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A CERTAIN DERIVATIVE IN FIBRED RIEMANNIAN

SPACES, AND ITS APPLICATIONS

TO VECTOR FIELDS

BY ICHIRO YOKOTE

Introduction. Recently, Ishihara [1] studied vector fields in fibred Rieman-
nian spaces with 1-dimensional fibre. The main purpose of the present paper
is to study these problems in fibred Riemannian spaces with higher dimensional
fibre.

For this purpose, we define a kind of derivatives which are closely related
to Lie derivative, to describe some properties of vector fields in fibred Rieman-
nian spaces with higher dimensional fibre.

In the first section, we shall give some preliminaries for fibred Riemannian
spaces following to the sense of Ishihara-Konishi [2]. In the second section,
we shall derive the so-called structure equations of fibred Riemannian spaces,
which were mainly obtained in a previous paper [9]. In the third section, we
shall define the (*)-Lie derivative for later use. Section 4, 5 and 6 are devoted
to the study of vector fields, Killing, affne Killing and projective Killing res-
pectively.

§ 1. Preliminaries on fibred spaces

In this section, we shall recall definitions and properties concerning fibred
spaces in the sense of Ishihara-Konishi [2].

Let M and M be two differentiate manifolds of dimension r and n respec-
tively, where s—r—n>0, and suppose that there exists a differentiate mapping
π : M —> M which is onto and maximal rank n everywhere. Throughout the
paper, the differentiability of manifolds, mappings and geometric objects we
discuss are assumed to be of C°°. The manifolds we discuss are assumed to be
connected. Then the inverse image π~1(P) of any point P of M is an s-dimen-
sional submanifold of M, which is called the fibre over P and denoted by FP, or
simply by F. Moreover we assume that each fibre is connected. Such a set
{M, M, π} is called a fibred space, M the total space, M the base space and π
the projection.

Let there be given a Riemannian metric g in M of a fibred space {M, M, π}.
Then the set {M, M, g, π} is called a fibred space with Riemannian metric g and
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the Riemannian space (M, g) the total space. In the total space (M, g\ we
denote by 3t the n-dimensional distribution which is perpendicular and comple-
mentary to the tangent space to the fibre at each point.

We take coordinates neighborhoods {0, XH} of M and coordinates neighbor-
hoods {U, va} of M such that π(U)=U, where XH and va are coordinates in U
and U, respectively1'. Then the projection π : M -» M be expressed with respect
to {U, XH} and {£/, t>α}, by certain equations of the form

(1.1) va=va(xH}>

where va(xH) denote the coordinates of the projection P—π(P} of a point P
with coordinates XH in £/ and are differentiate functions of variables XH with
Jacobian (dva/dxH) of maximum rank n. Take a fibre F such that Fr\UΦφ.
We may assume that FΠ^ is connected and that there are in Fr\U coordinates
ua in such a way that (va, u01) is a system of coordinates in U, va being coordi-
nates of the point π(F) of U. Differentiating (1.1) by x1 ', we put

(1.2) Ej^djif,

where 3I=d/dxI. Then, for each fixed index α, Eja are components of a local
covector field Ea defined in U. On the other hand, if we put Ca=d/dua which
is a local vector field in 0 for each fixed index a, then Ca form a natural frame
of each fibre F along Fr\U. We denote by CH

a components of Ca in {U, XH}.
Denoting by J>/ the components of g in {U, XH} , we put

(1-3) S^gjiC'rC'β .

Then grβ are components of the induced metric tensor g of F along Fr\U. If
we put

where (f^) is the inverse matrix of (gΛβ\ and denote by Ca the local covector
field with components C/* in U for each index α, then (Ea, Ca) forms a coframe
in 0. Denoting by (EH», CH

 β) the inverse matrix of (EI

a, C/a), we have

£/£7

δ=<52, EjaC^=Qf
(1.4)

C^^-0, CI*Cz

β=δ$
and

(1.5) S

Denoting by (gjl) the inverse matrix of (£//) and putting

1) Throughout this paper, the indices H, /, /, K, L run from 1 to r. This system
of indices is mainly used with respect to the coordinates XH. The indices α, b, c, d, e
run from 1 to n, and the indices α, β, γ, δ, ε run from n + 1 to n + s = r. We use the
summation convention with respect to these systems of indices.
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(1-6) gc*=$JiEJ

eE
z

b,

we obtain

(1-7) E*a=g*'gabEI*.

EH

a are components of a local vector field Ea defined in {0, xH}> for each fixed
index a. Thus, we find that the set (Eb, Cβ) forms in 0 a frame dual to the
coframe (Ea, C*). We shall often denote by (BB) (resp. (BA$ the frame (Eb, Cβ)
(resp. the coframe (Ea, C«)), where Bb=Eb and Bβ=Cβ (resp. Ba=Ea and B"=€")».
As the similar notation to the above, we often denote by (B1

β) (resp. (£,/)) the
matrix (Ez

bf C7^) (resp. the matrix (Eja, CjaJ). Then we can express (1.4) and
(1.5) as

(1.4)' B/5'a=«,

and

(1.5)' Bl

AB"A=d?,

respectively. Moreover, we easily obtain

(1.8) BB=BI

BSI, BA=BjAdxJ,

where dI—d/dx1 and (dxj) denotes the coframe dual to the frame (d/) in {U, x1}.
We often use d/ as differential operators in 0 if there is no fear of confu-

sion. In this case, from the first equation of (1.8), we have

(1.9) db=d/dv^=EI

bdI, 30=3/3wP=C V/

From now on, we shall often denote by (9#) the set of differential operators
(3ft, dβ).

Let there be given an arbitrary tensor field in M, say T of type (1, 2) with
local expression

(1.10) T=fJI

HdxJ®dxI®dH

in {U, x1}. Taking account of (1.8), we see that T is also represented as fol-
lowings:

f=Tcb

a

(i.ioy

where

1) Throughout this paper, the indices A, B, C, D, E run from 1 to r. This system
of indices is mainly used with respect to the coordinates (va, ua). We use the summa-
tion convention with respect to this system of indices.
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T? a'T H ηp a _ r*
EΉ 1Ji > * rβ — ̂

In the right-hand side, the first term Tcb

aEc®Ebξ2)Ea determines a global tensor
field in M, which is called the horizontal part of f and denoted by T. The last
term Trβ

<xCr®Cβ®Ca determines also a global tensor field, which is called the
vertical part of T and denoted by T. For a function / in M, we define its
horizontal part / and vertical part / by /=/=/.

A tensor field T in M is said to be projectable if it satisfies

for any vertical vector field V in M, Xγ denoting the Lie derivation with respect

to V. A function / in M is said to be projectable if J7^/=0 for any vertical
vector field V in M.

Given a projectable function / in M, we can define a function / in M in
such a way that, for any point P of M, f(P)—f(P\ where P is a point of M
such that π(P}—P. We call / the projection of / and denote it by pf.

A tensor field, say f of type (1, 2) with local expression (1.10), in M is
projectable if and only if Tcb

a are projectable, or equivalently, if and only if

(1.11) daTcb

a=--Tcb

a=Q.

Then, for a projectable tensor field T of this type, we can define a local tensor
field TU in U having XTcδ

α) as components with respect to {U, va}. The local
tensor field TV determines a global tensor field T of the same type as that of
T, which is called the projection of f and denoted by T—pf.

For simplicity, from now on, any projectable function /, global or local, in
M is identified with its projection pf.

Given a tensor field T in M, there is a unique horizontal and projectable
tensor field f in M such that p?=T. This f is called the /i/M>f T.

When the metric tensor g is projectable in a fibred space {M, M, g, π} with
Riemannian metric g, {M, M, £, π} or simply (M, ^) or more simply M is called
a fibred Riemannian space.

From now on, we restrict ourselve to a fibred Riemannian space M. If we
put g—pgy then £ is a Riemannian metric in M, which is called the induced
metric of M and has components gcb defined by (1.6). The Riemannian manifold
(M, g} thus introduced is called the base space.

If we put
gcb=EjcE2

bgJI

in M, then Cg cδ) is the inverse matrix of (gcb) in M, where we identify any
projectable function with its projection.

Let V be the Riemannian connection of the Riemannian space (M, g) and

denote by { r Λ the ChristoffeΓs symbols constructed from &// in {U, XH} . Let
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V and V be the Riemannian connections determined by the induced metric g=pg
in M and by the induced metric g in F, respectively.

We denote by j \ and j a \ the ChristoffeΓs symbols constructed from

gcb in {U, va} and grβ in {Fr\U, ua}, respectively.
If we put

(1.12) VjBH

B=ΓcA

BBjcBH

A

in U, where ΓC

AB are local functions defined in U, then we have the following
results:

(a) ΓΛ={/j.

(b) /W

(c) Rewriting Γc

a

b and Γc

a

β(=Γβ

a

c) into hcb

a and ha

cβ respectively, we have

hcb

ajrhbc

a=^Q , ha

cβ—ga hbc^gctβ

Along each fibre F, ha

br are connection coefficients of the induced connection
of the normal bundle of the submanifold F embedded in (M, g) with respect to
normals Ea.

(d) Rewriting Γr

a

β(=Γβ

aγ) and Γr

a

b into Lrβ

a and —Lγ

a

b respectively, we
have

Lγ b — Lγβ gabS' > * C β— Lcβ Lβa

C)

where Pcf are the functions appearing in

Along each fibre F, Lrβ

a are components of the second fundamental tensor
of the submanifold F embedded in (M, g) with respect to normals Fα. If the
equations Lrβ

a=0 hold, then {M, M, g, π} is called a fibred Riemannian space
with isometric fibre. If the equations Lrβ

a=Λagrβ hold, where Λ=ΛaEa is the
mean curvature vector along each fibre and a horizontal vector field in M, then
{M, M, g, π} is called a fibred Riemannian space with conformal fibre.

Summing up the results mentioned above, we have

(1.13)

Moreover, it is known that the following identities hold (see [2]) :
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(1.14) (3Afc?+Pd/M+(3^

(1.15) 2drhcb«+(dcPbr«-dbPcr«+Pcs«P,r

ε-Pbε«Pcf)=()f

(1.16) dagrβ-Par

εgεβ-Paβ

εgr£=-2Lrβ

egea ,

where da=d/dva and da= d/du". Furtheremore, using the identity

(1.17) drP*β*-3βP*r*=0,

we find that there exist local functions Πd

a in U such that

(1.18) Pdβ«=dβΠd«.

§ 2. Structure equations

In this section, we derive the so-called structure equations of a fibred
Riemannian space {M , M, g, π} . To do so, we now define two covariant deri-
vative operators 'V and "V of M.

Let £Γ£(M) be the space of all tensor fields of type (p, q) in M. Let £Γ;(/ιM)
(resp. £Γl(vM)) be the space of all horizontal (resp. vertical) tensor fields of type
(r, s) (resp. type (t, w)) in M. We now consider the formal tensor product in M

such as sr*(M)$&I(hM)%3l(vMr). We call an element f of this space a (^Λ-
Qsu

partial tensor in M and denote by £Γg2(M) the space of all ( Vpartial tensors

in M.^ We may identify £Γ$§(M), £Γ0

0[0

0(M) and £Γ0

0oί(M) with £Γ?(M), JΓ;(/ιM) and
β:i(vM\ respectively. For any element of 3*g2(M), say an element T of 2"}}}(M)
with components Tj1^^, we define the (*)-covarιant derivative V*T 0/ T as a
partial tensor with components of the form

(2.1)

in Ό, where Γ's are given by (1.13). For any element f of 3:$£(M),^*f is an
element of fffft^M). In particular, for any element of £ΓgJ(M)= 2 (̂M), we have

If we define two covariant derivations 7V and /7V acting on elements of
by

(2.2) 'Vc=£V7g, »Vr=CK

TV%

respectively, then we have the following results :
(a) For any element of £Tg£(M), say an element T of 2"}}}(M) with com-

ponents Tj7

&V, 77T and / 7Vf are respectively elements of £ΠJ1(M) and £ΓHKM),
and have respectively, components of the forms
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(2.3)

(2.4)

(b) For any projectable elements of 3r

s(hM), say an element ί" of £ΓJ(ΛM)
with components T6

α in t), and for any projectable horizontal vector X in M
with components ^c in 0, we have

(2.5)

in M, or equivalently,

(2.5)'

where Z=/>^ and T=pf".
(c) For any element of S^vM), say an element T of 3\(υM) with com-

ponents T/ in t7, and for any vertical vector field X in M with components Z"
in U, we have

(2.6) X^aTf=Xat'VaTf

in Fr\0, or equivalently,

(2.6)' 7ϊΓ=»7ϊΓ,

7 denoting the Riemannian connection determined by the induced metric g in
F. We call 'V and *V the van der Waerden-Bortolotti covariant derivations for
M and for F respectively.

Making use of (1.4)' and (1.5)' and taking account of (1.12), we have

(2.7) Γc

Using (2.7) and taking account of (1.13), (2.3) and (2.4), we easily have the fol-
lowing equations

(2.8) 'VcE'^hcfC'a ,

(2.9) 'VeC'β^ cβE'.,

(2.10) ''Vrσβ=Lrβ

aE'a,

(2.11) '%£'„= -LΛ,CV
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We call the equations (2.8) and (2.9) the co-Gauss equations of the given fibred
Riemannian space and the co-Weingarten equations of the given fibred Riemannian
space respectively. Moreover, we may call the equations (2.10) and (2.11) the
Gauss equations for each fibre and the Wemgarten equations for each fibre res-
pectively.

From the definition, we easily obtain

PROPOSITION 2.1. The equations

'V«ftp=0, *7«&/=0, *7rfe6=0 and *7βSrj8=0

hold in M.

Let K, K and K be the curvature tensors of g in M, g in M and £ in F,
respectively. We denote by KKJIH> K_dcba and Kδrβ

a components of K in [U, xH},
those of Km {U, va} and those of K in {Fr^U, ua}, respectively.

If we put

(2.12) PDCBA^BK

DBJ

CB
I

BBH

AKKJI

H ,

then we easily see that PDCB
A satisfy

PDCB -\~PCDB — 0 , PDCB ~\~PCBD ~i~PβDc — 0 .

On the other hand, from (2.7) we have

(dcB
H

D-dDBHc)BH

A=Γc

A

D-ΓD

A

c .

Thus, taking account of (1.13), we have

(2.13)
(dcB

H

β-dβBc)BH

a=Pcβ« , (drBβ-dβBr )BH

a=Q .

For any function / in M, taking account of (2.13), we have

(2.14) dcdDf-dDdcf=(dcBH

D-dDBIίc}(da/)=(dcB
H

D-dDB!ίc')BH

a(dJ)

from which we see that / is projectable if and only if dcdDf—dDdcf=0.
Taking account of (2.13) and (2.14), we see that (2.12) reduces to

(2.15) PDCB =θj)Γc B — oςΓ D B~i~*D gl c B — / c E! D B

Taking account of (1.13), (1.15) and (2.13), and using (2.15), we have the follow-
ing equations :

(2.16) PM

a=KM

a-2hΛc*h\s+hcb*ha

d€-hdb°h\s ,



A CERTAIN DERIVATIVE IN FIBRED RIEMANNIAN SPACE 219

(2.17) PdCβ
a=^dh

a

cβ-^ch
a

dβ-2hdc

sL^ ,

(2.18) Pδc*
a

(2.19) Pδcβ

a

(2.20) /V»α-''^nr-'%/^+/*V^

(2.21) Pδrβ
a="VδLrβa-"VrLδβa >

(2.22) P*rf

(2.23) /V

(2.24) Pδcβa

(2.25) Pdcβ^

(2.26) Pδcft

βf=Λr7JAcft

β+/7cL

(2.27) Pdcb«='^<1hcb«-"lchd

We call the equations (2.16), (2.17) and (2.25) the co-Gauss equations, the c0-
Codazzi equations and the co-Ricci equations of the given fibred Riemannian space,
respectively. On the other hand, we may call the equations (2.22), (2.23) and (2.20)
the Gauss equations for each fibre, the Codazzi equations for each fibre and the
/?zccz equations for each fibre, respectively.

Taking account of (2.27), we have

PROPOSITION 2.2. The equations

(2.28) /7dAc6

β+/7Λdα+/7Acβ+Adc

βLΛ+Ac/Lβ

α

d+A6/Lβ

βp

c=0

hold in M.

Remark. Using (1.14), we have also (2.28) (see [2]).

COROLLARY. // M has isometric fibres, then the equations

/7dAc6

αf+/7cAM

ίr+/76Adc

Λ=0

hold in M.

On the other hand, using (2.26), we have

PROPOSITION 2.3. The equations

m M.
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COROLLARY. // M has isometric fibres, then the equations

S.«'V*heb«+gδa'Vβhcb

a=0 , "Vδh
a

bs+''V£h
a

bδ=Q , *7αλeft*=0

hold in M.

Concerning arguments developed in this section, see [9].

§ 3. The (*)-Lie derivative

In this section, we shall define the (*)-Lie derivation which operates on
projectable elements of £ΓJJS(M) and closely related to the Lie derivation.

Let there be given a projectable vector field X in the total space M, which
has the components XH in {U, XH}. Then we have an expression of the form

(3.1) XH=BH

AX
A=EH

aX
a+CH

aX« , dβX
a=0 ,

where Xa=EjaXJ, Xa=CjaXJ. Since X is projectable, Xa identified with the
projection pXa of Xa are the components of X=pX in U.

Denoting by JL% the Lie derivation with respect to the vector field X in M,
and using (1.9), we have

(3.2)
=XAd

On the other hand, from (2.7) we have

(3.3) SABκ

B-dBB
κ

A=Bκc(ΓA°B-ΓB

c

A) .

Taking account of (1.3) and (3.3), we find that (3.2) reduces to

(3.4) -£r£*»= -Eκ

adbX
a-Cκ

aZf ,

(3.5) -CχCκ

β= -Cκ

a(dβX
a-Paβ

aX*) ,

where we have put

(3.6) Z<,a='V<,Xa+2ht>c

aXc+ Lr«tχr .

Operating 2$ on Bκ

BBκ

A—δa and using (3.4) and (3.5), we have

(3.7)

(3.8)

If we take a frame (B^=(Ea, C«) and the coframe (BB}=(Eb, C") dual to
(BA) in 0, then we see that equations (3.4), (3.5), (3.7) and (3.8) are equivalent to

(3.4)'
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(3.5)'

(3.7)'

(3.8)'

respectively.
For any projectable horizontal vector field Ϋ with the components Ya in 0,

taking account of (3.4)', we have

-(YbdbX
a}E^

because of dβY
a=0.

The horizontal part of XXΫ is called the (*)-Lιe derivative of horizontal
Ί*

projectable vector Y with respect to X and denoted by XgY, that is,

(3.9) lχΫ=(ίχYa')Ea=(X'>d<>Y
a- Y"d,Xa)Ea .

Next, for any vertical vector field Ϋ with components Ya in 0, taking
account of (3.5)', we have

c'-Paβaxa)} ca .
~ _ * _

Considering that XXY is vertical, we define the (*}-Lie derivative XXY of
vertical vector Ϋ with respect to X by

(3.10)

or equivalently, by

(3.ιoy
Similarly, for any horizontal projectable 1-form w with components wa in

U, and for any vertical 1-form w with components wa in Ό, taking account of
(3.7)' and (3.8)', we have

(3.11)

(3.12)

The horizontal part of Xxw and the vertical part of Xxw are called respectively
the (*)-Lie derivative of horizontal projectable 1-form w with respect to X and the
(*)-Lz'# derivative of vertical 1-form w with respect to X and denoted respectively

* * _
by Xxw and Xzw, that is

(3.13)
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and

(3.14) X*w

(3.13) is easily seen to be equivalent to

(3.13)'

For any projectable element of £Γjjj£(M), say an element f of 2°0\\(M) with
components Tb

a

β« in 0, considering the equations (3.9), (3.10), (3.13) and (3.14),

we can define inductively the (*}-Lιe derivative Xxf of f with respect to X as
a partial tensor with components of the form

(3.15)

Taking account of (2.3) and (2.4), we see that the relation (3.15) is equivalent to

(3.15)'

From this definition, we see die following results :
(a) Denoting by X and by X the horizontal part of X and the vertical

part of X respectively, we have

(b) Denoting by Xx the Lie derivation with respect to the vector field X
in M, we have for any projectable element f of £Γs

r(AM)

in M, where X=pX and T=pf.

(c) Denoting by J7j the Lie derivation with respect to the vertical vector
field X in F, we have for any element T of £Γ£(t;M)

For any projectable element f of 3 (̂M), we say that X leaves f (*)-

invariant if the equation J7^T^=0 holds in M.
We shall now give some identities obtained from (3.15) for later use. In the

first, for the elements hcb

a, ha

br, Lfc and Lrβ
a, we have
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(3.16)

(3.18)

respectively.
Next, taking account of (2.3) and (3.16), and noting the relation

(3.20) d£bx
a-3£ex

a=2h<Λ 3tx« ,
we have the Ricci-type formula

'Ve'V*Xa-'V*'VeX
a=2{-ϊghet*-/Ve(ht.*Xt)+'Vl>(het"X')

(3.21)
+ (L.a^e. -L/'ehtt')Xt}-('^eL.a

b-'^l>Lt

a

t-Lra

tLtfe+Lτ

a

eLt

Moreover, by virtue of Proposition 2.2, (3.21) is expressed as followings :

(3.21),

Similarly, we obtain the following formulas of the same type as (3.21) :

"7/7;)Z«-/7ί>"7rZ
α = -6"^^α-Λ e

6/7eZα r

(3.22)

(3.23) "Ί

(3.24) /7

(3.25) "7

(3.26) "7

Taking account of (2.3), (3.6), (3.16) and (3.21), we have

(3.27)
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§ 4. Killing vectors in a fibred space

Let X be a projectable vector field in the total space M of a fibred Rieman-
nian space {M, M, g, π} such that X has the components Z^ of the form (3.1).
From now on, we fix such a vector field X.

If we put

(4.1) 7e=5V7£,

then, from (2.2) we have

(4.2) 7C='7C, 7r="7r.

Putting Xj=gJHXH and noting the relation VJZ/=Vj^?/, we have

(4.3) BJcBIB3jXI=BI

BVcXj=Vc(Bt

BXι)-(VcBI

B')X1=VcXB-(ycBIB')Xι .

Taking account of (2.8), (2.9), (2.10), (2.11) and (4.2), we see that (4.3) reduces to

(4.4) Ei

tE
I^jXl='ΊeXt-ha!'Xat

(4.5) E'έ'βVjX^'^Xβ-h cβXa,

(4.6) CJ

rE'^jX1='^rXl>+LratXa,

(4.7) Cf

1C
I

β^jXj=''ΊrXβ-LrβaXa,

respectively.
We now assume that X is a projectable Killing vector in M, and therefore,

we see that the condition

(4.8) -£>&/=7.,£/+7/.?,=0

holds in {0, XH} . Transvecting BJ

CB' B to both sides of (4.8), and taking account
of (4.4), (4.5), (4.6) and (4.7), we see that (4.8) is equivalent respectively to the
equations

(4.9) '7A+'76ZC=0,

(4.10) •

(4.11) '

where Xb=gkaX
a and Xβ=gβaX? .

On the other hand, since X is projectable, we obtain

(4.12)

Transvecting ga? to both sides of (4.11) and taking account of (4.12), we have

(4.13) Zt =Q,
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where Zc

a are given in (3.6). Substituting (4.13) into (3.27), we have

(4.14) J:j?λcft«=0.

Summing up, we have

THEOREM 4.1. Let X be a projectable Killing vector in the total space M of
a fibred Riemannian space {M, M, g, π}. Then, X leaves hcb

a (^-invariant in U,
and X=pX is a Killing vector in M.

COROLLARY 1. Let X be a projectable Killing vector in the total space M of
a fibred Riemannian space {M, M, g, π} having isometric fibres. Then, X leaves
hcb

a (^-invariant, and moreover, X=pX and X are Killing vectors in M and F
respectively, where X is the vertical part of X.

COROLLARY 2. Let X be a projectable Killing vector which is horizontal in
the total space M of a fibred Riemannian space {M, M, g, π}. Then we have the
following results:

(a) X—pX is a Killing vector in M.
(b) X leaves hcb

a (^-invariant.

COROLLARY 3. Let X be a projectable Killing vector in the total space M of
a fibred Riemannian space {M, M, g, π} having conformal fibres, that is, LTβ

a=
grβAa hold in M. Then we have the following results:

(a) X~pX is a Killing vector in M.
(b) X leaves hcb

a (^-invariant.
(c) X is a conformal Killing vector in F, and moreover, if the vector Λ=ΛaEa

is projectable, then X is homothetic.

Next, we assume that X is a projectable conformal Killing vector in M, and
therefore, we see that the condition

(4.15) 2*gjι=VjXι+VιXj=p$jι

holds in {U, XH}, where p is a scalar function in M.
Transvecting BJ

CB
I

B to both sides of (4.15) and taking account of (4.4), (4.5),
(4.6) and (4.7), we see that (4.15) is equivalent to the following equations

(4.16) '7c*6+'VA=^c6,

(4.17) ''VrXβ+»VβXr=2Lrβ

aXa+pgrβ,

(4.18) 'VcXβ+*VpXe + Lβ«eXΛ-ha

cβXa = 0 .

Since X and g are projectable, from (4.16) we see that the function p is pro-
jectable. On the other hand, from (4.12) and (4.18) we have Zc

a=0, and there-
*

fore, we have £χhcb

a—§.
Summing up, we have
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THEOREM 4.2. Let X be a projectable conformal Killing vector in the total
space M of a fibred Riemannian space {M, M, g, π } . Then, X leaves /ιcδ* (*)-
invariant in 0, and X—pX is a conformal Killing vector in M.

COROLLARY 1. Let X be a projectable conformal Killing vector in the total
space M of a fibred Riemannian space {M, M, g, π} having isometric fibres. Then,
X leaves hcb

a (^-invariant, and moreover, X=pX and X are conformal Killing
vectors in M and F respectively, where X is the vertical part of X.

COROLLARY 2. Let X be a projectable conformal Killing vector which is
horizontal in the total space M of a fibred Riemannian space {M, M, g, π}.

Then we have the following results:
(a) X=pX is a conformal Killing vector in M.
(b) X leaves hcb

a (^-invariant.

COROLLARY 3. Let X be a projectable conformal Killing vector in the total
space M of a fibred Riemannian space {M, M, g, π} having conformal fibres, that
is, Lrβ

a—grβAa hold in M. Then we have the following results:
(a) X—pX is a conformal Killing vector in M.
(b) X leaves hc^ (^-invariant.
(c) X is a conformal Killing vector in F, and moreover, if the vector Λ=ΛaEa

is projectable, then X is homothetic.

5. Affine Killing vectors in a fibred space

Let X be a projectable vector field in the total space M of a fibred Rieman-
nian space {M, M, g, π} such that X has the components XH of the form (3.1).

Operating Vc on both sides of (3.1) and taking account of (2.8)~(2.11) and

(4.2), we have VCX
H of the forms

(5.1) 'VcXH = EHa('Vc

(5.2) *VrX*=E*a(ha0

where V? are given by (4.1).
On the other hand, we obtain,

(5.3) =BHA^C^BXH-BH

A(^CB
I

=Ba

AWBXΠ-Ba

AB1*$

and moreover, taking account of (2.12) and (3.1),

(5.4) BH

ABJcBI

BKKJI

aXK^PDcB

ABK

DXK=
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We now assume that X is a projectable affine Killing vector in M, and
therefore, we see that the condition

(5.5)

holds in {U, XH}.
We denote by X (resp. X) the horizontal (resp. the vertical) part of X and

denote by J£χ the Lie derivation with respect to the vertical vector field X in F.
If we put

then from (5.3) and (5.4) we obtain

(5.6) L ^ =5^707^-5^5,̂  .

Thus, substituting (2.8)^(2.11), (2.16)^(2.27), (5.1) and (5.2) into (5.6) and taking
account of (3.17)^(3.27), we find that (5.5) is equivalent to the following equations

(5.7) J

(5.8)

(5.9)

(5.10) (/

(5.11)

(5.12)

where

(5.13)

and

(5.14) drβ ~ " dβ

// r"7 T cc i // V7 T cc 7τctε rr ff V7 T & I A β T oc I L β Γ (X i Γ β ίi cc
— VγLβ d \ Vβ L'r d — s ^ce Vε Lrβ \"' dr L'β e~T~fϊ dβ Lr e~T ^rβ^ed

From (5.7) and (5.9), we have

THEOREM 5.1. Let X be a projectable affine Killing vector in the total space
M of a fibred Riemannian space {M, M, g, π } . Then X leaves Lrβ

a (^-invariant,
and ha

ύεZc

ε are projectable.
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We now assume that M has isometric fibres. By virtue of L—0, the equa-
tions (5.8), (5.10), (5.11) and (5.12) reduce to

(5.8)'

(5.10)'

(5.11)'

(5.12)' J

respectively. From (5.11)' we find that Za

a are covariant constant along each
fibre.

For any element of 2g^(M), say an element f of 2"§?}(M) with components
?V*, we say that T satisfies a Killing equation in the horizontal direction if

hold in M. In this case, if T is projectable, then a projection pT of T is a
Killing vector in the base space M.

From (5.1θy we find that Za

a satisfy Killing equations in the horizontal
direction. On the other hand, for any element T of £Γo5J(M) having components
Ta

a in 0, by a direct computation we have

(5.15)
+ (//7rL

where Lbrd

a are given in (5.14). Putting Ta

ce=Za

cc in (5.15) and taking account
of (5.11)', we have

(5.16) ^r^bZa-+(^eZa^he

br-Ze^bh
e

ar=Qf

because of L^O.
Taking account of (5.10)x, we see that (5.16) reduces to

Adding the above equations to the equations

and taking account of (5.10)x, we have

(5.17) /7α(ZeβAV)+/76(ZeβAβαr) = 0 -

Contracting with respect to the indices a and γ in (5.17), we have
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(5.18) /Vβ(ZββAβ

6β)+/76(Zβ

βAβ

αβ)=0 .

Furtheremore, contracting with respect to the indices a and b in (5.7), we have

(5.19) 'Ve'VaXa+hac«Za*=0,

which implies that ha

caZa

a are projectable since 'V/V^" are projectable. From
(5.18) and (5.20) we find that the vector with components p(gabhe

bciZe

ct] in U is a
Killing vector in M. Summing up results mentioned above, we have

THEOREM 5.2. Let X be a projectable affine Killing vector in the total space
M of a fibred Riemannian space {M, M, g, π} having isometric fibres. Then we
have the following results:

(a) X is an affine Killing vector in F.
(b) X leaves ha

cβ (^-invariant.
(c) Za

a are co variant constant along each fibre, and ZQ? satisfy Killing
equations in the horizontal direction.

(d) The vector with components p(gabhe

baZe

a) in U is a Killing vector in M.

We next assume that X is a projectable affine Killing vector which is hori-
zontal in M, and M has isometric fibres. Thus, from (5.13) we have

Taking account of the third equation in Corollary to Proposition 2.3, we find
that (5.1iy reduces to

Consequently, from (5.19) we have

which implies that 7VαZα is a constant, since '7αX
α is projectable. Thus we

have

COROLLARY. Let X be a projectable affine Killing vector which is horizontal
in the total space M of a fibred Riemannian space {M, M, g, π} having isometric
fibres. Then we have the following results:

(a) X leaves ha

cβ (^-invariant.
(b) hab

ccXb are covariant constant along each fibre, and hab

aXb satisfy Killing
equations in the horizontal direction.

(c) The vector with components p(gabhe

b<xhec

aXc) in U is a Killing vector in M.
(d) yaX

a is a constant in M.
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§ 6. Projective Killing vectors in a fibred space

Let X be a projectable vector field in the total space M of a fibred Rieman-
nian space {M, M, g, π} such that X has the components XH of the form (3.1).

In this section, we assume that X is a projectable projective Killing vector
in M, and therefore, we see that the condition

(β.l)

holds in {0, x11}, φj being the components of a certain 1-form φ in M.
Moreover, we have an expression of the form

(6.2) #/=B/0A=£/α0α+C/β0Λ ,

where φa=EI

aφI and φct=CI

(XφJ.
Transvecting BJ

CB
1

 B to both sides of (6.1) and taking account of the left
sides of equations (5.7)~(5.12), and (6.2), we see that the equation (5.1) is equi-
valent to the following equations

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8) -χ

where X is the vertical part of X, and LdTβ
a are given in (5.14), and

Thus we have

THEOREM 6.1. Let X be α projectable projective Killing vector in the total
space M of a fibred Riemannian space {M, M, g, π} . Then X leaves LTβ

a (*)-
invariant. Moreover, if φ is projectable, then ha

bεZc

ε are projectable.

Next, we assume that M has isometric fibres. By virtue of L=Q, the equa-
tions (6.4), (6.6), (6.7) and (6.8) reduce to the equations

(6.6X
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(6.7)'

(6.8) -£*{r

a }=δf
β

respectively.
Contracting with respect to the indices a and c in (6.4) ', we have

(6.9) φβ=0.

Consequently, taking account of (6.4)', (6.8), and (6.9), we see that X leaves ha

cβ
(*)-invariant and X is an affine Killing vector in F, where X is the vertical
part of X. Furtheremore, contracting with respect to the indices a and β in
(6.7)', we have

fh — — -"V 7 «ψc — Vα^c >

where s=r—n.
Summing up the results mentioned above, we have

THEOREM 6.2. Let X be a projectable projective Killing vector in the total
space M of a fibred Riemannian space {M, M, g, π} having isometric fibres. Then
we have the following results:

(a) X is an affine Killing vector in F.
(b) X leaves ha

cβ (^-invariant.
(c) Zα

α satisfy Killing equations in the horizontal direction.
(d) φ is a horizontal l-form.
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