »
4.17) ", X+ "o Xy =2L1s" X o+ 0Brs
4.18) N Xo+"ToX o+ Le* Xo—h%p X0 =0 .

Since X and g are projectable, from (4.16) we see that the function o is pro-
jectable. On tfie other hand, from (4.12) and (4.18) we have Z.*=0, and there-
fore, we have Lzh,*=0.

Summing up, we have
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THEOREM 4.2. Let X be a projectable conformal Killing vector in the total
space M of a fibred Rzemanman space {M M, & n}. Then, X leaves hy,® (¥)-
invariant m U, and X—pX 18 a conformal Killing vector in M.

COROLLARY 1. Let X bea projectable conformal Killing vector in the total
space M of a fibred Riemannian space {M M, g, 7r} havmg isometric fibres. Then,
X leaves he® (¥)-tnvariant, and moreover, X—pX and X are conformal Killing
vectors in M and F respectively, where X is the vertical part of X.

COROLLARY 2. Let X be a projectable conformal Killing vector which is
horizontal in the total space M of a fibred Riemanman space {M, M, &, n}.

Then we have the following results:

(@) X=pX is a conformal Killing vector m M.

) X leaves hy® (¥)-mvarant.

COROLLARY 3. Let X bea projectable conformal Killing vector 1 the total
space M of a fibred Riemanman space {M, M, g, n} having conformal fibres, that
15, Lyg*=8;3A* hold in M. Then we have the following results:

(a) X=pX is a conformal Killing vector in M.

(b) X leaves hy* (¥)-invarant.

(¢) X s a conformal Killing vector in F, and moreover, 1f the vector A=A°E,

1S projectable, then X is homothetic.

5. Affine Killing vectors in a fibred space

Let X be a projectable vector ﬁNeld in the total space AZI of a fibred Rieman-
nian space {M, M, &, =} such that X has the components X# of the form (3.1).

Operating V¢ on both sides of (3.1) and taking account of (2.8)~(2.11) and
(4.2), we have Vo X¥ of the forms

(5.1) I, XH=F¥ ("N, X+ ha, X¢)+CH o'V, X+ hpe* XO),
(5.2) 79, XH =FH ((h%y X°+ Lye" Xo)+CH (", X4 — L%, X%)

where \./c are given by (4.1).
On the other hand, we obtain,

BuAB? cB1 N, 87 =ByABT N,V  XH
(5.3) =Bu*VoVp X" —ByANcB1)T, X7
=BuVoVs X" — By B E(VcB (T X")
and moreover, taking account of (2.12) and (3.1),

(5.4) Bu®B’¢B gK g s 1% X¥=Ppcp* BkP XX =Pycp* X*+ Pscs* X
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We now assume that X is a projectable affine Killing vector in M, and
therefore, we see that the condition

I~

~ ( H N a o~ ~
5.5) _f,?{ s [}ZVJVIXH+KK“”XK:O

holds in {0, x#}.
We denote by X (resp. X) the horizontal (resp. the vertical) part of X and
denote by L3 the Lie derivation with respect to the vertical vector field X in F.
If we put
I~
L [CAB]ZB”ABJ"BIB‘E’?{

then from (5.3) and (5.4) we obtain

b

(5.6) L[CAB]:BHAﬁc&B)?H—BHABJE(%CBJB)(OVEXNH)+P¢CBAXd+PacBAX5

Thus, substituting (2.8)~(2.11), (2.16)~(2.27), (5.1) and (5.2) into (5.6) and taking
account of (3.17)~(3.27), we find that (5.5) is equivalent to the following equations

~ a a e a e—
(5.7) ‘L’X{C b}+h beZc +h ceZb —0’
(5.8) -;A’hacﬁ_}_ L[SSEZCEZO ’
(59) IXLrB —0
(5.10) FOVZ A VL)~ (LA L L2 =0,
(5.11) — LrLg A2, =0,
(.12) "E’—‘{r « ﬁ} — L1 Z0%— Loy X4=0,
where
(5.13) Zaa:/vaXa+2haeaXe+ LsaEXe ’
and

(5 14) Ldrﬁ“:37Pd5“—adF7“5+PdrsF5“5—{—Pdlgspsar—[’fﬁpde“
. :”erﬁad_i_”VﬁLrad_gaegce”veLrﬂe"l' hedTLﬁae+hedBLrae+ Lrﬁeheda .
From (5.7) and (5.9), we have

THEOREM 5.1. Let X be a pr0]ectable affine Killing vector in the total space
M of a fibred Riemannian space (M, M, §, z}. Then X leaves Lys* (*)-invariant,
and h%.Z.° are projectable.
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We now assume that M has isometric fibres. By virtue of L=0, the equa-
tions (5.8), (5.10), (5.11) and (5.12) reduce to

.8 T2h®s=0,
(510)/ N Zy*+'NWZ2=0,
.11y 19,Z2=0,
, — (@ _
(5.12) ,L’X{r B}_o,

respectively. From (5.11)" we find that Z,® are covariant constant along each

fibre.
For any element of JY.(M), say an element T of T ®(M) with components
T»s*, we say that T satisfies a Killing equation in the horizontal direction if

"V Tog*+/,To5*=0

hold in M. In this case, if 7 is projectable, then a projection pT of T is a
Killing vector in the base space M.

From (5.10) we find that Z,* satisfy Killing equations in the horizontal
direction. On the other hand, for any element 7' of IU(M) having components
T.,* in U, by a direct computation we have

(5 15) /vb”vrT‘aCr —7 vr/vbTaa :(/veTaa)hebr_ Tea/vbhear
. +("V; Ls*+ Ls®eh®sy— Lops™) T o+ (" V5T o *+To*has) L%

where L,® are given in (5.14). Putting T,*=Z,* in (5.15) and taking account
of (5.11)/, we have

(5.]_6) ”Vr’VbZa“—|—(’VeZa“)heby—Ze“’Vbhear———O ’

because of L=0.
Taking account of (5.10)', we see that (5.16) reduces to

"N N Z o —(N o Z ety —Z % phor
="V Zo* ="V o(Ze* W)+ Ze ("N ah®r—"Voh®ar) =0 .
Adding the above equations to the equations
NN Zy® =" No(Z W ar)+ Ze*(Nohay—"V o h%)=0
and taking account of (5.10)/, we have
(5.17) No(Ze2hoy)+ 'V Ze2he ) =0.

Contracting with respect to the indices @ and 7 in (5.17), we have



A CERTAIN DERIVATIVE IN FIBRED RIEMANNIAN SPACE 229
(5.18) "VaolZe* 1)+ Vo Ze h 0 a)=0 .
Furtheremore, contracting with respect to the indices a and b in (5.7), we have
(5.19) Vo X+ h%aZs%=0,

which implies that h%,Z,* are projectable since V.V, X* are projectable. From
(5.18) and (5.20) we find that the vector with components p(g®h%.Z.*) in U is a
Killing vector in M. Summing up results mentioned above, we have

N THEOREM 5.2. Let X be a projectable affine Killing vector in the total space
M of a fibred Riemannian space {M, M, g, =} having isometric fibres. Then we
have the following results:

(@) X 1s an affine Killing vector in F.

(b) X leaves h®; (*)-nvariant.

() Z,* are covarant constant along each fibre, and Z,* satisfy Killing
equations in the horizontal direction.

(d) The vector with components p(g®h%aZ,%) m U 1s a Killing vector wn M.

We next assume that X is a projectable affine Killing vector which is hori-
zontal in M, and M has isometric fibres. Thus, from (5.13) we have

Zaa:2habaXb .

Taking account of the third equation in Corollary to Proposition 2.3, we find
that (5.11)’ reduces to

"N aZ o5 =2"V f(Nap* X2)=2("N o1 0p*) X *+ 210 h° o X°
=2hgphcaX =—2h%qhe* X '=—h%4oZ,*=0.
Consequently, from (5.19) we have
Vo XOHhaZ*="V,/V,X=0,

which implies that 'V, X% is a constant, since ‘V,X* is projectable. Thus we
have

COROLLARY. Let X be a projectable affine Killing vector which is horizontal
in the total space M of a fibred Riemannian space {M, M, g, =} having isomeiric
fibres. Then we have the following results:

(@) X leaves h%s (*)-invariant.

(b) hep*X® are covariant constant along each fibre, and ho,*X° satisfy Killing
equations in the horizontal direction.

(¢) The vector with components p(g™h%ehe.*X°) in U 1s a Killing vector in M.

(@) V.X* is a constant in M.
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§6. Projective Killing vectors in a fibred space

Let X be a projectable vector field in the total space AZ[ of a fibred Rieman-
nian space {M, M, & n} such that X has the components X¥ of the form (3.1).

In this section, we assume that Xisa projectable projective Killing vector
in A7[, and therefore, we see that the condition

I~
(6-1) -E)?{]HI}:ﬁJﬁlXA/H‘I’]?KJIH)?K:$J5?+$15‘III

holds in {U, x¥}, @ being the components of a certain I-form & in M.
Moreover, we have an expression of the form

(6-2) 51:BIA¢A=E1a¢a+CIa¢a s

where ¢,=FE’,3,; and ¢,=C? .3 ;.

Transvecting B7;B’z to both sides of (6.1) and taking account of the left
sides of equations (5.7)~(5.12), and (6.2), we see that the equation (5.1) is equi-
valent to the following equations

63) B N A A IR
6.4) Leh® st Lo Z =085,

65) LiL#=0,

6.6) (Vo Zo V2o —(Le 2+ L% Z8) =0,
6.7) — PRl A"V Z =05,

(6.8) f;{z}—Lrﬁazaa—Ldrﬁaxd=5?¢ﬂ+5§¢,~ ,

where X is the vertical part of )?, and Ly are given in (5.14), and

Z,2="Vo X+ 2he* X+ L% X¢.
Thus we have

THEOREM 6.1. Let X be a projectable projective Killing vector in the total
space M of a fibred Riemannian space {M, M, g, =}. Then X leaves L;* (¥)-
invariant. Moreover, if @ is projectable, then h®.Z;S are projectable.

Next, we assume that M has isometric fibres. By virtue of L=0, the equa-
tions (6.4), (6.6), (6.7) and (6.8) reduce to the equations

*
(6.4)/ -[)fhacﬁ=5g¢ﬁ ’
(6-6), N Zy*+'NoZ,*=0,
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(6.7)/ ’/vszca:5§¢c ’

S (@ e .
(68) L3, gf=0tas 056,
respectively.

Contracting with respect to the indices a and ¢ in (6.4)/, we have

6.9) $5=0

Consequently, taklng account of (6.4), (6.8), and (6.9), we see that X leaves h® s
(*)-invariant and X is an affine Killing vector in F, where X is the vertical
part of X. Furtheremore, contracting with respect to the indices a and B in
(6.7)’, we have

_.__1_/1 a
be=—"VuZ,

where s=r—mn.
Summing up the results mentioned above, we have

THEOREM 6.2. Let X bea projectable projective Killing vector in the total
space M of a fibred Riemannian space {M, M, g, =} having isometric fibres. Then
we have the following results:

(a) X is an affine Killing vector in F.

(b) X leaves h%cz (¥)-invariant.

(¢) Zo* satisfy Killing equations in the horizontal direction.

(d) ¢ is a horizontal 1-form.

© ge=-rTuZe.
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