A CERTAIN DERIVATIVE IN FIBRED RIEMANNIAN SPACES, AND ITS APPLICATIONS TO VECTOR FIELDS

By Ichiro Yokote

Introduction. Recently, Ishihara [1] studied vector fields in fibred Riemannian spaces with 1 -dimensional fibre. The main purpose of the present paper is to study these problems in fibred Riemannian spaces with higher dimensional fibre.

For this purpose, we define a kind of derivatives which are closely related to Lie derivative, to describe some properties of vector fields in fibred Riemannian spaces with higher dimensional fibre.

In the first section, we shall give some preliminaries for fibred Riemannian spaces following to the sense of Ishihara-Konishi [2]. In the second section, we shall derive the so-called structure equations of fibred Riemannian spaces, which were mainly obtained in a previous paper [9]. In the third section, we shall define the (*)-Lie derivative for later use. Section 4,5 and 6 are devoted to the study of vector fields, Killing, affne Killing and projective Killing respectively.

§ 1. Preliminaries on fibred spaces

In this section, we shall recall definitions and properties concerning fibred spaces in the sense of Ishihara-Konishi [2].

Let \tilde{M} and M be two differentiable manifolds of dimension r and n respectively, where $s=r-n>0$, and suppose that there exists a differentiable mapping $\pi: \tilde{M} \rightarrow M$ which is onto and maximal rank n everywhere. Throughout the paper, the differentiability of manifolds, mappings and geometric objects we discuss are assumed to be of C^{∞}. The manifolds we discuss are assumed to be connected. Then the inverse image $\pi^{-1}(P)$ of any point P of M is an s-dimensional submanifold of \tilde{M}, which is called the fibre over P and denoted by F_{P}, or simply by F. Moreover we assume that each fibre is connected. Such a set $\{\tilde{M}, M, \pi\}$ is called a fibred space, \tilde{M} the total space, M the base space and π the projection.

Let there be given a Riemannian metric \tilde{g} in \tilde{M} of a fibred space $\{\tilde{M}, M, \pi\}$. Then the set $\{\tilde{M}, M, \tilde{g}, \pi\}$ is called a fibred space with Riemannian metric \tilde{g} and

Received September 24, 1976
the Riemannian space (\tilde{M}, \tilde{g}) the total space. In the total space (\tilde{M}, \tilde{g}), we denote by \mathscr{A} the n-dimensional distribution which is perpendicular and complementary to the tangent space to the fibre at each point.

We take coordinates neighborhoods $\left\{\tilde{U}, x^{H}\right\}$ of \tilde{M} and coordinates neighborhoods $\left\{U, v^{a}\right\}$ of M such that $\pi(\tilde{U})=U$, where x^{H} and v^{a} are coordinates in \tilde{U} and U, respectively ${ }^{11}$. Then the projection $\pi: \tilde{M} \rightarrow M$ be expressed with respect to $\left\{\tilde{U}, x^{H}\right\}$ and $\left\{U, v^{a}\right\}$, by certain equations of the form

$$
\begin{equation*}
v^{a}=v^{a}\left(x^{H}\right) \tag{1.1}
\end{equation*}
$$

where $v^{a}\left(x^{H}\right)$ denote the coordinates of the projection $P=\pi(\widetilde{P})$ of a point \widetilde{P} with coordinates x^{H} in \tilde{U} and are differentiable functions of variables x^{H} with Jacobian $\left(\partial v^{a} / \partial x^{H}\right)$ of maximum rank n. Take a fibre F such that $F \cap \tilde{U} \neq \phi$. We may assume that $F \cap \tilde{U}$ is connected and that there are in $F \cap \tilde{U}$ coordinates u^{α} in such a way that $\left(v^{a}, u^{\alpha}\right)$ is a system of coordinates in \tilde{U}, v^{a} being coordinates of the point $\pi(F)$ of U. Differentiating (1.1) by x^{I}, we put

$$
\begin{equation*}
E_{I}{ }^{a}=\tilde{\partial}_{I} v^{a} \tag{1.2}
\end{equation*}
$$

where $\tilde{\partial}_{I}=\partial / \partial x^{I}$. Then, for each fixed index $a, E_{I}{ }^{a}$ are components of a local covector field E^{a} defined in \tilde{U}. On the other hand, if we put $C_{\alpha}=\partial / \partial u^{\alpha}$ which is a local vector field in \tilde{U} for each fixed index α, then C_{α} form a natural frame of each fibre F along $F \cap \tilde{U}$. We denote by $C^{H}{ }_{\alpha}$ components of C_{α} in $\left\{\tilde{U}, x^{H}\right\}$. Denoting by $\tilde{g}_{J_{I}}$ the components of \tilde{g} in $\left\{\tilde{U}, x^{H}\right\}$, we put

$$
\begin{equation*}
\bar{g}_{\gamma \beta}=\tilde{g}_{J I} C^{J}{ }_{r} C^{I}{ }_{\beta} . \tag{1.3}
\end{equation*}
$$

Then $\bar{g}_{r \beta}$ are components of the induced metric tensor \bar{g} of F along $F \cap \tilde{U}$. If we put

$$
C_{I}^{\alpha}=\tilde{g}_{I J} \bar{g}^{\alpha \beta} C_{\beta}^{J},
$$

where ($\bar{g}^{\alpha \beta}$) is the inverse matrix of ($\bar{g}_{\alpha \beta}$), and denote by C^{α} the local covector field with components $C_{I}{ }^{\alpha}$ in \tilde{U} for each index α, then (E^{a}, C^{α}) forms a coframe in \tilde{U}. Denoting by $\left(E^{H}{ }_{b}, C^{H}{ }_{\beta}\right)$ the inverse matrix of ($\left.E_{I}{ }^{a}, C_{I}{ }^{\alpha}\right)$, we have

$$
\begin{align*}
& E_{I}{ }^{a} E^{I}{ }_{b}=\delta_{b}^{a}, \quad E_{I}{ }^{a} C^{I}{ }_{\beta}=0, \tag{1.4}\\
& C_{I}{ }^{\alpha} E^{I}{ }_{b}=0, \quad C_{I}{ }^{\alpha} C^{I}{ }_{\beta}=\delta_{\beta}^{\alpha}
\end{align*}
$$

and

$$
\begin{equation*}
E_{I}{ }^{a} E^{H}{ }_{a}+C_{I}{ }^{\alpha} C^{H}{ }_{\alpha}=\delta_{I}^{H} . \tag{1.5}
\end{equation*}
$$

Denoting by ($\tilde{g}^{J I}$) the inverse matrix of ($\tilde{g}_{J I}$) and putting

[^0]\[

$$
\begin{equation*}
g_{c b}=\tilde{g}_{J I} E_{c}^{J} E_{b}^{I}, \tag{1.6}
\end{equation*}
$$

\]

we obtain

$$
\begin{equation*}
E_{a}^{H}=\tilde{g}^{H I} g_{a b} E_{I}{ }^{b} . \tag{1.7}
\end{equation*}
$$

$E^{H}{ }_{a}$ are components of a local vector field E_{a} defined in $\left\{\tilde{U}, x^{H}\right\}$, for each fixed index a. Thus, we find that the set (E_{b}, C_{β}) forms in \tilde{U} a frame dual to the coframe (E^{a}, C^{a}). We shall often denote by $\left(B_{B}\right)$ (resp. $\left(B^{A}\right)$) the frame (E_{b}, C_{β}) (resp. the coframe $\left(E^{a}, C^{\alpha}\right)$), where $B_{b}=E_{b}$ and $B_{\beta}=C_{\beta}\left(\text { resp. } B^{a}=E^{a} \text { and } B^{\alpha}=C^{\alpha}\right)^{1)}$. As the similar notation to the above, we often denote by ($B^{I}{ }_{B}$) (resp. $\left(B_{J}{ }^{A}\right)$) the matrix $\left(E_{b}^{I}, C^{I}{ }_{\beta}\right)$ (resp. the matrix $\left(E_{J}{ }^{a}, C_{J}{ }^{\alpha}\right)$). Then we can express (1.4) and (1.5) as

$$
\begin{equation*}
B_{I}{ }^{A} B_{B}^{I}=\delta_{B}^{A}, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{I}{ }^{A} B^{H}{ }_{A}=\delta_{I}^{H}, \tag{1.5}
\end{equation*}
$$

respectively. Moreover, we easily obtain

$$
\begin{equation*}
B_{B}=B^{I}{ }_{B} \tilde{\partial}_{I}, \quad B^{A}=B_{J}{ }^{A} d x^{J}, \tag{1.8}
\end{equation*}
$$

where $\tilde{\partial}_{I}=\partial / \partial x^{I}$ and $\left(d x^{J}\right)$ denotes the coframe dual to the frame $\left(\tilde{\partial}_{I}\right)$ in $\left\{\tilde{U}, x^{I}\right\}$.
We often use $\tilde{\partial}_{I}$ as differential operators in \tilde{U} if there is no fear of confusion. In this case, from the first equation of (1.8), we have

$$
\begin{equation*}
\partial_{b}=\partial / \partial v^{b}=E_{b}^{I} \tilde{\partial}_{I}, \quad \partial_{\beta}=\partial / \partial u^{\beta}=C^{I}{ }_{\beta} \tilde{\partial}_{I} \tag{1.9}
\end{equation*}
$$

From now on, we shall often denote by $\left(\partial_{B}\right)$ the set of differential operators $\left(\partial_{b}, \partial_{\beta}\right)$.

Let there be given an arbitrary tensor field in \tilde{M}, say \tilde{T} of type $(1,2)$ with local expression

$$
\begin{equation*}
\tilde{T}=\tilde{T}_{J I}{ }^{H} d x^{J} \otimes d x^{I} \otimes \tilde{\partial}_{H} \tag{1.10}
\end{equation*}
$$

in $\left\{\tilde{U}, x^{I}\right\}$. Taking account of (1.8), we see that \tilde{T} is also represented as followings:

$$
\begin{align*}
\tilde{T}=T_{c b}{ }^{a} E^{c} & \otimes E^{b} \otimes E_{a}+T_{c b}{ }^{\alpha} E^{c} \otimes E^{b} \otimes C_{a}+\cdots \\
& +T_{\gamma \beta}{ }^{a} C^{r} \otimes C^{\beta} \otimes E_{a}+T_{\gamma \beta}{ }^{\alpha} C^{r} \otimes C^{\beta} \otimes C_{\alpha} \tag{1.10}
\end{align*}
$$

where

$$
T_{c b}{ }^{a}=E^{J}{ }_{c} E^{I}{ }_{b} E_{H}{ }^{a} \tilde{T}_{J I}{ }^{H}, \quad T_{c b}{ }^{\alpha}=E^{J}{ }_{c} E^{I}{ }_{b} C_{H}{ }^{\alpha} \widetilde{T}_{J I}{ }^{H}, \ldots
$$

[^1]$$
T_{\gamma \beta}{ }^{a}=C_{\gamma}^{J} C^{I}{ }_{\beta} E_{H}{ }^{\alpha} \tilde{T}_{J I}{ }^{H}, \quad T_{\gamma \beta}{ }^{\alpha}=C^{J}{ }_{\gamma} C^{I}{ }_{\beta} C_{H}{ }^{\alpha} \tilde{T}_{J I}{ }^{H} .
$$

In the right-hand side, the first term $T_{c b}{ }^{a} E^{c} \otimes E^{b} \otimes E_{a}$ determines a global tensor field in \tilde{M}, which is called the horizontal part of \widetilde{T} and denoted by \hat{T}. The last term $T_{r \beta}{ }^{\alpha} C^{r} \otimes C^{\beta} \otimes C_{\alpha}$ determines also a global tensor field, which is called the vertical part of \tilde{T} and denoted by \bar{T}. For a function \tilde{f} in \tilde{M}, we define its horizontal part \hat{f} and vertical part \bar{f} by $\hat{f}=\bar{f}=\tilde{f}$.

A tensor field \tilde{T} in \tilde{M} is said to be projectable if it satisfies

$$
\widehat{\left(\tilde{\mathcal{L}}_{\bar{V}}(\hat{T})\right)}=0
$$

for any vertical vector field \bar{V} in $\tilde{M}, \tilde{\mathcal{L}}_{\bar{V}}$ denoting the Lie derivation with respect to \bar{V}. A function \tilde{f} in \tilde{M} is said to be projectable if $\tilde{\mathcal{L}}_{\overline{\mathcal{V}}} \tilde{f}=0$ for any vertical vector field \bar{V} in \tilde{M}.

Given a projectable function \tilde{f} in \tilde{M}, we can define a function f in M in such a way that, for any point P of $M, f(P)=\tilde{f}(\tilde{P})$, where \tilde{P} is a point of \tilde{M} such that $\pi(\tilde{P})=P$. We call f the projection of \tilde{f} and denote it by $p \tilde{f}$.

A tensor field, say \tilde{T} of type $(1,2)$ with local expression (1.10), in \tilde{M} is projectable if and only if $T_{c b}{ }^{a}$ are projectable, or equivalently, if and only if

$$
\begin{equation*}
\partial_{\alpha} T_{c b}{ }^{a}=\frac{\partial}{\partial u^{\alpha}} T_{c b}{ }^{a}=0 \tag{1.11}
\end{equation*}
$$

Then, for a projectable tensor field \widetilde{T} of this type, we can define a local tensor field T_{U} in U having $p\left(T_{c b}{ }^{a}\right)$ as components with respect to $\left\{U, v^{a}\right\}$. The local tensor field T_{U} determines a global tensor field T of the same type as that of \widetilde{T}, which is called the projection of \widetilde{T} and denoted by $T=p \widetilde{T}$.

For simplicity, from now on, any projectable function \tilde{f}, global or local, in \tilde{M} is identified with its projection $p \tilde{f}$.

Given a tensor field T in M, there is a unique horizontal and projectable tensor field \hat{T} in \tilde{M} such that $p \hat{T}=T$. This \hat{T} is called the lift of T.

When the metric tensor \tilde{g} is projectable in a fibred space $\{\tilde{M}, M, \tilde{g}, \pi\}$ with Riemannian metric $\tilde{g},\{\tilde{M}, M, \tilde{g}, \pi\}$ or simply (\tilde{M}, \tilde{g}) or more simply \tilde{M} is called a fibred Riemannian space.

From now on, we restrict ourselve to a fibred Riemannian space \tilde{M}. If we put $g=p \tilde{g}$, then g is a Riemannian metric in M, which is called the induced metric of M and has components $g_{c b}$ defined by (1.6). The Riemannian manifold (M, g) thus introduced is called the base space.

If we put

$$
g^{c b}=E_{J}{ }^{c} E_{I}{ }^{b} \tilde{g}^{J I}
$$

in \tilde{M}, then $\left(g^{c b}\right)$ is the inverse matrix of $\left(g_{c b}\right)$ in M, where we identify any projectable function with its projection.

Let $\tilde{\nabla}$ be the Riemannian connection of the Riemannian space ($\tilde{M}, \tilde{g})$ and denote by $\left.\widetilde{\int_{J}^{H}}{ }_{I}\right\}$ the Christoffel's symbols constructed from $\tilde{g}_{J I}$ in $\left\{\tilde{U}, x^{H}\right\}$. Let
∇ and $\bar{\nabla}$ be the Riemannian connections determined by the induced metric $g=p \tilde{g}$ in M and by the induced metric \bar{g} in F, respectively.

We denote by $\left\{\begin{array}{c}a \\ c\end{array}\right\}$ and $\left\{\begin{array}{c}\alpha \\ \gamma \beta\end{array}\right\}$ the Christoffel's symbols constructed from $g_{c b}$ in $\left\{U, v^{a}\right\}$ and $\bar{g}_{\gamma \beta}$ in $\left\{F \cap \tilde{U}, u^{\alpha}\right\}$, respectively.

If we put

$$
\begin{equation*}
\tilde{\nabla}_{J} B^{H}{ }_{B}=\Gamma_{C}{ }_{B}{ }_{B} B_{J}{ }^{C} B^{H}{ }_{A} \tag{1.12}
\end{equation*}
$$

in \tilde{U}, where $\Gamma_{C}{ }^{A}{ }_{B}$ are local functions defined in \tilde{U}, then we have the following results :
(a)

$$
\Gamma_{c}{ }_{c}^{a}{ }_{b}=\left\{\begin{array}{c}
a \\
c
\end{array}\right\} .
$$

(b)

$$
\Gamma_{\gamma}^{\alpha}{ }_{\beta}=\left\{\bar{\alpha},\left\{\begin{array}{c}
\bar{\alpha} \\
\gamma_{\beta}
\end{array}\right\} .\right.
$$

(c) Rewriting $\Gamma_{c}{ }^{\alpha}{ }_{b}$ and $\Gamma_{c}{ }^{a}{ }_{\beta}\left(=\Gamma_{\beta}{ }^{a}{ }_{c}\right)$ into $h_{c b}{ }^{\alpha}$ and $h^{a}{ }_{c \beta}$ respectively, we have

$$
h_{c b}{ }^{\alpha}+h_{b c}{ }^{a}=0, \quad h^{a}{ }_{c \beta}=g^{a b} h_{b c}{ }^{\alpha} \bar{g}_{\alpha \beta} .
$$

Along each fibre $F, h^{a}{ }_{b r}$ are connection coefficients of the induced connection of the normal bundle of the submanifold F embedded in ($\tilde{M}, \tilde{g})$ with respect to normals E_{a}.
(d) Rewriting $\Gamma_{\gamma}{ }^{a}{ }_{\beta}\left(=\Gamma_{\beta}{ }^{a}{ }_{\gamma}\right)$ and $\Gamma_{\gamma}{ }^{\alpha}{ }_{b}$ into $L_{\gamma \beta}{ }^{a}$ and $-L_{\gamma}{ }^{\alpha}{ }_{b}$ respectively, we have

$$
L_{r}{ }^{\alpha}{ }_{b}=L_{r \beta}{ }^{a} g_{a b} \bar{g}^{\beta \alpha}, \quad \Gamma_{c}{ }^{\alpha}{ }_{\beta}=P_{c \beta}{ }^{\alpha}-L_{\beta}{ }^{\alpha}{ }_{c},
$$

where $P_{c \beta}{ }^{\alpha}$ are the functions appearing in

$$
\tilde{\mathcal{L}}_{C_{\beta}} E^{a}=0, \quad \tilde{\mathcal{L}}_{C_{\beta}} E_{c}=-P_{c \beta}{ }^{\alpha} C_{\alpha}, \quad \tilde{\mathcal{L}}_{C_{\beta}} C_{r}=0, \quad \tilde{\mathcal{L}}_{C_{\beta}} C^{\alpha}=P_{c \beta}{ }^{\alpha} E^{c}
$$

Along each fibre $F, L_{\gamma \beta}{ }^{a}$ are components of the second fundamental tensor of the submanifold F embedded in ($\tilde{M}, \tilde{g})$ with respect to normals E_{a}. If the equations $L_{r \beta}{ }^{a}=0$ hold, then $\{\tilde{M}, M, \tilde{g}, \pi\}$ is called a fibred Riemannian space with isometric fibre. If the equations $L_{\gamma \beta}{ }^{a}=A^{a} \bar{g}_{\gamma \beta}$ hold, where $A=A^{a} E_{a}$ is the mean curvature vector along each fibre and a horizontal vector field in \tilde{M}, then $\{\tilde{M}, M, \tilde{g}, \pi\}$ is called a fibred Riemannian space with conformal fibre.

Summing up the results mentioned above, we have

$$
\begin{align*}
& \Gamma_{c}{ }^{a}{ }_{b}=\left\{\begin{array}{c}
a \\
c
\end{array}\right\}, \quad \Gamma_{c}{ }^{a}{ }_{\beta}=\Gamma_{\beta}{ }^{a}{ }_{c}=h^{a}{ }_{c \beta}, \\
& \Gamma_{r}{ }^{a}{ }_{\beta}=L_{r \beta}{ }^{a}, \quad \Gamma_{c}{ }^{\alpha}{ }_{b}=h_{c b}{ }^{\alpha}, \quad \Gamma_{\gamma}{ }^{\alpha}{ }_{b}=-L_{r}{ }^{\alpha}{ }_{b}, \tag{1.13}\\
& \Gamma_{c}{ }^{\alpha}{ }_{\beta}=P_{c \beta}{ }^{\alpha}-L_{\beta}{ }^{\alpha}{ }_{c}, \quad \Gamma_{\gamma}{ }^{\alpha}{ }_{\beta}=\left\{\begin{array}{c}
\alpha \\
\gamma
\end{array}\right\} .
\end{align*}
$$

Moreover, it is known that the following identities hold (see [2]):

$$
\begin{gather*}
\left(\partial_{d} h_{c b}{ }^{\alpha}+P_{d \varepsilon}{ }^{\alpha} h_{c b}{ }^{\varepsilon}\right)+\left(\partial_{c} h_{b d}{ }^{\alpha}+P_{c \varepsilon}{ }^{\alpha} h_{b d}{ }^{\varepsilon}\right)+\left(\partial_{b} h_{d c}{ }^{\alpha}+P_{b \varepsilon}{ }^{\alpha} h_{d c}{ }^{\varepsilon}\right)=0, \tag{1.14}\\
2 \partial_{r} h_{c b}{ }^{\alpha}+\left(\partial_{c} P_{b r}{ }^{\alpha}-\partial_{b} P_{c r}{ }^{\alpha}+P_{c \varepsilon}{ }^{\alpha} P_{b r}{ }^{\varepsilon}-P_{b \varepsilon}{ }^{\alpha} P_{c r}{ }^{s}\right)=0, \tag{1.15}\\
\partial_{a} \bar{g}_{r \beta}-P_{a r}{ }^{\varepsilon} \bar{g}_{\varepsilon \beta}-P_{a \beta}{ }^{\varepsilon} \bar{g}_{r \varepsilon}=-2 L_{\gamma \beta}{ }^{e} g_{e a}, \tag{1.16}
\end{gather*}
$$

where $\partial_{a}=\partial / \partial v^{a}$ and $\partial_{\alpha}=\partial / \partial u^{\alpha}$. Furtheremore, using the identity

$$
\begin{equation*}
\partial_{\gamma} P_{d \beta}^{\alpha}-\partial_{\beta} P_{d \gamma}^{\alpha}=0, \tag{1.17}
\end{equation*}
$$

we find that there exist local functions $\Pi_{d}{ }^{\alpha}$ in \tilde{U} such that

$$
\begin{equation*}
P_{d \beta}{ }^{\alpha}=\partial_{\beta} \Pi_{d}{ }^{\alpha} . \tag{1.18}
\end{equation*}
$$

§ 2. Structure equations

In this section, we derive the so-called structure equations of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$. To do so, we now define two covariant derivative operators ${ }^{\prime} \nabla$ and $" \nabla$ of \tilde{M}.

Let $\mathscr{T}_{q}^{p}(\tilde{M})$ be the space of all tensor fields of type (p, q) in \tilde{M}. Let $\mathscr{T}_{s}^{r}(h \tilde{M})$ (resp. $\left.\Im_{u}^{t}(v \tilde{M})\right)$ be the space of all horizontal (resp. vertical) tensor fields of type (r, s) (resp. type (t, u)) in \tilde{M}. We now consider the formal tensor product in \tilde{M} such as $\mathscr{I}_{q}^{p}(\tilde{M}) \# \mathscr{I}_{s}^{r}(h \tilde{M}) \# \mathscr{I}_{u}^{t}(\tilde{v} \tilde{M})$. We call an element \tilde{T} of this space a $\binom{p r t}{q s u}$ partial tensor in \tilde{M} and denote by $\mathscr{I}_{q s u}^{p r t}(\tilde{M})$ the space of all $\binom{p r t}{q s u}$-partial tensors
 $\Upsilon_{u}^{t}(v \tilde{M})$, respectively. For any element of $\mathscr{T}_{q s u}^{p r t}(\tilde{M})$, say an element \tilde{T} of $\mathscr{I}_{111}^{111}(\tilde{M})$ with components $T_{J}{ }^{I}{ }_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}$, we define the $\left(^{*}\right)$-covariant derivative $\nabla * \tilde{T}$ of \tilde{T} as a partial tensor with components of the form

$$
\begin{align*}
& +\left(\Gamma_{C}{ }^{a}{ }_{e} T \because \cdot \because+\Gamma_{C}{ }_{\alpha}{ }_{\varepsilon} T \because{ }^{\varepsilon}-T \because \because_{e} \because \Gamma_{C}{ }_{C}{ }_{b}-T \because{ }_{\varepsilon} \Gamma_{C}{ }_{\beta}{ }^{\varepsilon}\right) B_{K}{ }^{C} \tag{2.1}
\end{align*}
$$

in \tilde{U}, where Γ 's are given by (1.13). For any element \tilde{T} of $\mathscr{T}_{q q u s}^{p r t}(\tilde{M}), \nabla^{*} \tilde{T}$ is an element of $\mathscr{T}_{q+1 s u}^{p r t}(\tilde{M})$. In particular, for any element of $\mathscr{q}_{q 00}^{p 00}(\tilde{M})=\mathscr{T}_{q}^{p}(\tilde{M})$, we have $\nabla * \tilde{T}=\tilde{\nabla} \tilde{T}$.

If we define two covariant derivations ${ }^{\prime} \nabla$ and $" \nabla$ acting on elements of $q_{q s u}^{p r t}(\tilde{M})$ by

$$
\begin{equation*}
\nabla_{c}=E^{K}{ }_{c}^{K} \nabla_{K}^{*}, \quad " \nabla_{r}=C^{K}{ }_{r} \nabla_{K}^{*} \tag{2.2}
\end{equation*}
$$

respectively, then we have the following results:
(a) For any element of $\mathscr{q}_{q s u}^{p r t}(\tilde{M})$, say an element \tilde{T} of $\mathscr{G}_{111}^{111}(\tilde{M})$ with components $T_{J}{ }^{I}{ }_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}, ~ \nabla \nabla \tilde{T}$ and $" \nabla \tilde{T}$ are respectively elements of $\mathscr{T}_{121}^{11(}(\tilde{M})$ and $\mathscr{T}_{112}^{111}(\tilde{M})$, and have respectively, components of the forms

$$
\begin{align*}
& \nabla_{c} T_{J}{ }^{I}{ }_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}=\partial_{c} T \because \because+\left(\widetilde{I_{K}}\right\} \\
& +\Gamma_{c}{ }^{a}{ }_{e} T \because \because \cdot{ }^{e}+\Gamma_{c}{ }^{\alpha}{ }_{s} T \because \because{ }^{\varepsilon}-T \because_{e} \because \Gamma_{c}{ }^{e}-T \because \because_{b} \Gamma_{c}{ }^{\varepsilon}{ }_{\beta}, \tag{2.3}\\
& " \nabla_{r} T_{J}{ }^{I}{ }_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}=\partial_{r} T \because+\left(\widetilde{I_{K}}\right\} \\
& +\Gamma_{r}{ }^{a}{ }_{e} T \because \because+\Gamma_{\gamma}{ }^{\alpha}{ }_{\varepsilon} T \because \because^{\varepsilon}-T \because \because_{e} \because \Gamma_{r}{ }^{e}{ }_{b}-T \because{ }_{\varepsilon} \Gamma_{r}{ }^{\varepsilon}{ }_{\beta} . \tag{2.4}
\end{align*}
$$

(b) For any projectable elements of $\mathscr{q}_{s}^{r}(h \tilde{M})$, say an element \hat{T} of $\mathscr{T}_{1}^{1}(h \tilde{M})$ with components $T_{b}{ }^{a}$ in \tilde{U}, and for any projectable horizontal vector \hat{X} in \tilde{M} with components X^{c} in \tilde{U}, we have

$$
\begin{equation*}
X^{c} \nabla_{c} T_{b}{ }^{a}=p\left(X^{c} \nabla_{c} T_{b}{ }^{a}\right) \tag{2.5}
\end{equation*}
$$

in M, or equivalently,

$$
\begin{equation*}
\nabla_{X} T=p\left(\nabla_{\hat{X}} \hat{T}\right), \tag{2.5}
\end{equation*}
$$

where $X=p \hat{X}$ and $T=p \hat{T}$.
(c) For any element of $\Im_{u}^{t}(v \tilde{M})$, say an element \bar{T} of $\mathscr{I}_{1}^{1}(\nu \tilde{M})$ with components $T_{\gamma}{ }^{\beta}$ in \tilde{U}, and for any vertical vector field \bar{X} in \tilde{M} with components X^{α} in \tilde{U}, we have

$$
\begin{equation*}
X^{\alpha} \bar{\nabla}_{\alpha} T_{\gamma}^{\beta}=X^{\alpha \prime} \nabla_{\alpha} T_{\gamma}^{\beta} \tag{2.6}
\end{equation*}
$$

in $F \cap \tilde{U}$, or equivalently,

$$
\begin{equation*}
\bar{\nabla}_{\bar{x}} \bar{T}=״ \nabla_{\bar{x}} \bar{T}, \tag{2.6}
\end{equation*}
$$

$\bar{\nabla}$ denoting the Riemannian connection determined by the induced metric \bar{g} in F. We call ${ }^{\prime} \nabla$ and $" \nabla$ the van der Waerden-Bortolotti covariant derivations for M and for F respectively.

Making use of (1.4)' and (1.5) ${ }^{\prime}$ and taking account of (1.12), we have

$$
\Gamma_{C}{ }^{A}{ }_{B}=\left(\partial_{C} B^{H}{ }_{B}+\left\{\begin{array}{c}
H \tag{2.7}\\
J \quad K
\end{array}\right\} B^{J}{ }_{C} B^{K}{ }_{B}\right) B_{H}{ }^{A} .
$$

Using (2.7) and taking account of (1.13), (2.3) and (2.4), we easily have the following equations

$$
\begin{align*}
& \nabla_{c} E^{I}{ }_{b}=h_{c b}{ }^{\alpha} C^{I}{ }_{\alpha}, \tag{2.8}\\
& \nabla_{c} C^{I}{ }_{\beta}=h^{a}{ }_{c \beta} E^{I}{ }_{a}, \tag{2.9}\\
& " \nabla_{r} C^{I}{ }_{\beta}=L_{\gamma \beta}{ }^{a} E^{I}{ }_{a}, \tag{2.10}\\
& " \nabla_{r} E^{I}{ }_{b}=-L_{\gamma}{ }^{\alpha}{ }_{b} C^{I}{ }_{\alpha} . \tag{2.11}
\end{align*}
$$

We call the equations (2.8) and (2.9) the co-Gauss equations of the given fibred Riemannian space and the co-Weingarten equatoons of the given fibred Riemannian space respectively. Moreover, we may call the equations (2.10) and (2.11) the Gauss equations for each fibre and the Weingarten equations for each fibre respectively.

From the definition, we easily obtain
Proposition 2.1. The equations

$$
\begin{array}{lll}
\nabla_{k}^{*} \tilde{g}_{J I}=0, & \nabla_{K}^{*} g_{c b}=0, & \nabla_{k}^{*} \bar{g}_{\gamma \beta}=0, \quad ' \nabla_{a} \tilde{g}_{J I}=0, \quad \nabla_{a} g_{c b}=0, \\
\nabla_{a} \bar{g}_{r \beta}=0, & " \nabla_{\alpha} \tilde{g}_{J I}=0, & " \nabla_{\alpha} g_{c b}=0 \\
\text { and } \quad " \nabla_{\alpha} \bar{g}_{\gamma \beta}=0
\end{array}
$$

hold in \tilde{M}.
Let \tilde{K}, K and \bar{K} be the curvature tensors of \tilde{g} in \tilde{M}, g in M and \bar{g} in F, respectively. We denote by $\widetilde{K}_{K J I}{ }^{H}, K_{d c b}{ }^{a}$ and $\bar{K}_{\partial \partial \gamma \beta}{ }^{\alpha}$ components of \tilde{K} in $\left\{\tilde{U}, x^{H}\right\}$, those of K in $\left\{U, v^{a}\right\}$ and those of \bar{K} in $\left\{F \cap \tilde{U}, u^{\alpha}\right\}$, respectively.

If we put

$$
\begin{equation*}
P_{D C B}{ }^{A}=B^{K}{ }_{D} B^{J}{ }_{C} B^{I}{ }_{B} B_{H}{ }^{A} K_{K J I}{ }^{H}, \tag{2.12}
\end{equation*}
$$

then we easily see that $P_{D C B}{ }^{A}$ satisfy

$$
P_{D C B}^{A}+P_{C D B}^{A}=0, \quad P_{D C B}^{A}+P_{C B D^{A}}+P_{B D C}{ }^{A}=0 .
$$

On the other hand, from (2.7) we have

$$
\left(\partial_{C} B^{H}{ }_{D}-\partial_{D} B^{H}{ }_{C}\right) B_{H}{ }^{A}=\Gamma_{C}{ }_{D}{ }_{D}-\Gamma_{D}{ }^{A}{ }_{C} .
$$

Thus, taking account of (1.13), we have

$$
\begin{align*}
& \left(\partial_{C} B^{H}{ }_{D}-\partial_{D} B^{H}{ }_{c}\right) B_{H}{ }^{a}=0, \quad\left(\partial_{c} B^{H}{ }_{b}-\partial_{b} B^{H}{ }_{c}\right) B_{H}{ }^{\alpha}=2 h_{c b}{ }^{\alpha}, \\
& \left(\partial_{c} B^{H}{ }_{\beta}-\partial_{\beta} B^{H}{ }_{c}\right) B_{H}{ }^{\alpha}=P_{c \beta}{ }^{\alpha}, \quad\left(\partial_{r} B^{H}{ }_{\beta}-\partial_{\beta} B^{H}{ }_{\gamma}\right) B_{H}^{\alpha}=0 . \tag{2.13}
\end{align*}
$$

For any function \tilde{f} in \tilde{M}, taking account of (2.13), we have

$$
\begin{equation*}
\partial_{C} \partial_{D} \tilde{f}-\partial_{D} \partial_{C} \tilde{f}=\left(\partial_{C} B^{H}{ }_{D}-\partial_{D} B^{H} C\right)\left(\tilde{\partial}_{H} \tilde{f}\right)=\left(\partial_{C} B^{H}{ }_{D}-\partial_{D} B^{H}{ }_{C}\right) B_{H}{ }^{\alpha}\left(\partial_{\alpha} \tilde{f}\right), \tag{2.14}
\end{equation*}
$$

from which we see that \tilde{f} is projectable if and only if $\partial_{C} \partial_{D} \tilde{f}-\partial_{D} \partial_{C} \tilde{f}=0$.
Taking account of (2.13) and (2.14), we see that (2.12) reduces to

$$
\begin{align*}
P_{D C B}{ }^{A}= & \partial_{D} \Gamma_{C}{ }^{A}{ }_{B}-\partial_{C} \Gamma_{D}{ }^{A}{ }_{B}+\Gamma_{D}{ }_{D}{ }_{E} \Gamma_{C}{ }^{E}{ }_{B}-\Gamma_{C}{ }_{E}{ }_{E} \Gamma_{D}{ }_{B} \tag{2.15}\\
& +\Gamma_{\varepsilon}{ }_{B}{ }_{B} C_{J}{ }^{\varepsilon}\left(\partial_{C} B^{J}{ }_{D}-\partial_{D} B^{J}{ }_{C}\right) .
\end{align*}
$$

Taking account of (1.13), (1.15) and (2.13), and using (2.15), we have the following equations:

$$
\begin{equation*}
P_{d c b}{ }^{a}=K_{d c b}{ }^{a}-2 h_{d c}{ }^{\varepsilon} h^{a}{ }_{b \varepsilon}+h_{c b}{ }^{\varepsilon} h^{a}{ }_{d \varepsilon}-h_{d b}{ }^{\varepsilon} h^{a}{ }_{c \varepsilon}, \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
P_{\grave{\partial} c b}{ }^{a}=-\nabla_{c} h^{a}{ }_{b \dot{\partial}}+h^{a}{ }_{b s} L_{\dot{\delta}}{ }_{c}{ }_{c}+L_{\hat{\delta} \varepsilon}{ }^{a} h_{c b}{ }^{\varepsilon}+h^{a}{ }_{c \varepsilon} L_{\grave{\partial} b}{ }^{\varepsilon} \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
P_{\partial \gamma \beta}{ }^{a}=" \nabla_{\bar{o}} L_{\gamma \beta}{ }^{a}-" \nabla_{\gamma} L_{\partial \beta}{ }^{a} \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
P_{\partial \gamma \gamma \beta^{\alpha}}=\bar{K}_{\partial \bar{\partial} \gamma \beta^{\alpha}}-L_{\hat{\delta}}{ }^{\alpha}{ }_{e} L_{\gamma \gamma \beta}{ }^{e}+L_{\gamma}{ }^{\alpha}{ }_{e} L_{\partial \bar{\delta} \beta}{ }^{e}, \tag{2.21}
\end{equation*}
$$

$$
\begin{equation*}
P_{\partial \gamma \gamma b}{ }^{\alpha}=-\prime \overline{ } \nabla_{\hat{\partial}} L_{r}{ }^{\alpha}{ }_{b}+\prime \nabla_{\gamma} L_{\hat{\delta}}{ }^{\alpha}{ }_{b}, \tag{2.22}
\end{equation*}
$$

$$
\begin{equation*}
P_{d c \beta}{ }^{a}={ }^{\prime} \nabla_{d} h_{c \beta}^{a}-{ }^{\prime} \nabla_{c} h^{a}{ }_{d \beta}-2 h_{d c}{ }^{\varepsilon} L_{\delta \beta}{ }^{a}, \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
P_{\grave{\partial} c \beta}{ }^{\alpha}=\overline{ }=\nabla_{\beta} L_{\grave{\partial}}{ }^{\alpha}{ }_{c}-\bar{g}^{\alpha \varepsilon} g_{c e}{ }^{\prime \prime} \nabla_{\varepsilon} L_{\hat{\partial} \beta}{ }^{e}, \tag{2.23}
\end{equation*}
$$

We call the equations (2.16), (2.17) and (2.25) the co-Gauss equations, the coCodazzi equations and the co-Ricci equations of the given fibred Riemannian space, respectively. On the other hand, we may call the equations (2.22), (2.23) and (2.20) the Gauss equatıons for each fibre, the Codazzı equations for each fibre and the Riccı equations for each fibre, respectively.

Taking account of (2.27), we have
Proposition 2.2. The equations

$$
\begin{equation*}
{ }^{\prime} \nabla_{d} h_{c b}{ }^{\alpha}+{ }^{\prime} \nabla_{c} h_{b d}{ }^{\alpha}+{ }^{\prime} \nabla_{b} h_{d c}{ }^{\alpha}+h_{d c}{ }^{\varepsilon} L_{\varepsilon}{ }^{\alpha}{ }_{b}+h_{c b}{ }^{\varepsilon} L_{s}{ }^{\alpha}{ }_{d}+h_{b d}{ }^{s} L_{\varepsilon}{ }^{\alpha}{ }_{c}=0 \tag{2.28}
\end{equation*}
$$

hold in \tilde{M}.
Remark. Using (1.14), we have also (2.28) (see [2]).
Corollary. If \tilde{M} has isometric fibres, then the equations

$$
{ }^{\prime} \nabla_{d} h_{c b}{ }^{\alpha}+{ }^{\prime} \nabla_{c} h_{b d}{ }^{\alpha}+{ }^{\prime} \nabla_{b} h_{d c}{ }^{\alpha}=0
$$

hold in \tilde{M}.
On the other hand, using (2.26), we have
Proposition 2.3. The equations

$$
\bar{g}_{\varepsilon \alpha}{ }^{\prime \prime} \nabla_{\dot{\partial}} h_{c b}{ }^{\alpha}+\bar{g}_{\partial \alpha}{ }^{\prime \prime} \nabla_{\varepsilon} h_{c b}{ }^{\alpha}=\bar{g}_{\varepsilon \alpha}{ }^{\prime} \nabla_{b} L_{\dot{\delta}}{ }^{\alpha}{ }_{c}-\bar{g}_{\partial \alpha}{ }^{\prime} \nabla_{c} L_{\varepsilon}{ }^{\alpha}{ }_{b}
$$

hold in \tilde{M}.

$$
\begin{align*}
& P_{d c \beta}{ }^{\alpha}=-{ }^{\prime} \nabla_{d} L_{\beta}{ }^{\alpha}{ }_{c}+{ }^{\prime} \nabla_{c} L_{\beta}{ }^{\alpha}{ }_{d}-2^{\prime \prime} \nabla_{\beta} h_{d c}{ }^{\alpha}-h_{d e}{ }^{\alpha} h^{e}{ }_{c \beta}+h_{c e}{ }^{\alpha} h^{e}{ }_{d \bar{\beta}} \tag{2.25}\\
& -L_{\varepsilon}{ }^{\alpha}{ }_{d} L_{\beta}{ }^{\varepsilon}{ }_{c}+L_{\varepsilon}{ }^{\alpha}{ }_{c} L_{\beta}{ }^{\varepsilon}{ }_{d}, \\
& P_{\bar{\partial} c b}{ }^{\alpha}={ }^{\prime \prime} \nabla_{\hat{\delta}} h_{c b}{ }^{\alpha}+{ }^{\prime} \nabla_{c} L_{\hat{\partial}}{ }^{\alpha}{ }_{b}-L_{\hat{\delta}}{ }^{\varepsilon}{ }_{c} L_{\varepsilon}{ }^{\alpha}{ }_{b}+h^{e}{ }_{c \hat{j}} h_{e b}{ }^{\alpha}, \tag{2.26}\\
& P_{d c b}{ }^{\alpha}=\nabla_{d} h_{c b}{ }^{\alpha}-\nabla_{c} h_{d b}{ }^{\alpha}+2 h_{d c}{ }^{\varepsilon} L_{s}{ }^{\alpha}{ }_{b} . \tag{2.27}
\end{align*}
$$

Corollary. If \tilde{M} has isometric fibres, then the equations

$$
\bar{g}_{\varepsilon \alpha}{ }^{\prime \prime} \nabla_{\delta} h_{c b}{ }^{\alpha}+\bar{g}_{\delta \alpha}{ }^{\prime \prime} \nabla_{\varepsilon} h_{c b}{ }^{\alpha}=0, \quad " \nabla_{\delta} h^{a}{ }_{b \varepsilon}+" \nabla_{\epsilon} h^{a}{ }_{b \delta}=0, \quad " \nabla_{\alpha} h_{c b}{ }^{\alpha}=0
$$

hold in \tilde{M}.
Concerning arguments developed in this section, see [9].

§ 3. The (*)-Lie derivative

In this section, we shall define the $\left.{ }^{*}\right)$-Lie derivation which operates on projectable elements of $\mathscr{I}_{0 s u}^{0 r t}(\tilde{M})$ and closely related to the Lie derivation.

Let there be given a projectable vector field \tilde{X} in the total space \tilde{M}, which has the components \tilde{X}^{H} in $\left\{\tilde{U}, x^{H}\right\}$. Then we have an expression of the form

$$
\begin{equation*}
\tilde{X}^{H}=B^{H}{ }_{A} X^{A}=E^{H}{ }_{a} X^{a}+C^{H}{ }_{\alpha} X^{\alpha}, \quad \partial_{\beta} X^{a}=0, \tag{3.1}
\end{equation*}
$$

where $X^{a}=E_{J}{ }^{a} \tilde{X}^{J}, X^{\alpha}=C_{J}{ }^{\alpha} \tilde{X}^{J}$. Since \tilde{X} is projectable, X^{a} identified with the projection $p X^{a}$ of X^{a} are the components of $X=p \tilde{X}$ in U.

Denoting by $\tilde{\mathcal{L}}_{\tilde{X}}$ the Lie derivation with respect to the vector field \tilde{X} in \tilde{M}, and using (1.9), we have

$$
\begin{align*}
\tilde{\mathcal{L}}_{\tilde{X}} B^{K}{ }_{B} & =\tilde{X}^{H} \tilde{\partial}_{H} B^{K}{ }_{B}-B^{K}{ }_{B} \tilde{\partial}_{H} X^{K}=B^{H}{ }_{A} X^{A} \tilde{\partial}_{H} B^{K}{ }_{B}-B^{H}{ }_{B} \tilde{\partial}_{H}\left(B^{K}{ }_{A} X^{A}\right) \\
& =X^{A} \partial_{A} B^{K}{ }_{B}-\partial_{B}\left(B^{K}{ }_{A} X^{A}\right)=X^{A}\left(\partial_{A} B^{K}{ }_{B}-\partial_{B} B^{K}{ }_{A}\right)-B^{K}{ }_{A} \partial_{B} X^{A} . \tag{3.2}
\end{align*}
$$

On the other hand, from (2.7) we have

$$
\begin{equation*}
\partial_{A} B^{K}{ }_{B}-\partial_{B} B^{K}{ }_{A}=B^{K}{ }_{C}\left(\Gamma_{A}{ }^{C}{ }_{B}-\Gamma_{B}{ }^{C}{ }_{A}\right) . \tag{3.3}
\end{equation*}
$$

Taking account of (1.3) and (3.3), we find that (3.2) reduces to

$$
\begin{align*}
& \tilde{\mathcal{L}}_{\tilde{X}} E^{K}{ }_{b}=-E^{K}{ }_{a} \partial_{b} X^{a}-C^{K}{ }_{\alpha} Z_{b}{ }^{\alpha}, \tag{3.4}\\
& \tilde{\mathcal{L}}_{\tilde{X}} C^{K}{ }_{\beta}=-C^{K}{ }_{\alpha}\left(\partial_{\beta} X^{\alpha}-P_{a \beta}{ }^{\alpha} X^{a}\right), \tag{3.5}
\end{align*}
$$

where we have put

$$
\begin{equation*}
Z_{b}{ }^{\alpha}={ }^{\prime} \nabla_{b} X^{\alpha}+2 h_{b c}{ }^{\alpha} X^{c}+L_{r}{ }^{\alpha}{ }_{b} X^{r} \tag{3.6}
\end{equation*}
$$

Operating $\tilde{\mathcal{L}}_{\tilde{X}}$ on $B^{K}{ }_{B} B_{K}{ }^{A}=\delta_{B}^{A}$ and using (3.4) and (3.5), we have

$$
\begin{align*}
& \tilde{\mathcal{L}}_{\tilde{X}} E_{J}{ }^{a}=E_{J}{ }^{b} \partial_{b} X^{a}, \tag{3.7}\\
& \tilde{\mathcal{L}}_{\hat{X}} C_{J}{ }^{\alpha}=E_{J}{ }^{b} Z_{b}{ }^{\alpha}+C_{J}{ }^{\beta}\left(\partial_{\beta} X^{\alpha}-P_{a \beta}{ }^{\alpha} X^{a}\right) .
\end{align*}
$$

If we take a frame $\left(B_{A}\right)=\left(E_{a}, C_{\alpha}\right)$ and the coframe $\left(B^{B}\right)=\left(E^{b}, C^{\beta}\right)$ dual to $\left(B_{A}\right)$ in \tilde{U}, then we see that equations (3.4), (3.5), (3.7) and (3.8) are equivalent to

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\tilde{X}} E_{b}=-\left(\partial_{b} X^{a}\right) E_{a}-Z_{b}^{\alpha} C_{\alpha}, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\tilde{X}} C_{\beta}=-\left(\partial_{\beta} X^{\alpha}-P_{\alpha \beta}{ }^{\alpha} X^{\alpha}\right) C_{\alpha}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\dot{X}} E^{a}=\left(\partial_{b} X^{a}\right) E^{b}, \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\hat{X}} C^{\alpha}=Z_{b}^{\alpha} E^{b}+\left(\partial_{\beta} X^{b}-P_{a \beta}^{\alpha} X^{a}\right) C^{\beta}, \tag{3.8}
\end{equation*}
$$

respectively.
For any projectable horizontal vector field \hat{Y} with the components Y^{a} in \tilde{U}, taking account of (3.4)', we have

$$
\begin{aligned}
\tilde{\mathcal{L}}_{\tilde{X}} \hat{Y}= & \tilde{\mathcal{L}}_{\tilde{X}}\left(Y^{b} E_{b}\right)=Y^{b} \tilde{\mathcal{L}}_{\tilde{X}} E_{b}+\left(\tilde{\mathcal{L}}_{\tilde{X}} Y^{b}\right) E_{b}=-\left(Y^{b} \partial_{b} X^{a}\right) E_{a}-\left(Y^{b} Z_{b}{ }^{a}\right) C_{\alpha} \\
& +\left(X^{A} \partial_{A} Y^{b}\right) E_{b}=\left(X^{b} \partial_{b} Y^{a}-Y^{b} \partial_{b} X^{a}\right) E_{a}-\left(Y^{b} Z_{b}^{\alpha}\right) C_{a},
\end{aligned}
$$

because of $\partial_{\beta} Y^{a}=0$.
The horizontal part of $\tilde{\mathcal{L}}_{\hat{X}} \hat{Y}$ is called the (*)-Lie derivative of horizontal projectable vector \hat{Y} with respect to \tilde{X} and denoted by $\stackrel{\mathcal{L}}{\tilde{X}}_{\hat{Y}} \hat{Y}$, that is,

$$
\begin{equation*}
\stackrel{\mathcal{L}}{\hat{X}} \hat{Y}_{\hat{Y}}=\left(\stackrel{\mathcal{L}}{\tilde{X}}, Y^{a}\right) E_{a}=\left(X^{b} \partial_{b} Y^{a}-Y^{b} \partial_{b} X^{a}\right) E_{a} . \tag{3.9}
\end{equation*}
$$

Next, for any vertical vector field \bar{Y} with components Y^{α} in \tilde{U}, taking account of (3.5)', we have

$$
\begin{aligned}
\tilde{\mathcal{L}}_{\hat{X}} \bar{Y}= & \tilde{\mathcal{L}}_{\tilde{X}}\left(Y^{\beta} C_{\beta}\right)=Y^{\beta} \tilde{\mathcal{L}}_{\tilde{X}} C_{\beta}+\left(\tilde{\mathscr{L}}_{\tilde{X}} Y^{\beta}\right) C_{\beta}=-Y^{\beta}\left(\partial_{\beta} X^{\alpha}-P_{\alpha \beta}^{\alpha} X^{a}\right) C_{\alpha} \\
& +\left(X^{A} \partial_{A} Y^{\beta}\right) C_{\beta}=\left\{X^{\beta} \partial_{B} Y^{\alpha}-Y^{\beta}\left(\partial_{\beta} X^{\alpha}-P_{a \beta}^{\alpha} X^{\alpha}\right)\right\} C_{\alpha} .
\end{aligned}
$$

Considering that $\tilde{\mathcal{L}}_{\tilde{X}} \bar{Y}$ is vertical, we define the $\left(^{*}\right)$-Lie dervative $\stackrel{*}{\mathcal{L}}_{X} \bar{Y}$ of vertical vector \bar{Y} with respect to \tilde{X} by

$$
\begin{equation*}
\stackrel{*}{\mathcal{L}} \tilde{X} \bar{Y}^{\prime} \tilde{\mathcal{L}}_{\tilde{X}} \bar{Y}, \tag{3.10}
\end{equation*}
$$

or equivalently, by

Similarly, for any horizontal projectable 1-form \hat{w} with components w_{a} in \tilde{U}, and for any vertical 1 -form \bar{w} with components w_{α} in \tilde{U}, taking account of (3.7)' and (3.8)', we have

$$
\begin{align*}
& \tilde{\mathcal{L}}_{\tilde{X}} \hat{w}=\left(X^{b} \partial_{b} w_{a}+w_{b} \partial_{a} X^{b}\right) E^{a}, \tag{3.11}\\
& \tilde{\mathcal{L}}_{\hat{X}} \bar{w}=\left(w_{\beta} Z_{a}^{\beta}\right) E^{a}+\left\{X^{\beta} \partial_{B} w_{\alpha}+w_{\beta}\left(\partial_{\alpha} X^{\beta}-P_{b \alpha}{ }^{\beta} X^{b}\right)\right\} C^{\alpha} . \tag{3.12}
\end{align*}
$$

The horizontal part of $\tilde{\mathcal{L}}_{\hat{X}} \hat{w}$ and the vertical part of $\tilde{\mathcal{L}}_{\tilde{X}} \bar{w}$ are called respectively the (*)-Lie dervvative of horizontal projectable 1 -form \hat{w} with respect to \tilde{X} and the (*)-Lie derivative of vertical 1 -form \bar{w} with respect to \tilde{X} and denoted respectively by $\stackrel{\mathcal{L}}{\hat{X}} \hat{\mathcal{W}}^{*}$ and $\stackrel{\mathcal{L}}{\hat{X}}_{\hat{w}}$, that is

$$
\begin{equation*}
\stackrel{\star}{\mathcal{L}}_{\hat{X} \hat{W}}=\tilde{\mathcal{L}}_{\hat{X}} \hat{W} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{\hat{x}} \bar{w}=\left(\stackrel{\sim}{\mathscr{L}}_{\hat{X}} w_{\alpha}\right) C^{\alpha}=\left\{X^{B} \partial_{B} w_{\alpha}+w_{\beta}\left(\partial_{\alpha} X^{\beta}-P_{b \alpha}{ }^{\beta} X^{b}\right)\right\} C^{\alpha} . \tag{3.14}
\end{equation*}
$$

(3.13) is easily seen to be equivalent to

$$
\begin{equation*}
\stackrel{*}{\mathcal{L}_{\tilde{X}}} w_{a}=X^{\beta} \partial_{b} w_{a}+w_{b} \partial_{a} X^{b} . \tag{3.13}
\end{equation*}
$$

For any projectable element of $\mathscr{I}_{0 \text { osu }}^{0 r t}(\tilde{M})$, say an element \tilde{T} of $\mathscr{I}_{011}^{011}(\tilde{M})$ with components $T_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}$ in \tilde{U}, considering the equations (3.9), (3.10), (3.13) and (3.14), we can define inductively the (*)-Lie derivative $\stackrel{\mathcal{L}}{\tilde{X}}^{\sim} \tilde{T}$ of \widetilde{T} with respect to \tilde{X} as a partial tensor with components of the form

$$
\begin{align*}
\stackrel{\mathcal{L}_{\tilde{X}} T_{b}{ }_{\beta}{ }_{\beta}{ }^{\alpha}=}{ }= & X^{c} \partial_{C} T_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}-T_{b}{ }^{c}{ }_{\beta}{ }^{\alpha} \partial_{c} X^{a}+T_{c}{ }^{a}{ }_{\beta}{ }^{\alpha} \partial_{b} X^{c} \\
& -T_{b}{ }^{a}{ }_{\beta} \gamma\left(\partial_{\gamma} X^{\alpha}-P_{c \gamma}{ }^{\alpha} X^{c}\right)+T_{b}{ }^{a}{ }_{\gamma}{ }^{\alpha}\left(\partial_{\beta} X^{r}-P_{c \beta^{\gamma}} X^{c}\right) . \tag{3.15}
\end{align*}
$$

Taking account of (2.3) and (2.4), we see that the relation (3.15) is equivalent to

$$
\begin{align*}
& \stackrel{*}{\mathcal{L}} \tilde{X}_{\tilde{X}} T_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}=X^{c} \nabla_{c} T_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}+X^{r \prime \prime} \nabla_{\gamma} T_{b}{ }^{a}{ }_{\beta}{ }^{\alpha}-T_{b}{ }^{c}{ }_{\beta}{ }^{\alpha}\left(\nabla_{c} X^{a}+h^{a}{ }_{c \gamma} X^{r}\right) \\
& +T_{c}{ }^{a}{ }_{\beta}{ }^{\alpha}\left({ }^{\prime} \nabla_{b} X^{c}+h^{c}{ }_{b r} X^{r}\right)-T_{b}{ }^{a}{ }_{\beta}{ }^{\gamma}\left(\eta \nabla_{\gamma} X^{\alpha}-L_{r}{ }^{\alpha}{ }_{c} X^{c}\right) \tag{3.15}\\
& +T_{b}{ }^{a}{ }_{\gamma}{ }^{\alpha}\left(\eta \nabla_{\beta} X^{\gamma}-L_{\beta^{\gamma}}{ }_{c} X^{c}\right) .
\end{align*}
$$

From this definition, we see the following results:
(a) Denoting by \hat{X} and by \bar{X} the horizontal part of \tilde{X} and the vertical part of \tilde{X} respectively, we have

$$
\stackrel{\mathcal{L}}{\tilde{X}}^{*}=\stackrel{\mathcal{L}}{\hat{X}}^{*}+\stackrel{\sim}{\mathcal{L}}_{\bar{X}} .
$$

(b) Denoting by \mathcal{L}_{X} the Lie derivation with respect to the vector field X in M, we have for any projectable element \hat{T} of $\mathscr{S}_{s}^{r}(h \tilde{M})$

$$
\mathcal{L}_{X} T=p\left(\mathcal{L}_{\tilde{X} \hat{X}} \hat{T}\right)
$$

in M, where $X=p \tilde{X}$ and $T=p \hat{T}$.
(c) Denoting by $\overline{\mathcal{L}}_{\bar{X}}$ the Lie derivation with respect to the vertical vector field \bar{X} in F, we have for any element \bar{T} of $\Im_{u}^{t}(v \tilde{M})$

$$
\overline{\mathcal{L}}_{\bar{X}} \bar{T}={ }_{\mathcal{L}} \overline{\mathcal{L}}_{\bar{X}} \bar{T}
$$

For any projectable element \tilde{T} of $\mathscr{I}_{0 s u}^{0 r t}(\tilde{M})$, we say that \tilde{X} leaves $\tilde{T}\left({ }^{*}\right)$ invariant if the equation ${ }^{*} \mathcal{L}_{\tilde{X}} \tilde{T}=0$ holds in \tilde{M}.

We shall now give some identities obtained from (3.15) for later use. In the first, for the elements $h_{c b}{ }^{\alpha}, h^{a}{ }_{b \gamma}, L_{\beta}{ }^{\alpha}{ }_{c}$ and $L_{\gamma \beta}{ }^{a}$, we have

$$
\begin{align*}
& { }^{*} \tilde{\mathcal{X}}_{\hat{X}} h_{c b}{ }^{\alpha}=X^{e /} \nabla_{e} h_{c b}{ }^{\alpha}+X^{\epsilon \prime \prime} \nabla_{\epsilon} h_{c b}{ }^{\alpha}+h_{e b}{ }^{\alpha}\left(\nabla_{c} X^{e}+h_{c \varepsilon}^{e} X^{\epsilon}\right) \tag{3.16}\\
& +h_{c e}{ }^{\alpha}\left({ }^{\prime} \nabla_{b} X^{e}+h_{b \varepsilon}^{e} X^{\varepsilon}\right)-h_{c b}{ }^{\varepsilon}\left(\eta \nabla_{\varepsilon} X^{\alpha}-L_{\varepsilon}{ }_{\varepsilon}{ }_{e} X^{e}\right), \\
& \stackrel{*}{\mathcal{L}}_{\tilde{X}} h^{a}{ }_{b r}=X^{e} \nabla_{e} h^{a}{ }_{b r}+X^{e \prime \prime} \nabla_{e} h^{a}{ }_{b r}-h_{b r}^{e}\left(\nabla_{e} X^{a}+h^{a}{ }_{e \varepsilon} X^{\varepsilon}\right) \tag{3.17}\\
& +h^{a}{ }_{e r}\left(\nabla_{b} X^{e}+h_{b s}^{e} X^{\varepsilon}\right)+h^{a}{ }_{b s}\left(\prime \prime \nabla_{r} X^{\varepsilon}-L_{r}{ }^{\varepsilon}{ }_{e} X^{e}\right), \\
& \stackrel{*}{\mathcal{L}_{\tilde{X}}} L_{\beta}{ }^{\alpha}{ }_{c}=X^{e \prime} \nabla_{e} L_{\beta}{ }^{\alpha}{ }_{c}+X^{\varepsilon \prime \prime} \nabla_{\varepsilon} L_{\beta}{ }^{\alpha}{ }_{c}+L_{\beta}{ }^{\alpha}{ }_{e}\left(\nabla_{c} X^{e}+h^{e}{ }_{c \varepsilon} X^{\varepsilon}\right) \tag{3.18}\\
& -L_{\beta}{ }^{\varepsilon}{ }_{c}\left(\prime \prime \nabla_{\varepsilon} X^{\alpha}-L_{\varepsilon}{ }^{\alpha}{ }_{e} X^{e}\right)+L_{\varepsilon}{ }^{\alpha}{ }_{c}\left(\overline{ }\left(\eta \nabla_{\beta} X^{\varepsilon}-L_{\beta}{ }^{\varepsilon}{ }_{e} X^{e}\right),\right. \\
& {\stackrel{*}{\mathcal{L}} \tilde{X} L_{\gamma \beta}{ }^{a}=X^{e} \nabla_{e} L_{\gamma \beta}{ }^{a}+X^{\varepsilon \prime \prime} \nabla_{e} L_{\gamma \beta}{ }^{a}-L_{\gamma \beta}{ }^{e}\left({ }^{\prime} \nabla_{e} X^{a}+h^{a}{ }_{e \varepsilon} X^{\varepsilon}\right)} \tag{3.19}\\
& +L_{\varepsilon \beta}{ }^{a}\left(\prime{ }^{\prime \prime} \nabla_{\gamma} X^{\varepsilon}-L_{\gamma}{ }^{\varepsilon}{ }_{e} X^{e}\right)+L_{\gamma \varepsilon}{ }^{a}\left(\not{ }^{\left(\prime \nabla_{\beta}\right.} X^{\varepsilon}-L_{\beta}{ }^{{ }^{e}}{ }^{e} X^{e}\right),
\end{align*}
$$

respectively.
Next, taking account of (2.3) and (3.16), and noting the relation

$$
\begin{equation*}
\partial_{c} \partial_{b} X^{\alpha}-\partial_{b} \partial_{c} X^{\alpha}=2 h_{c b}{ }^{\varepsilon} \partial_{\varepsilon} X^{\alpha}, \tag{3.20}
\end{equation*}
$$

we have the Ricci-type formula

$$
\begin{align*}
& \nabla_{c}{ }^{\prime} \nabla_{b} X^{\alpha}-{ }^{\prime} \nabla_{b}{ }^{\prime} \nabla_{c} X^{\alpha}=2\left\{-{ }_{\mathcal{L}}^{\hat{X}} \hat{h}_{c b}{ }^{\alpha}-^{\prime} \nabla_{c}\left(h_{b e}{ }^{\alpha} X^{e}\right)+{ }^{\prime} \nabla_{b}\left(h_{c e}{ }^{\alpha} X^{e}\right)\right. \\
& \left.\quad+\left(L_{\varepsilon}{ }^{\alpha}{ }_{b} h_{c e}{ }^{\varepsilon}-L_{\varepsilon}{ }^{\alpha}{ }_{c} h_{b e}{ }^{\varepsilon}\right) X^{e}\right\}-\left({ }^{\prime} \nabla_{c} L_{\varepsilon}{ }^{\alpha}{ }_{b}-^{\prime} \nabla_{b} L_{\varepsilon}{ }^{\alpha}{ }_{c}-L_{r}{ }^{\alpha}{ }_{b} L_{\varepsilon}{ }^{r}{ }_{c}+L_{r}{ }^{\alpha}{ }_{c} L_{\varepsilon}{ }^{r}{ }_{b}\right) X^{\varepsilon} . \tag{3.21}
\end{align*}
$$

Moreover, by virtue of Proposition 2.2, (3.21) is expressed as followings:

$$
\begin{align*}
&{ }^{\prime} \nabla_{c}{ }^{\prime} \nabla_{b} X^{\alpha}-{ }^{\prime} \nabla_{b}{ }^{\prime} \nabla_{c} X^{\alpha}=2\left(-\stackrel{*}{\mathcal{L}} \tilde{X} h_{c b}{ }^{\alpha}-h_{b e}{ }^{\alpha \prime} \nabla_{c} X^{e}+h_{c e}{ }^{\alpha} \nabla_{b} X^{e}\right) \tag{3.21}\\
&+2\left({ }^{\prime} \nabla_{e} h_{c b}{ }^{\alpha}+L_{\varepsilon}{ }^{\alpha}{ }_{e} h_{c b}{ }^{s}\right) X^{e} \\
&-\left({ }^{\prime} \nabla_{c} L_{\varepsilon}{ }^{\alpha}{ }_{b}-{ }^{\prime} \nabla_{b} L_{\varepsilon}{ }^{\alpha}{ }_{c}+L_{r}{ }^{\alpha}{ }_{c} L_{\varepsilon}{ }^{r}{ }_{b}-L_{r}{ }^{\alpha}{ }_{b} L_{\varepsilon}{ }^{r}{ }_{c}\right) X^{\varepsilon} .
\end{align*}
$$

Similarly, we obtain the following formulas of the same type as (3.21):

$$
\begin{align*}
& " \nabla_{r}{ }^{\prime} \nabla_{b} X^{\alpha}-\nabla_{b}{ }^{\prime \prime} \nabla_{r} X^{\alpha}=-L_{r}{ }^{\varepsilon}{ }_{b}{ }^{\prime \prime} \nabla_{\varepsilon} X^{\alpha}-h_{b r}^{e}{ }^{\prime} \nabla_{e} X^{\alpha} \tag{3.22}\\
& +\left({ }^{\prime \prime} \nabla_{\varepsilon} L_{r}{ }^{\alpha}{ }_{b}-\bar{g}^{\alpha \beta} g_{a b}{ }^{\prime \prime} \nabla_{\beta} L_{\gamma \varepsilon}{ }^{a}+L_{r}{ }^{\alpha}{ }_{e} h^{e}{ }_{b \varepsilon}+h_{b e}{ }^{\alpha} L_{\gamma \varepsilon}{ }^{e}\right) X^{\varepsilon}, \\
& " \nabla_{r}{ }^{\prime \prime} \nabla_{\beta} X^{\alpha} — " \nabla_{\beta}{ }^{\prime \prime} \nabla_{\gamma} X^{\alpha}=\bar{K}_{\gamma \beta \bar{j}^{\alpha}} X^{\delta}, \tag{3.23}\\
& { }^{\prime} \nabla_{c}{ }^{\prime} \nabla_{b} X^{a}-{ }^{\prime} \nabla_{b}{ }^{\prime} \nabla_{c} X^{a}=K_{c b d}{ }^{a} X^{a}, \tag{3.24}\\
& " \nabla_{r} \nabla_{b} X^{a}-\nabla_{b}{ }^{\prime \prime} \nabla_{r} X^{a}=-h_{b r}^{e} \nabla_{e} X^{a}-\left({ }^{\prime} \nabla_{b} h^{a}{ }_{a r}\right) X^{d}, \tag{3.25}\\
& " \nabla_{\gamma}^{\prime \prime} \nabla_{\beta} X^{a}-" \nabla_{\beta}{ }_{\beta} \nabla_{\gamma} X^{a}=\left(" \nabla_{\gamma} h^{a}{ }_{e \beta}-" \nabla_{\beta} h^{a}{ }_{e r}+h^{a}{ }_{d \beta} h^{d}{ }_{e r}-h^{a}{ }_{d r} h^{d}{ }_{e \beta}\right) X^{e} . \tag{3.26}
\end{align*}
$$

Taking account of (2.3), (3.6), (3.16) and (3.21), we have

$$
\begin{equation*}
\nabla_{b} Z_{c}{ }^{\alpha}-\nabla^{\prime} \nabla_{c} Z_{b}{ }^{\alpha}=2 \stackrel{\star}{\mathscr{L}} \hat{X} h_{c b}{ }^{\alpha}+L_{\varepsilon}{ }^{\alpha}{ }_{c} Z_{b}{ }^{\varepsilon}-L_{\mathrm{s}}{ }^{\alpha}{ }_{b} Z_{c}{ }^{\varepsilon} . \tag{3.27}
\end{equation*}
$$

§ 4. Killing vectors in a fibred space

Let \tilde{X} be a projectable vector field in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ such that \tilde{X} has the components \tilde{X}^{H} of the form (3.1). From now on, we fix such a vector field \tilde{X}.

If we put

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{C}=B^{K}{ }_{C} \nabla_{K}^{*}, \tag{4.1}
\end{equation*}
$$

then, from (2.2) we have

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{c}=\nabla_{c}, \quad \dot{\circ}_{r}=" \nabla_{r} . \tag{4.2}
\end{equation*}
$$

Putting $\tilde{X}_{J}=\tilde{g}_{J H} \tilde{X}^{H}$ and noting the relation $\nabla_{J}^{*} \tilde{X}_{I}=\tilde{\nabla}_{J} \tilde{X}_{I}$, we have
(4.3) $\quad B^{J}{ }_{C} B^{I}{ }_{B} \tilde{\nabla}_{J} \tilde{X}_{I}=B^{I}{ }_{B} \stackrel{\circ}{\nabla}_{C} \tilde{X}_{I}=\stackrel{\circ}{\nabla}_{C}\left(B^{I}{ }_{B} \tilde{X}_{I}\right)-\left(\dot{\nabla}_{C} B^{I}{ }_{B}\right) \tilde{X}_{I}=\stackrel{\circ}{\nabla}_{C} X_{B}-\left(\dot{\nabla}_{C} B^{I}{ }_{B}\right) \tilde{X}_{I}$.

Taking account of (2.8), (2.9), (2.10), (2.11) and (4.2), we see that (4.3) reduces to

$$
\begin{align*}
& E^{J}{ }_{c} E^{I}{ }_{b} \tilde{\nabla}_{J} \tilde{X}_{I}={ }^{\prime} \nabla_{c} X_{b}-h_{c b}{ }^{\alpha} X_{\alpha}, \tag{4.4}\\
& E^{J}{ }_{c} C^{I}{ }_{\beta} \tilde{\nabla}_{J} \tilde{X}_{I}={ }^{\prime} \nabla_{c} X_{\beta}-h^{a}{ }_{c \beta} X_{a}, \tag{4.5}\\
& C^{J}{ }_{r} E^{I}{ }_{b} \tilde{\nabla}_{J} \tilde{X}_{I}={ }^{\prime \prime} \nabla_{\gamma} X_{b}+L_{r}{ }^{\alpha}{ }_{X} X_{\alpha}, \tag{4.6}\\
& C^{J}{ }_{\gamma} C^{I}{ }_{\beta} \tilde{\nabla}_{J} \tilde{X}_{I}={ }^{\prime} \nabla_{\gamma} X_{\beta}-L_{\gamma \beta}{ }^{a} X_{a}, \tag{4.7}
\end{align*}
$$

respectively.
We now assume that \tilde{X} is a projectable Killing vector in \tilde{M}, and therefore, we see that the condition

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\tilde{X}} \tilde{g}_{J I}=\tilde{\nabla}_{J} \tilde{X}_{I}+\tilde{\nabla}_{I} \tilde{X}_{J}=0 \tag{4.8}
\end{equation*}
$$

holds in $\left\{\tilde{U}, x^{H}\right\}$. Transvecting $B^{J}{ }_{C} B^{I}{ }_{B}$ to both sides of (4.8), and taking account of (4.4), (4.5), (4.6) and (4.7), we see that (4.8) is equivalent respectively to the equations

$$
\begin{align*}
& { }^{\prime} \nabla_{c} X_{b}+{ }^{\prime} \nabla_{b} X_{c}=0, \tag{4.9}\\
& { }^{\prime} \nabla_{\gamma} X_{\beta}+{ }^{\prime \prime} \nabla_{\beta} X_{\gamma}=2 L_{\gamma \beta}{ }^{a} X_{a}, \tag{4.10}\\
& { }^{\prime} \nabla_{c} X_{\beta}+{ }^{\prime \prime} \nabla_{\beta} X_{c}+L_{\beta}{ }^{\alpha}{ }_{c} X_{\alpha}-h^{a}{ }_{c \beta} X_{a}=0, \tag{4.11}
\end{align*}
$$

where $X_{b}=g_{b a} X^{a}$ and $X_{\beta}=\bar{g}_{\beta a} X^{\alpha}$.
On the other hand, since \tilde{X} is projectable, we obtain

$$
\begin{equation*}
" \nabla_{\beta} X_{c}=-h^{a}{ }_{c \beta} X_{a} . \tag{4.12}
\end{equation*}
$$

Transvecting $\bar{g}^{\alpha \beta}$ to both sides of (4.11) and taking account of (4.12), we have

$$
\begin{equation*}
Z_{c}^{\alpha}=0, \tag{4.13}
\end{equation*}
$$

where $Z_{c}{ }^{\alpha}$ are given in (3.6). Substituting (4.13) into (3.27), we have

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathcal{L}}_{\hat{X}}^{h_{c b}}{ }^{\alpha}=0 . \tag{4.14}
\end{equation*}
$$

Summing up, we have
Theorem 4.1. Let \tilde{X} be a projectable Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$. Then, \tilde{X} leaves $h_{c b}{ }^{\alpha}\left({ }^{*}\right)$-invariant in \tilde{U}, and $X=p \tilde{X}$ is a Killing vector in M.

Corollary 1. Let \tilde{X} be a projectable Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having isometruc fibres. Then, \tilde{X} leaves $h_{c b}{ }^{\alpha}\left({ }^{*}\right)$-invariant, and moreover, $X=p \tilde{X}$ and \bar{X} are Killing vectors in M and F respectively, where \bar{X} is the vertical part of \tilde{X}.

Corollary 2. Let \tilde{X} be a projectable Killing vector which is hornzontal in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$. Then we have the following results:
(a) $X=p \tilde{X}$ is a Killing vector in M.
(b) \tilde{X} leaves $h_{c b}{ }^{\alpha}(*)-$ invariant.

Corollary 3. Let \tilde{X} be a projectable Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having conformal fibres, that is, $L_{r \beta}{ }^{a}=$ $\bar{g}_{\gamma \beta} A^{a}$ hold in \tilde{M}. Then we have the following results:
(a) $X=p \tilde{X}$ is a Killing vector in M.
(b) \tilde{X} leaves $h_{c b}{ }^{\alpha}{ }^{(*)}$-invariant.
(c) \bar{X} is a conformal Killing vector in F, and moreover, if the vector $A=A^{a} E_{a}$ is projectable, then \bar{X} is homothetic.

Next, we assume that \tilde{X} is a projectable conformal Killing vector in \tilde{M}, and therefore, we see that the condition

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\tilde{X}} \tilde{g}_{J I}=\tilde{\nabla}_{J} \tilde{X}_{I}+\tilde{\nabla}_{I} \tilde{X}_{J}=\rho \tilde{g}_{J I} \tag{4.15}
\end{equation*}
$$

holds in $\left\{\tilde{U}, x^{H}\right\}$, where ρ is a scalar function in \tilde{M}.
Transvecting $B^{J}{ }_{C} B^{I}{ }_{B}$ to both sides of (4.15) and taking account of (4.4), (4.5), (4.6) and (4.7), we see that (4.15) is equivalent to the following equations

$$
\begin{align*}
& { }^{\prime} \nabla_{c} X_{b}+{ }^{\prime} \nabla_{o} X_{c}=\rho g_{c b}, \tag{4.16}\\
& { }^{\prime} \nabla_{\gamma} X_{\beta}+" \nabla_{\beta} X_{\gamma}=2 L_{\gamma \beta}{ }^{a} X_{a}+\rho \bar{g}_{\gamma \beta}, \tag{4.17}\\
& { }^{\prime} \nabla_{c} X_{\beta}+{ }^{\prime \prime} \nabla_{\beta} X_{c}+L_{\beta}{ }^{\alpha}{ }_{c} X_{\alpha}-h^{a}{ }_{c \beta} X_{a}=0 . \tag{4.18}
\end{align*}
$$

Since \tilde{X} and \tilde{g} are projectable, from (4.16) we see that the function ρ is projectable. On the other hand, from (4.12) and (4.18) we have $Z_{c}{ }^{\alpha}=0$, and therefore, we have $\stackrel{*}{\mathcal{L}}_{\tilde{X}} h_{c b}{ }^{\alpha}=0$.

Summing up, we have

Theorem 4.2. Let \tilde{X} be a projectable conformal Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$. Then, \tilde{X} leaves $h_{c b}{ }^{\alpha}{ }^{(*)}$) invariant in \tilde{U}, and $X=p \tilde{X}$ is a conformal Killing vector in M.

Corollary 1. Let \tilde{X} be a projectable conformal Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having isometric fibres. Then, \tilde{X} leaves $h_{c b}{ }^{\alpha}(*)$-invariant, and moreover, $X=p \tilde{X}$ and \bar{X} are conformal Killing vectors in M and F respectively, where \bar{X} is the vertical part of \tilde{X}.

Corollary 2. Let \tilde{X} be a projectable conformal Killing vector which is horizontal in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$.

Then we have the following results:
(a) $X=p \tilde{X}$ is a conformal Killing vector in M.
(b) \tilde{X} leaves $h_{c b}{ }^{\alpha}{ }^{(*)}$-ınvariant.

Corollary 3. Let \tilde{X} be a projectable conformal Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having conformal fibres, that is, $L_{\gamma \beta}{ }^{a}=\bar{g}_{r \beta} A^{a}$ hold in \tilde{M}. Then we have the following results:
(a) $X=p \tilde{X}$ is a conformal Killing vector in M.
(b) \tilde{X} leaves $h_{c b}{ }^{\alpha}{ }^{(*)}$-invariant.
(c) \bar{X} is a conformal Killing vector in F, and moreover, if the vector $A=A^{a} E_{a}$ is projectable, then \bar{X} is homothetic.

5. Affine Killing vectors in a fibred space

Let \tilde{X} be a projectable vector field in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ such that \tilde{X} has the components \tilde{X}^{H} of the form (3.1).

Operating $\dot{\nabla}_{C}$ on both sides of (3.1) and taking account of (2.8)~(2.11) and (4.2), we have $\stackrel{\circ}{\nabla}_{C} \tilde{X}^{H}$ of the forms

$$
\begin{align*}
& { }^{\prime} \nabla_{c} \tilde{X}^{H}=E^{H}{ }_{a}\left({ }^{\prime} \nabla_{c} X^{a}+h^{a}{ }_{c \varepsilon} X^{\varepsilon}\right)+C^{H}{ }_{\alpha}\left({ }^{\prime} \nabla_{c} X^{\alpha}+h_{c e}{ }^{\alpha} X^{e}\right), \tag{5.1}\\
& \tag{5.2}\\
& \\
& \nabla_{\gamma} \tilde{X}^{H}=E^{H}{ }_{a}\left(h^{a}{ }_{e \gamma} X^{e}+L_{\gamma \varepsilon}{ }^{a} X^{s}\right)+C^{H}{ }_{\alpha}\left(\prime \nabla_{\gamma} \nabla^{\alpha} X^{\alpha}-L_{\gamma}{ }^{\alpha}{ }_{e} X^{e}\right),
\end{align*}
$$

where $\dot{\vee}_{c}$ are given by (4.1).
On the other hand, we obtain,

$$
\begin{align*}
& B_{H}{ }^{A} B^{J}{ }_{C} B^{I}{ }_{B} \tilde{\nabla}_{J} \tilde{\nabla}_{I} \tilde{X}^{H}=B_{H}{ }^{A} B^{I}{ }_{B} \stackrel{\nabla}{\nabla}_{C} \tilde{\nabla}_{I} \tilde{X}^{H} \\
&=B_{H}{ }^{A} \stackrel{\nabla}{\nabla}_{C} \stackrel{\nabla}{\nabla}_{B} \tilde{X}^{H}-B_{H}{ }^{A}\left(\stackrel{\nabla}{\nabla}_{C} B^{I}{ }_{B}\right) \tilde{\nabla}_{I} \tilde{X}^{H} \tag{5.3}\\
&=B_{H}{ }^{A} \dot{\nabla}_{C} \dot{\nabla}_{B} \tilde{X}^{H}-B_{H}{ }^{A} B_{I}{ }^{E}\left(\dot{\nabla}_{C} B^{I}{ }_{B}\right)\left(\dot{\nabla}_{E} \tilde{X}^{H}\right),
\end{align*}
$$

and moreover, taking account of (2.12) and (3.1),

$$
\begin{equation*}
B_{H}{ }^{A} B^{J}{ }_{C} B^{I}{ }_{B} K_{K J I}{ }^{H} X^{K}=P_{D C B}{ }^{A} B_{K}{ }^{D} X^{K}=P_{d C B}{ }^{A} X^{d}+P_{\partial C C B}{ }^{A} X^{\delta} . \tag{5.4}
\end{equation*}
$$

We now assume that \tilde{X} is a projectable affine Killing vector in \tilde{M}, and therefore, we see that the condition

$$
\begin{equation*}
\left.\tilde{\mathcal{L}}_{\tilde{X}}\left\{\widetilde{J_{I}{ }_{I}}\right\}\right\}=\tilde{\nabla}_{J} \tilde{\nabla}_{I} \tilde{X}^{H}+\tilde{K}_{K J I}{ }^{H} \tilde{X}^{K}=0 \tag{5.5}
\end{equation*}
$$

holds in $\left\{\tilde{U}, x^{H}\right\}$.
We denote by \hat{X} (resp. \bar{X}) the horizontal (resp. the vertical) part of \tilde{X} and denote by $\overline{\mathcal{L}}_{\bar{X}}$ the Lie derivation with respect to the vertical vector field \bar{X} in F.

If we put

$$
L\left[\begin{array}{cc}
A \\
C & B
\end{array}\right]=B_{H}{ }^{4} B^{J}{ }_{C} B^{I}{ }_{B} \tilde{\mathcal{L}}_{\tilde{\mathcal{X}}}\left\{\widetilde{H_{I}}{ }_{I}\right\},
$$

then from (5.3) and (5.4) we obtain

$$
L\left[\begin{array}{cc}
A \tag{5.6}\\
C & B
\end{array}\right]=B_{H}^{A} \dot{\nabla}_{C} \dot{\nabla}_{B} \tilde{X}^{H}-B_{H}^{A} B_{J}^{E}\left(\dot{\nabla}_{C} B_{B}^{J}\right)\left(\dot{\nabla}_{E} \tilde{X}^{H}\right)+P_{d C B}^{A} X^{d}+P_{\delta C B}^{A} X^{\delta} .
$$

Thus, substituting (2.8) $\sim(2.11)$, (2.16) $\sim(2.27)$, (5.1) and (5.2) into (5.6) and taking account of (3.17) $\sim(3.27)$, we find that (5.5) is equivalent to the following equations

$$
\begin{equation*}
\stackrel{*}{\mathcal{L}}{ }_{\tilde{X}} h^{a}{ }_{c \beta}+L_{\beta \varepsilon}{ }^{a} Z_{c}{ }_{c}=0, \tag{5.8}
\end{equation*}
$$

$$
\tilde{\mathcal{L}}_{\widehat{x}}\left\{\begin{array}{c}
a \tag{5.7}\\
c
\end{array}\right\}+h^{a}{ }_{b \varepsilon} Z_{c}{ }^{\varepsilon}+h^{a}{ }_{c \varepsilon} Z_{b}{ }^{\varepsilon}=0
$$

where

$$
\begin{equation*}
Z_{a}{ }^{\alpha}={ }^{\prime} \nabla_{a} X^{\alpha}+2 h_{a e^{\alpha}}{ }^{e} X^{e}+L_{\varepsilon}{ }^{\alpha}{ }_{a} X^{\varepsilon}, \tag{5.13}
\end{equation*}
$$

and

$$
\begin{align*}
L_{d r \beta}{ }^{\alpha} & =\partial_{r} P_{d \beta}{ }^{\alpha}-\partial_{d} \Gamma_{r}{ }^{\alpha}{ }_{\beta}+P_{d r}{ }^{\varepsilon} \Gamma_{\varepsilon}{ }^{\alpha}{ }_{\beta}+P_{d \beta}{ }^{\varepsilon} \Gamma_{\varepsilon}{ }^{\alpha} \gamma-\Gamma_{r}{ }_{\beta} P_{d \varepsilon}{ }^{\alpha} \tag{5.14}\\
& =" \nabla_{r} L_{\beta}{ }^{\alpha}{ }_{d}+"{ }^{\prime \prime} \nabla_{\beta} L_{\gamma}{ }^{\alpha}{ }_{d}-\bar{g}^{\alpha \varepsilon} g_{c e}{ }^{\prime \prime} \nabla_{\varepsilon} L_{\gamma \beta}{ }^{e}+h_{d r}^{e} L_{\beta}{ }^{\alpha}{ }_{e}+h_{d \beta}^{e} L_{r}{ }^{\alpha}{ }_{e}+L_{\gamma \beta}{ }^{e} h_{e d}{ }^{\alpha} .
\end{align*}
$$

From (5.7) and (5.9), we have
Theorem 5.1. Let \tilde{X} be a projectable affine Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$. Then \tilde{X} leaves $L_{\gamma \beta}{ }^{a}\left({ }^{(*)}\right.$-invariant, and $h^{a}{ }_{b \varepsilon} Z_{c}{ }^{\varepsilon}$ are projectable.

We now assume that \tilde{M} has isometric fibres. By virtue of $L=0$, the equations (5.8), (5.10), (5.11) and (5.12) reduce to

$$
\begin{equation*}
\stackrel{\sim}{\mathcal{L}}_{\tilde{X}} h^{a}{ }_{c \beta}=0, \tag{5.8}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} Z_{b}{ }^{\alpha}+{ }^{\prime} \nabla_{b} Z_{c}{ }^{\alpha}=0, \tag{5.10}
\end{equation*}
$$

$$
\begin{align*}
& " \nabla_{\beta} Z_{c}^{\alpha}=0, \tag{5.11}\\
& \overline{\mathcal{L}}_{\bar{X}}\left\{\overline{\alpha_{\gamma}^{\alpha}}\right\}=0, \tag{5.12}
\end{align*}
$$

respectively. From (5.11)' we find that $Z_{a}{ }^{\alpha}$ are covariant constant along each fibre.

For any element of $\mathcal{I}_{01 u}^{00 t}(\tilde{M})$, say an element \tilde{T} of $\mathscr{T}_{011}^{001}(\tilde{M})$ with components $T_{b \beta}{ }^{\alpha}$, we say that \widetilde{T} satisfies a Killing equation in the horzzontal direction if

$$
\nabla_{c} T_{b \beta}{ }^{\alpha}+{ }^{\prime} \nabla_{b} T_{c \beta}{ }^{\alpha}=0
$$

hold in \tilde{M}. In this case, if \tilde{T} is projectable, then a projection $p \tilde{T}$ of \tilde{T} is a Killing vector in the base space M.

From (5.10)' we find that $Z_{a}{ }^{\alpha}$ satisfy Killing equations in the horizontal direction. On the other hand, for any element \tilde{T} of $\mathscr{T}_{010}^{01}(\tilde{M})$ having components $T_{a}{ }^{\alpha}$ in \tilde{U}, by a direct computation we have

$$
\begin{align*}
& { }^{\prime} \nabla_{b}{ }^{\prime \prime} \nabla_{\gamma} T_{a}{ }^{\alpha}-\overline{ } \nabla_{r}{ }^{\prime} \nabla_{b} T_{a}{ }^{\alpha}=\left(\nabla_{e} T_{a}{ }^{\alpha}\right) h^{e}{ }_{b r}-T_{e}{ }^{\alpha /} \nabla_{b} h^{e}{ }_{a r} \tag{5.15}
\end{align*}
$$

where $L_{b r o}{ }^{\alpha}$ are given in (5.14). Putting $T_{a}{ }^{\alpha}=Z_{a}{ }^{\alpha}$ in (5.15) and taking account of $(5.11)^{\prime}$, we have

$$
\begin{equation*}
" \nabla_{r}{ }^{\prime} \nabla_{b} Z_{a}{ }^{\alpha}+\left({ }^{\prime} \nabla_{e} Z_{a}{ }^{\alpha}\right) h^{e}{ }_{b r}-Z_{e}{ }^{\alpha /} \nabla_{b} h^{e}{ }_{a r}=0, \tag{5.16}
\end{equation*}
$$

because of $L=0$.
Taking account of $(5.10)^{\prime}$, we see that (5.16) reduces to

$$
\begin{aligned}
& \quad{ }^{\prime} \nabla_{r}^{\prime} \nabla_{b} Z_{a}{ }^{\alpha}-\left({ }^{\prime} \nabla_{a} Z_{e}{ }^{\alpha}\right) h^{e}{ }_{b r}-Z_{e}{ }^{\alpha \prime} \nabla_{b} h^{e}{ }_{a r} \\
& \quad={ }^{\prime \prime} \nabla_{r}^{\prime} \nabla_{b} Z_{a}{ }^{\alpha}-^{\prime} \nabla_{a}\left(Z_{e}{ }^{\alpha} h_{b r}^{e}\right)+Z_{e}{ }^{\alpha}\left({ }^{\prime} \nabla_{a} h_{b r}^{e}-\nabla_{b} h^{e}{ }_{a r}\right)=0 .
\end{aligned}
$$

Adding the above equations to the equations

$$
" \nabla_{r}^{\prime} \nabla_{a} Z_{b}{ }^{\alpha}-\nabla_{b}\left(Z_{e}^{\alpha} h_{a \gamma}^{e}\right)+Z_{e}{ }^{\alpha}\left(\nabla_{b} h_{a r}^{e}-{ }^{\prime} \nabla_{a} h_{b r}^{e}\right)=0
$$

and taking account of $(5.10)^{\prime}$, we have

$$
\begin{equation*}
\nabla_{a}\left(Z_{e}{ }^{\alpha} h_{b \gamma}^{e}\right)+{ }^{\prime} \nabla_{b}\left(Z_{e}^{\alpha} h_{a \gamma}^{e}\right)=0 . \tag{5.17}
\end{equation*}
$$

Contracting with respect to the indices α and γ in (5.17), we have

$$
\begin{equation*}
\nabla_{a}\left(Z_{e}^{\alpha} h_{b \alpha}^{e}\right)+^{\prime} \nabla_{b}\left(Z_{e}^{\alpha} h^{e}{ }_{a \alpha}\right)=0 . \tag{5.18}
\end{equation*}
$$

Furtheremore, contracting with respect to the indices a and b in (5.7), we have

$$
\begin{equation*}
\nabla_{c}^{\prime} \nabla_{a} X^{a}+h^{a}{ }_{c \alpha} Z_{a}^{\alpha}=0, \tag{5.19}
\end{equation*}
$$

which implies that $h^{a}{ }_{c a} Z_{a}{ }^{\alpha}$ are projectable since ${ }^{\prime} \nabla_{c}{ }^{\prime} \nabla_{b} X^{a}$ are projectable. From (5.18) and (5.20) we find that the vector with components $p\left(g^{a b} h_{b \alpha}^{e} Z_{e}{ }^{\alpha}\right)$ in U is a Killing vector in M. Summing up results mentioned above, we have

Theorem 5.2. Let \tilde{X} be a projectable affine Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having isometric fibres. Then we have the following results:
(a) $\underset{\sim}{\tilde{X}}$ is an affine Killing vector in F.
(b) \tilde{X} leaves $h^{a}{ }_{c \beta}{ }^{(*)}$-2nvariant.
(c) $Z_{a}{ }^{\alpha}$ are covariant constant along each fibre, and $Z_{a}{ }^{\alpha}$ satisfy Killing equations in the hormzontal directıon.
(d) The vector with components $p\left(g^{a b} h_{b \alpha}^{e} Z_{e}{ }^{\alpha}\right)$ in U is a Killing vector in M.

We next assume that \hat{X} is a projectable affine Killing vector which is horizontal in \tilde{M}, and \tilde{M} has isometric fibres. Thus, from (5.13) we have

$$
Z_{a}{ }^{\alpha}=2 h_{a b}{ }^{\alpha} X^{b} .
$$

Taking account of the third equation in Corollary to Proposition 2.3, we find that (5.11)' reduces to

$$
\begin{aligned}
" \nabla_{\alpha} Z_{a}{ }^{\alpha} & =2^{\prime \prime} \nabla_{\alpha}\left(h_{a b}{ }^{\alpha} X^{b}\right)=2\left(\overline{\prime \prime} \nabla_{\alpha} h_{a b}{ }^{\alpha}\right) X^{b}+2 h_{a b}{ }^{\alpha} h^{b}{ }_{c \alpha} X^{c} \\
& =2 h_{a b}{ }^{\alpha} h^{b}{ }_{c \alpha} X^{c}=-2 h_{a \alpha}^{e} h_{e c}{ }^{\alpha} X^{c}=-h_{a \alpha}^{e} Z_{e}{ }^{\alpha}=0 .
\end{aligned}
$$

Consequently, from (5.19) we have

$$
\nabla_{c}{ }^{\prime} \nabla_{a} X^{a}+h_{c a}^{a} Z_{a}^{\alpha}={ }^{\prime} \nabla_{c}{ }^{\prime} \nabla_{a} X^{a}=0,
$$

which implies that ${ }^{\prime} \nabla_{a} X^{a}$ is a constant, since ${ }^{\prime} \nabla_{a} X^{a}$ is projectable. Thus we have

Corollary. Let \hat{X} be a projectable affine Killing vector which is horizontal in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having isometric fibres. Then we have the following results:
(a) \hat{X} leaves $h^{a}{ }_{c \beta}\left({ }^{*}\right)$-2nvariant.
(b) $h_{a b}{ }^{\alpha} X^{b}$ are covariant constant along each fibre, and $h_{a b}{ }^{\alpha} X^{b}$ satısfy Killing equations in the horizontal direction.
(c) The vector with components $p\left(g^{a b} h_{b \alpha}^{e} h_{e c}{ }^{\alpha} X^{c}\right)$ in U is a Killing vector in M.
(d) $\nabla_{a} X^{a}$ is a constant in M.

§ 6. Projective Killing vectors in a fibred space

Let \tilde{X} be a projectable vector field in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ such that \tilde{X} has the components \tilde{X}^{H} of the form (3.1).

In this section, we assume that \tilde{X} is a projectable projective Killing vector in \tilde{M}, and therefore, we see that the condition

$$
\begin{equation*}
\tilde{\mathcal{L}}_{\tilde{X}}\left\{\widetilde{{ }_{J}^{H}}\right\} \tag{6.1}
\end{equation*}
$$

holds in $\left\{\tilde{U}, x^{H}\right\}, \tilde{\phi}_{I}$ being the components of a certain 1 -form $\tilde{\phi}$ in \tilde{M}.
Moreover, we have an expression of the form

$$
\begin{equation*}
\tilde{\phi}_{I}=B_{I}{ }^{A} \phi_{A}=E_{I}^{a} \phi_{a}+C_{I}^{\alpha} \phi_{\alpha}, \tag{6.2}
\end{equation*}
$$

where $\phi_{a}=E^{I}{ }_{a} \tilde{\phi}_{I}$ and $\phi_{\alpha}=C^{I}{ }_{\alpha} \tilde{\phi}_{I}$.
Transvecting $B^{J}{ }_{C} B^{I}{ }_{B}$ to both sides of (6.1) and taking account of the left sides of equations (5.7) $\sim(5.12)$, and (6.2), we see that the equation (5.1) is equivalent to the following equations

$$
\tilde{\mathcal{L}}_{\hat{X}}\left\{\begin{array}{c}
a \tag{6.3}\\
c
\end{array}\right\}+h^{a}{ }_{b \varepsilon} Z_{c}{ }^{\varepsilon}+h^{a}{ }_{c \varepsilon} Z_{b}{ }^{\varepsilon}=\delta_{c}^{a} \phi_{b}+\delta_{b}^{a} \phi_{c}
$$

$$
\begin{equation*}
\stackrel{*}{\mathcal{L}} \tilde{X} h^{a}{ }_{c \beta}+L_{\beta \varepsilon}{ }^{a} Z_{c}{ }^{\varepsilon}=\delta_{c}^{a} \phi_{\beta}, \tag{6.4}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{*}{\mathcal{L}_{\tilde{X}}} L_{r \beta} a=0, \tag{6.5}
\end{equation*}
$$

where \bar{X} is the vertical part of \tilde{X}, and $L_{d \gamma \beta}{ }^{\alpha}$ are given in (5.14), and

$$
Z_{a}{ }^{\alpha}={ }^{\prime} \nabla_{a} X^{\alpha}+2 h_{a e^{\alpha}} X^{e}+L_{\varepsilon}{ }^{\alpha}{ }_{a} X^{\varepsilon} .
$$

Thus we have
Theorem 6.1. Let \tilde{X} be a projectable projective Killing vector in the total space M of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$. Then \tilde{X} leaves $L_{r \beta}{ }^{a}{ }^{a}\left({ }^{*}\right)$ invariant. Moreover, if $\tilde{\phi}$ is projectable, then $h^{a}{ }_{b \varepsilon} Z_{c}{ }^{\varepsilon}$ are projectable.

Next, we assume that \tilde{M} has isometric fibres. By virtue of $L=0$, the equations (6.4), (6.6), (6.7) and (6.8) reduce to the equations

$$
\begin{equation*}
\stackrel{*}{\mathcal{L}_{\tilde{X}}} h^{a}{ }_{c \beta}=\delta_{c}^{a} \phi_{\beta}, \tag{6.4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} Z_{b}^{\alpha}+^{\prime} \nabla_{b} Z_{c}^{\alpha}=0, \tag{6.6}
\end{equation*}
$$

$$
\begin{align*}
& " \nabla_{\beta} Z_{c}^{\alpha}=\delta_{\beta}^{\alpha} \phi_{c}, \tag{6.7}\\
& \left.\overline{\mathcal{L}}_{\bar{X}}\left\{\overline{\alpha_{\gamma}^{\alpha}}\right\}\right\}=\delta_{r}^{\alpha} \phi_{\beta}+\delta_{\beta}^{\alpha} \phi_{r}, \tag{6.8}
\end{align*}
$$

respectively.
Contracting with respect to the indices a and c in (6.4)', we have

$$
\begin{equation*}
\phi_{\beta}=0 . \tag{6.9}
\end{equation*}
$$

Consequently, taking account of (6.4)', (6.8), and (6.9), we see that \tilde{X} leaves $h^{a}{ }_{c \beta}$ ${ }^{*}$)-invariant and \bar{X} is an affine Killing vector in F, where \bar{X} is the vertical part of \tilde{X}. Furtheremore, contracting with respect to the indices α and β in (6.7)', we have

$$
\phi_{c}=\frac{1}{s} \not \nabla_{\alpha} Z_{c}{ }^{\alpha},
$$

where $s=r-n$.
Summing up the results mentioned above, we have
Theorem 6.2. Let \tilde{X} be a projectable projective Killing vector in the total space \tilde{M} of a fibred Riemannian space $\{\tilde{M}, M, \tilde{g}, \pi\}$ having lsometric fibres. Then we have the following results:
(a) \bar{X} is an affine Killing vector in F.
(b) \tilde{X} leaves $h^{a}{ }_{c \beta}\left({ }^{*}\right)$-invariant.
(c) $Z_{a}{ }^{\alpha}$ satisfy Killing equations in the horizontal direction.
(d) ϕ is a horizontal 1-form.
(e) $\phi_{c}=\frac{1}{s}{ }^{\prime} \nabla_{\alpha} Z_{c}{ }^{\alpha}$.

References

[1] S. Ishhara, Vector fields in fibred spaces with invariant Riemannian metric, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 163-178.
[2] S. Ishihara and M. Konishi, Differential geometry of fibred spaces, Publications of study group of geometry, Tokyo, 1973, 1-200.
[3] S. Ishihara and M. Konishi, Fibred Riemannian spaces with Sasakian 3structure, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 179-194.
[4] Y. Muto, On some properties of a fibred Riemannian manifolds, Sci. Rep. Yokohama Nat. Univ. 1 (1952), 1-14.
[5] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[6] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119-132.
[7] K. Yano, Theory of Lie derivatives and its applications, Amsterdam, 1957.
[8] K. Yano and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep. 19 (1967), 317-360.
[9] I. Yокоте, On some properties of curvatures of foliated Riemannıan structures, Kōdai Math. Sem. Rep. 22 (1970), 1-29.

Tokyo University of Agriculture and Technology.

[^0]: 1) Throughout this paper, the indices H, I, J, K, L run from 1 to r. This system of indices is mainly used with respect to the coordinates x^{H}. The indices a, b, c, d, e run from 1 to n, and the indices $\alpha, \beta, \gamma, \delta, \varepsilon$ run from $n+1$ to $n+s=r$. We use the summation convention with respect to these systems of indices.
[^1]: 1) Throughout this paper, the indices A, B, C, D, E run from 1 to r. This system of indices is mainly used with respect to the coordinates (v^{a}, u^{α}). We use the summation convention with respect to this system of indices.
