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PREFACE.

The whole thesis consists of three
chapters. In chapter I, we deal with
the structure of Rational Functions at
various places of the Riemann - Surface
of an Algebraic Function and deduce some
new results It also serves as an in-
troduction to the rest of the chapters*

The second chapter consists of three
parts* the first one gives three theo-
rems concerning the structure of the
branching of the iiiemann - Surface of
the Fundamental Equation» The second
one deals with the investigation of the
differential coefficient of an Algebraic
Function* This produces a result which
is an improvement over the result al-
ready published by Beatty* The third
part is merely to show how to extend
these results to all algebraically clo-
sed fields of characteristic zero.

Chapter III consists of two main
parts. The first part is a proof of
the Riemann - Roch Theorem, and the
second is its applications* A new me-
thod of proof for the Riemann - Roch
Theorem based mostly on the ideas of
analysis is given* In doing so import-
ant new theorems are introduced. In
the second part*it is demonstrated that
some of the well-known results in the
Algebraic Function Theory are easily
deduced by the application of the new
method*

References' to various chapters are
given at the end of the thesis in the
Bibliography.

CHAPTiSR I .

i n the form

THEOREMS ON THE STRUCTURE OF RATIONAL
ALGE3RAT0 FUNCTIONS. *""

l Let

s o be an irreducible al-
gebraic equation ( $A are rational
functions in z with coefficients in
the field of complex numbers ft )

P

defining the field of rational functions
fe(£, w, )• If α,-β e le is a solution of

it ~ α = jb

where Λ, <r are integers and <r>o
Such a pair of functions (a) is called
a place-representation of the Rlemann-
Surface of the Algebraic Function.

2. Value of a Rational Function
at a Place.

Let a Rational Function R C Z . U ) e f? fe.u.)
Let -rr be given by a place-representa-
tion (a) In virtue of the substitu-
tion (a), we have at TΓ ,

w h θ r θ
 cu*o.

If P > Q , then K(τr) is said to have
zero of order p at the place TΓ ,
and p<o is said to have a pole of
order -f at the place, and p=o> R(τr)
is regular.

3. At every place of the Riemann-
Surface of the Algebraic Function, any
rational function R(z,u) has either a
pole, or a zero of some definite order
or is regular in the sense of paragraph
2* Also every rational function τ(
has a unique divisor except for a con-
stant. This can be represented sym-
bolically as

where P, ••• P
t
 are places at which

the rational function η has zeros
of order y, ,.--, ̂ andQ,

r
.. Q^ are places

at which it has poles of order Λ, --.^

4. At every cycle Q of QL
A
 of the

denominator, the expansion for the ra-
tional function 71 has the form,

then there ex5sts a formal power series,
solution of

where β is a constant different from
zero* At other cycles this expansion

fhas the form,

η -= oL -f β t *
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where β is again different from zero
and 06 is a constant which vanishes at
the factors of the numerator of the
divisor of 71 . If α^o then τ\ has
zero of order r at p

 #
 In such

cases we have the relation that the sum
of the orders of a rational function r[
is zero* That is

COROLLARY I.

4. (i) Xr, - =o

the first summation is over zero places,
and the second over poles

β

In cases where

4 (ii) U «oc + α
Γ
i V - -

where oc^o and <r is a positive
number not equal to one, nothing is
known so far about the nature of <r 4 .
First of all we note that there are only
a finite number of places of the type
4. (ii) For *7 we shall denote the
sum

£<<r-ns $η

THKOREM I.

For every rational algebraic function
{ we have,

where cr is as defined in 4 (ii), and
the summation extends to all such pla-
ces, and P is the genus of the alge-
braic equation I

PROOF?-

Applying the Invariant property of
the genus number,

1
, we have,

4. (15.5

where X is an invariant and is equal
to 2£~J2

 9
 and the other summations

have already been defined* On simpli-
fication, by using the property 4 (1),
4 (ϋi) becomes,

4. (iv)

where £ is the number of factors of
the denominator and -t that of the
numerator of the divisor of 1/ W©
also know that p^o and that if there
should exist any r\ at all then,

Hence we have,

2(<r-i)«0 >
then

COROLLARY II.

^ ((
hi

COROLLARY III_._

and only if

» if and only if

If there exists a rational function
^ with a single simple pole, then the
value of the genus p must be zero

PROOF:-

If V has a single pole, then for
every constant oί the difference
?7»-ol has a single simple zero. The
expansion of V. at a place where it
is finite has the form, n~V

o
+ C±+ ••-

and the constant & is different from
zero, since otherwise u - n

o
 would

have a double zero At the pole of ̂ l

1 VO

Ξ Σ(<r-O«O

we have,

Hence,

Applying the result 4. (Iv) we have,

5. THEOREM II.

For an adjoint function of a polyno-
mial algebraic equation of degree n
which has 3ingle sheets at infinity,

Σ(<r-~ί) > 2 p + n-z ,

PROOFS-,

The divisor on which an adjoint
function Is built is D V x » where
p is the divisor which is the pro-

duct of the cycles at 2 =<*> and
X~JP

Y
~
X
 the divisor of the

branch cycles, p is a branch cycle,
and v is the number of roots u

Λ
 of

the equation f(? u)-o furnished by
it and the product is taken for all of
the branch cycles. If '7 is an adjoint

function then, ^ <-Ό -^ R -- P
t
 *

where Λs are positive integers.
We know that applying 4. (i) we have,

r~i)> 2P

5 (i)

and

5. (ϋ)

λ
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i £ ^ ^ has the same meaning as
i n 4 . ( i i ) . Simplifying 5 (11) using
the r e s u l t 5 ( 1 ) , we have

6vO = 2 P- 2 + U+ £ + Σ(y~ί) - Σ lV-2)

where t i s an integer or zero, and

Σ(v-l) > X(y-Z),

Therefore

Σ.(«*~O > 2 P-2+n .

6. THEOREM I I I .

If the divisor of an algebraic func-
tion r\ is increased by introducing
in the denominator and numerator factors
p and Q either different from or

equal to those of l\ , such that the
sum of the indices of the extra factors
so introduced in the numerator and the
denominator is Λ each, and if there
exists a rational function ξ for the
new divisor, then

and since

we have,

COROLLARY L

6. (iv) If "R —PtP^i are all
different and distinct from Q, ̂-Q^.Q

ι+1

which are also different

and if

then

COROLLARY II.

If the conditions 6. (lv) are aa
tisfied except

PROOF:-

6. (1) Let

where

6.,(11) and

(Refer result 4. (lv))

t h e n

COROLLARY III.

If conditions 6. (iv) are satisfied
except

then

Let

where

and ,
t

and

i-i.- . t),

Following 6. (11) we have for ξ ,

6. (ill) C
 5
 Z(crLi)=Qf>-2^£^t'.

ί Yom 6. (Ill) and 6. (11) we have,

COROLLARY IV«

If conditions 6 (lv) are satisfied
except

^ Q ii

ist

t h β n

COROLLARY V.

If conditions 6. (iv) are satisfied
except

then

- 25 -



CHAPTER II»

PART I

I SOME THEOREMS CONCERNING THE STRUC-
TURE OP THE BRANCHING OP THIΓFUNDA-
MENTAL EQUATION

INTRODUCTION

Let u be an integral algebraic
fvinetion of Έ defined by an irredu-
cible polynomial equation, f<*,ιo~o
of degree n in -u.

- the value of

a t t h θ

other; further let them satisfy the-
following conditions:*-

(li) 4±<

(iii )

then the necessary and sufficient con-
ditions that fί2u)=o should have the
scheme of branching as in II (ii) at?-α
of the Riemann-ourface viz , *

are

of the Riemann-Surface, and

f

II (iv)

of oi and β
such that

for all integral values

(including 0 values)

<

Let notation for the

conditions to be satisfied by fί2r,vθ~
in order to have the following place
representation at the place p

II (i) -H~α = ί*
i

t
 where, t %s the local parameter and m.
is a positive integer denoting the TΓU-
pie root of f(;s,u)~o

From f (S,TΛ)~O
 ?

 calculate the

differential coefficient of u. with
respect to z at the place representa-
tion given by II (I).

Then,
da _ __J (or Qo )

If <r< n, , then will have a

principal part at the place P , and
is a function of the local parameter

Let VL
L
J&-&>U.-1) be the

principal part of at the place re-

presentation given by II (i) where
fta, u,)-o has a m^pϊm haβ; a m. -

pie root The principal part 5s there-
fore a rational function of the base
elements cz-<M and ίu-4)

THEOREM I

Let fc <x,u)~-o have roots of mul-
tiplicity v and let I^.Λ . M ^ . Λ , ) . .
• - iΔi.πji) be J. different sets of
positive integers such that the two
numbers in each set are prime

3
 to each

for- (ί* r, --, I).

Of these some of the conditions may
be repeated.

II (v) And

i,«- , X

Proof5-

(a) We shall first prove the theorem
for II (ii) inequalities and then extend
it to equalities*

Suppose -— < ~ < •-, , < ̂

The conditions are necessary, for suppose

j(?,u)^o has the scheme of branch-
ing as in II (5i) at z-α , u = £ then
by Newton*s Polygon Theorem it must be
capable of being represented as a poly-
gon with vertices ( oii, β

t
 ) given

oii ~ 0ι + * - - + A{,

by β — v — / Λ /* \

be the vertices of the Newton's Polygon
in the OL, p plane, we have then the
following relations:-

II (vi)
A, - V -

h
and
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II ( v i i ) ^ oί, , PROOF:-

oCt -

From II (v i ) and II ( v i i ) we have,

Put i~
(iv) then,

1 1
 (*)

Since

At-

in the conditions II

< )/>d|-(Λ
#
+—

Equation to the l ine joining the two
points loCi~t tβi-,y ,(<*ι. ^ ) iπ the ot, β
plane i s ,

ii (vϋi)

we have,

The conditions
3
 that there may be

no other points tot*, β
N
> between the

axes and the Polygon are that

f
fi
 ία,..-f)».o where α, p are posi-

tive integers such that,

And the existence of the Polygon en-
sures the existence of the vertices»
Hence the vertices of the Polygon are
<*-</* for which

hence II (x) on substitution of this
result becomes

This is evident from the equation to
the stright line joining the two ex-
treme points of the Newton's degene-
rated Polygon viz , ((X

0
=o „ ̂

o
 = v)

and (oίji =z#,+ *-• ̂  p ^ o >

II (xi) voc^o^β

But, cλg-

II (xli) and

since

where

(It is

Sufficiency of the conditions is
easily proved for with the given condi-
tions the polynomial equation will have
Newton's Polygon of the required type

(b) Consider the theorem when

other conditions remaining the same as
in the theorem. In this case the
Newton's Polygon degenerates into one
straight line with all the vertices
situated on it Then the condition*
II (iv) become fβ**

0 f o r
 *H inte-

gral values of A , β (including zero
values) such that

II (ix) <

f /ttfw. IJ (X'Γi)

Hence

also from II (xi)

Therefore,
n
£
oc + Aj

Hence the result

COROLLARY I.

If v is a prime number and is the
multiplicity of the roots of j(a,u)=o

and
 H

1 ^ I <%
 α
 /"ti

where <xor 4 o and <r < v
then f(2,u)=o should satisfy at

(α,^), ί-|"ίΓίr4 ι) + v+lJ conditions namely,

II ( x i i i ) fA(aΛ)~0' Λ=* o, i, - -,{v-i)m

- 2*7 -



- 0 ,

ΐfΛi*,t)mo

Impose the conditions II (xill) on
the equation and construct the Newton's
Polygon with the remaining equation*
Then It will be seen that the Newton's
polygon will have a sinele side. Hence
the result*

As In the beginning of this chapter

let
Λ

b the symbol for the con-

dίtlons to be satisfied by
In order to have the following place
representation at the place p of the
Rlemann-Surfacβ of f{Έ,u)~o

\JL--i = α<ri:
(Γ
+ &<r+» t t —

where ± is the local parameter βnα
u is a positive integer denoting the
?7t-ple root of f(α, u)« o .

THEOREM II

SPUE RESULTS NOT COV.

ARE 6IVEN bs:

BY THEOREM I

-•.Γ

Γ

L

A proof for one of the results, name-
!y»

 3
Ci,i Is given below The proofs

for the rest of the results follow exact-
ly the same lines of arguement. i.e. con-
rest of the results follow exactly the
same lines of arguement. i.e. con-
ditions that f ίi2,to = o may have two
sheets in one cycle and each sheet an
expansion beginning with the local para-

meter
 t
 , that l. ^ U

and J(α, u)«o has 3 -pie root

IT ίxv)
 3

C*.t are

PROOFS-

f'(α,€)-o

Consider the equation fίz,u)=O at
Έ ~ a. 9 and u ~ ^ of the Riemann-

Surface and get the expansion for ίc^.uy^o
as in II (xiv) Impose the conditions
as stated in II (xv) on the coefficients
of the equation II (xiv). With the re-
maining equation construct Newton's
Polygon. We find that it will give rise
to the place representation

I
L

THEOREM III*

At a place representation P of the

Riemann-Surface ~ ~ ' Λ*

the terms of the lowest order in the
expansion of /f*5,u) = o at x ^ α »
u »-6- $ which has the branching arran-

gement as given in II (il) and II (ill)
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are ~
f
 and (k^c

with appropriate coefficients, where
ςoti.f.jjin <*, 0 ])JiMA are $he yert&cres
of the corresponding ffowtori's Polygon

sa11sf y ing coήdϊ t ί one

PROOF:*

Construct Newton's Polygon for fr*,u)=o
at %*:at u. =£ ,,,. SuίφoEre ( ••$*£, Wκ )
i s the X*th vertex of the Newton's
Polygon, then the, order of the corres-
ponding term A (V-a)^(u-^)A' at the
given place Is

Put

and

H (xvϋ) Sf (o.^)=xo have roots
of multiplicity not greater than two%
Beatty in the Transaction Royal Society,
Canada Section III (1931) has shown
that

— - u' = Σ Σ. * ̂  ̂
(CLj κ)

where pcz) i s a polynomial of de-
gree ( f -i ) at most, %> runs through
the, f inite mjtiltJiPlero^ts of II (xvi), <x
through the associated values of z and

<5~ .$$ the; f i r s t poorer of ί 2,--α ) to
have different; coefficients iia the ex-
WPelgP* Pfr^he J3βv§^al branches of
v u ~"Fr) in t^rmf p^ ( Zh ̂ ά )«

Since

Therefore Ct - Ĉ  —# = ^*Λ;

(a) Using the inequalities II ( l i ) among

the /ι$ and As we have

Hence the theorem.

(b) Using the equalities of Iϊ (11)
among the /t s and ^ s we have,

values U

Hence all the terms in, question a
?^α, tt« t> '" will beglh with the

lowest order*

PART II.

THK DKRIVATIVE3 OF AN ALGEBRAIC FUNCTION

INTRODUCTION

Let ΛX be an integral algebraic
function of 2 defined by an Irreduci-
ble polynomial equation f<2,vθ = o
of degree n in u and f in 2
The coefficient of u

Λ
 in fa, u)

is obviously independent of z and

where g f̂  »̂)

i s of degree n in ΊJ and the coef-
f ic ient of iχΛ i s independent of ξ »

If the equations

II (xvi) fίθL.υL\=0 for a l l f inite
(X,

The ob jWct 6f this |>art I3 ΐό exteϋil
the abb^e result t& the caie where th^
multiplicity f6f-%he robts of equations
II (*v*r and fl (xvίl) i s not greater"'
than 3 For this ail Entirely new
method is adopted.

At 2 = α le t ί<α,u)«o have 3-pie
roAt u * 4 • And ie t t be the lo-
cal parameter on the, Riemann-Surface
Th§ f όtlow^ήg jbranόh,fng may be pbsiibl

One branch of 3 sheets, vlz»,

II (xix) *-CL=t
3

where either Q,~ό

II (xix) One Branch
 :
b?

 Ί
% -sheeta and

another branch of <mt sheet,

where
ft|
~o 0%

, * O

II (xχl) Or again at *=0L
 9

 fi*,VL)**o
may have "Staple roots and if t i-β the
local parameter on the Riemann Surface,
the following branching may be possible:

where 4Xt^q <rv Q-^H^ΨQ

11 (xxil) At *^<t , d ί ^
may have sihgϊfc roots and if t i» the
local ̂ ¥ t th



where

or
α,

We have exhausted all the possible
branching at z « α *, where fca»u)**o
may have roots of multiplicity not
greater than 3

Let us find the principle part of

oΓ» , supposing that all the cases
II (xix) to II (xxii) exist on the
Riemann-Surface We note that the fol-
lowing will not contribute anything
towards the principle part of -§̂ b
For example all expansions of ( u--& )
in II (xix) which begin with orders in

<t W3 . Also all cases in II (xx)
of ( u~-& ) whic&L begin with orders
± s* % etc. do not contribute towards

the principle part of $*£

Find all the principle parts of ^

In other cases at all multiple points
( Qf,4 ) m the finite part of the plane.
Then the following is true:-

^ — all the principle parts in the

finite part of the plane = a rational
function regular everywhere in the fi-
nite part of the plane = an Integral
rational function i.e. I(?,u,)

Hβnee ^

Suppose we denote by

the principle part at ?
a
a,

principle part + I(2,u) •

of

di" $ at the place representation given
by II (i) and similarly all other cases
II (xix) to II (xxil) which contribute
principle parts. Then we shall prove
the following

If the roots of II (xvl) and II
(xvii) be of multiplicity not greater
than three we hare,

IC2.U)

where th first aunmation extends to all
cycles of three sheets or less at all
points ( a., & ), and the second summa-
tion to all the multiple points in the
finite part of the plane, and 1(2, u)
is an Integral rational function In
( 2, u, ) and is of the form according

to 3eatty
#
 in the Journal of the London

Mathematical Society* Vol. 4, Part I,
(1928).

where p s are polynomials in 2 ,ljs
and x are defined in the paper re-
ferred to above;

PROOF:-

Take the total differential of

, we have £<?,u)-ι-;f
to
(*,u)|f|f

0 . Hence

II (xxiii) d?~-
(
-£rj79r

At the place P(?~α, u-ej
 f

 the
following expansions hold good:-

II (xlv) O~

and at

II (xxiv) ί

II (xxv) o-

Hence from II (xxiv) we have,

- 30 -



From II (xxv) -(z-αjf cα,u)~ f(a,u)

Substituting this value In II (xxvi)
we have,

^-f
3
^^)(^-cLK' j

x.iχz-α)%- ~-f (α,u.X?--α)

II (xxvil) -(z-

Again at

Hence

(xxviii)

Hence from substituting the values

of II (xxvi) and II (xxviii) in -$—

we have,

(xxix)

ί f a , f

Conβidβr -j^ at ? ^ α

of order 3 beginning with (z-α

1
 u-ί.α.ί + α.ί'+. .

This case will occur when

f«0
 y
 f,=o , f

a
=o , f

3
φo , ίWo,

Prom II (xxix) we have,

for cycles

3

Since

We have

f,(a,ι
12.

α, uj

Hence the denominator of II (xxix) can
be written as

(xxx) jJ(u-

II (xxxi) Prom II (xxvii)

containing orders higher than 3 in f

II (xxx) because of II. (xxxi) will be-
come

containing orders higher than 3 in t

Or

containing orders higher than 3 in ί

The numerator of II (xxix)

= τi(α,u)-4- terms containing orders
higher than 6 in t

Hence cκ~α)u
/
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In the numerator, neglecting all
terms whose orders are equal to or
greater than 5 in £ we have,

Hence

^ »

Since f(α, u ) - lj^ (u--6) + powers of

( u - * ) higher than 4, D ^ in-

finite at all other cycles of the mul-

tiple point and is also finite at all

other multiple points in the finite

part of the plane. Similarly p
3

can be obtained from

On simplification we have,

Similar results for Df#1 , e tc . are

obtained. It is to be noted that the

principle parts Dj. 3

β lζ, a

β Ίt.ί B •• * β °-

Hence

DL

Is a rational function finite every-
where in the finite part of the plane
= a rational Integral function

NOTE:-

Similar results for roots of fca.u)
= 0 of multiplicity greater than 5

may be derived by using the theorems I
to III,

i-v^S ^
6
 f «

θ l ά 4 ί x ) w e
 can define

the derivative of a polynomial

as

Thus f'cxy is the coefficient of A. in
the expansion of f(χ-+^.) in powers
of fi i

Φ
e

This definition is therefore equivalent

to Γ

L
The operation of derivation as defined
above is easily seen to satisfy the
usual relations,

Defining the derivatives of

ίlϊίίltM ^

_f(χ>

we have

jw fω-

Also we have,

PART III

EXTENSION OF THE RESULTS OP PARTS I

••iϊ ttb Wfls LbS&kΪLLJ 6t6Ma
AND

These results do not add anything new
to those already discovered in the case
of Algebraically Closed Fields with cha-
racteristic zero, but the method of de-
riving the results from Parts I and II
la new. It is for this purpose that we
add a note to this part which will be
helpful in applying the results of Parts
I and II to all Algebraically Closed
Fields

Again we can also deduce from this de-
finition Taylor

y
s theorem for polyno-

mials viz«»

Newton
1
s Polygon could also be const-

ructed without any difficulty for the
new Algebraic Field Deducing results
similar to Parts I and ΐϊ follows as a
matter of routine.



CHAPTER

RIEMANN - ROCH THEOREM AND ITS

INTRODUCTION

The Arithmetic Theory of Algebraic
Functions of one variable gave rise to
a great number of variety of proofs for
the famous Rlemann-Roch Theorem,, Most
of them are long and involve great de-
tails* The theories d5.ffer greatly in
detail but have in common as central
features the construction and analysis
of the rational functions which are the
integrands of Abelian Integrals* The
object of the present chapter lβ to
give a simple and direct proof based on
the theory of analysis« No elaborate
appeal is there for- ® made to divisors and
their properties as in Bliss's 'Algeb-
raic Functions

1
 *

Let fίΈ,\ι)~ i Λ f
t
 u

n
~

f
+ — T f^o

be an irreducible monic algebraic equa-
tion ( is are polynomials In z with
coefficients in the field of complex
numbers fι ) defining th© field of ra *
tional functions.

I. FUNDAMENTALS AND NOTATION*

If &» Ί e .& is & solution of
to,uj«o then there exists a for-

mal power series, solution of -f(%,u)^Q
in the form

Such a pair of functions we shall call
a place representation of the Riemann-
Surface of the algebraic function*
This was already stated In Chapter I*

VALUE OF
 ι
A

Let

AT_A PLACE*

be given by a plac©Let a place TΓ
representation

In virtue of the substitution of this
plac© representation we have*

where H W is & power series in t

and E(o)φO We call ^/v the order

of HCΈ, UL) at the place in question*
We assign uniquely the value of "R(z,u)
at the place 7Γ as follows %**

o

co

BίO)

'4 ?>o

4. f-o.

If V*=ί the place is called regular,
otherwise singular. For any given al-
gebraic curv there are only a finite
number of stίch singularities*

It is seen that for all the branches
in a cycle a rational function has the
same order* Let there be /t cycles of
v>i7 -'14 sheets each at 2 * α of the

Hiemann-Surface* Take /L numbers x,,
— , T^ of the type #V and denote, this
s#t by (X). Such sets assigned at dif-
ferent places .of the Riemann-Surfacβ
are denoted ίby (CΓJ) The orders of

tbθ rational function at the cy-

cles of the Riemann-Surface at 2~α
are denoted by >"-,,.../yαA respectively*
Complementary order-basis at 2-d are
numbers cr) such that

I I I
-t-» T«/*-!+ -at finite places

at

Given an order-basis UT)) at points
of the Riemann-Surfaoe

f
 in general

there always exist* rational functions
•R(*,u) € fci2,u.) which have orders

equal to or greater than the given Uτ;)
order-basis at all places in question
and greater than or equal to sero every-
where else Denote by Nτ the maximum
number of linearly independent rational
functions of the set, and by A/^^A.

the maximum number of linearly inde-
pendent rational functions constructed
on (jx)) everywhere ami (X-j/'y at one
cycle.

Similarly we define /V~ and /V^j.

where UTJ; is the complementary
order-basis to (ίτ>)

II* PRELIMINARY, THEOREMS LEADING

UPTQ HX,iyA,SS!r
R0C
^ THBORBJfo

THEOREM I,

The maximum number of linearly inde-
pendent rational functions built on a
negative order-basis (en) is S - Σ Σ T V

PROOF?-

Let the negative order-basis at a
multiple point M b © τ,, -••, T* and let
Vij -.V/v

 feβ
 ^

θ
 cycles. We βan re-

present the order-baβis by means of a
civisor Q In the sense of Bliss as

or putting T
t



Let the multiples constructed on this
order-basis be

Hence the total number of conditions
that y\ may have no orders < o at
all cycles of the place is - 2: 4t

Take any one of the multiples say
and out of the remaining multiples
select a multiple T[% such that

{ c, and ca € ̂e and not all zero)f

if c,η,+ C
2
%^o , then the maximum

number of linearly independent rational
functions is 1 - then out of the remain-
ing multiples choose n

3
 such that

(If C,π, + C
a
τι

a
 + C3173-0 then the

maximum number of linearly independent
rational functions is 2, C s e ft and
not all zβro ) Continuing this process
of selection suppose we COTΠΘ to the
stage where c, 11,+ c

a
 "?*••••• * + c

x w
 *?*.., %Q

and Cî ,-f-Câ a
+
 ••

%
 + C

A
^ » o (Csefe

and no.t all zβro) It is to find the
value of X . First of, all we shall
note that if n<,*Z*, •- , tf

x
 are multiples

then n-cn,^ *** -+c
λ
^

x
 is also a

multiple, where cs are constants

Let the following expansions of the
multiples in terms of the local para-
meter t at the various places p, . ••• P^
of the multiple point M be considered*

Similar conditions exist at all the
other multiple points M of the Rle-
mann-Surface. Hence the conditions that
U may have no orders < O at all mul-

tiple points of the Kiemann-ourface are

III (5i)

oil

Therefore the total number of condi-
tions that V. may have no order's < o
at all the multiple points of the

Riβraann-Surfacθ is - Σ Σ ^ t

The least number of conditions imposed
on C s that τ( may be zero is - Ξ Σ Γ Λ '
4-i The number of constants Cs
in III (ii) is Λ In order that it
may be possible to have values for Cs
from equation III (i), not all of them
zero, it is necessary that

Σ

But the maximum number of linearly in-
dependent multiples is ( X - i ) «

Hence hit

THEOREM II»

M i

then at

and

In order that ^ may have no orders
< O at p^ we have,

Conditions that t\ may have no orders
<o at all cycles p

( J
- , ?

Λ
 of the

place are,

ί,2,

FROOFj/

If the number of linearly inde-
pendent rational functions built on (CO)
order-basis is Ί , then the number of
linearly independent rational functions
built on Ctτ- ί;;) is either equal to
I or Jd-t l * That

 l s
 Λ/

T

 a n ά

hlχ~L differ by one at most* For

suppose

III (iii)

are ci+ίJ linearly Independent ra-
tional functions built on ^τ~-£)3
then we can always choose one out of
il+fϊ functions, which is not

built on COD) » Let it be Φt+ι
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It is possible always to choose Jί
constants <?,,<:,,*>«,Cg, (not all zero be-
longing to k , the field of complex
numbers) such that

are functions built on U*f)) If
these X functions are linearly depen-
dent* then it follows that the ίl + D
functions In III (ill) are also linearly
dependent

9
 which is a contradiction.

Hence it follows that if N^^-t then

A/
x
-X

 i s
 at moat equal to (J! + O »

Similarly fij- - N*+φ= 0 o i l .

Hence

III (iv)

Case 1«

(Λ/
r
_x-Λ4H (#•? -Mf

+
i) % 2

For If III (Iv) were equal to 2 then

at infinity,

III .(vi)
 y

at the excepted cycle,

III (vii)

fflώ)

The residue from III (v) Is 0 , and
the residue from III (vi) is 0. F(z,u)
gives rise to a residue c

v
 (Kβfer

expans5on III (vii)) at the excepted
cycle and if the cycle contains V
branches, then the sum of the residues
of F(2

/
t4

<
) is \J<v^0 . Since V ^ o

Cy»O » which is a contradiction
contradicting III (vii)

9

III (vlii) Case 2,

and

This is possible only if thare exist
rational functions constructed on

U
τ
-i)) having orders exactly T~-£

at the exeβpted cycle
9
 and those con-

structed on tef)) 9 having orders
exactly x at the excepted cycle

Let 1i
T
-i and R ^ be any two such

rational functions which have exact

orders T--p and x at the ©xc©ptad

cyβle respectively. Consider the re-
sidue of the rational function

(a) This result III (viii) is easily
proved for U*?})^ (W3) , since

The expansion of F(B,ιθ in terms
of (2-ft) at finite places are,

not negat5ve«

(b) Result III (viii) for

the set of adjoint orders to the
given set of orders we may paas by a
series of steps each individual one
which involves an addition to the order
of coincidence of th© function with the
branches of one and of only one of the
cycles

9
 the addition to the order being

Vv ia case the cycle In question be
the one σf order v Kvery step in
the process just described implies a
further condition on the coefficients
of the function, and only one further
condition as is evident* for the order
of a rational function of (u

/
z) with

the branches of a cycle of order V is
always measured by an integral multiple
of l/y « For this explanation in Case
2 (b) I am Indebted to J C.Fields. He
makes use of this idea as the very
foundation for his book 'Algebraic
Function of One Variable'* almost at
the very beginning of the book. Making
use of this result we have Iϊί (vii)
for tcf»<tio» . Hence H I (iv) φ o
Therefore from xBases 1 and 2

- / v
r- ^ H + i f

Am
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THEOREM III. Therefore

To show that any rational function
can be made to have order-basis

METHOD OP GETTING THE DESIRED FUNCTION,

Let ft-? be a rational function built

on any given order-basis (lit,)) •
Then particular values can be ascribed

to th'β hlj
t
 arbitrary constants in Ry ,

in such a way that the resulting speci-
fic function 7H«., u). is not zero
identically* But the, orders of the spe-
cific function form an order-basis U<r))

such that τ*=Ct
(
-<r) are either

zero or negative. The general rational
function built on the basis Lift)) is

R.—

U.
R

It is also seen that

Hence Theorem II.

III. RIEMANN - ROGH THEOREM.

He know from Theorem Iϊ that

( p is the genus of the funda-
mental curve).

Also W ^ I

and N^ + M=O

Applying Theorem II we get,

Hence
 v Γ

THEOREM IV (1)

Decrease in the adjoint order-basis
at a place by a minimum order quantity
does not affect the number of linearly
independent adjoint rational functions.

THEOREM IV (il)

Existence of the Abel5an Integrals
of tHe &nd klndT

PROOFS-

Change the order at a place by twice
the minimum quantity.

Theorem II then gives

Applying it successively we have,

III (ix)

at finite places

at infinite place.

Put ;έ«τ", J - T in the equation III
(ix) then,

Hence the Riemann-Roch Theorem,

But

'V t- P , N^ = I,

Therefore

There exist rational functions H(Έ,\JL)
€ &(ΈjU) which have exactly τ—ξr

order at the excepted cycle. Its ex-
pansion in terms of the element (z-α)
is

&ι~O since it is the only residue
of the rational function and /}

Now
of

IV. APPLICATIONS OF THEOREM II.

!• To demonstrate the existence of
Afefclί&n Integrals of the 2nd and 3rd

5n a simple way*

Ctτ»»ίίθ)> Then the
are adjoint.

Suppose
o*d»rβ (tt

This integral has poles only and no
logarithmsj hence it is the Abelian
Integral of the 2nd kind
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THEOREM IV (111).

Existence of the Abellan Integrals

of the 5rd kind,

PROOF:-

Reduce I CO) at two different pla-
ces Cι and Cα the orders by a
minimum quantity. Applying Theorem II
we have,

Since

Hence

There exist rational functions
which have exactly the prescribed orders
at the two excepted cycles * Their ex-
pansions at these excepted places are at

of (Z-

at C
2

according to the expression III (x)
3g i The proof follows the. lines

we have already indicated.

(*)Received December 31, 1949.

)
2)

~ί, asnd

E) M.SC.Thesis in the University of
Cambridge, 1946.

1) Algebraic Functions, tί Ά Bliss
The theorem is still true if instead

of Δi and /i; being prime to
each other are such that the
highest common factor of Πι and
all the exponents Aί in the
series for lu-^) , is one.

3) The perpendicular distance ρ> from
(o,o) on the line

is given by

Let c oί,, p, > be any point in
the (oc,£) plane and p' be the
perpendicular distance from (<*,. β

t
)

on the given line then

The condition that (<*
(
,β,) may

be on the same side of the strai-
ght line as the origin is (»'< P
i.e.

τ'+

and their integrals are,

J

Hence the conditions stated above,
4) r̂ or example if the given order-basis

C(τ)) at points of the Riemann-Sur-
face is positive or its sum Is
positive then no rational function

T2(H,VO e feCH.vt) exists. Or
the only function in this case is
zero

fl)V

These are therefore Abelian integrals
of the third kind as they have no polos
but logarithms.

2. A method for Jnyeatlgatlnp the

reduclblllty of the fundamental

equation.

Evaluate the expression,

III (χ)(/V-r_^-Λ/
τ
)+(/V

7
-Λ/

ί +
 p

for any order-basis. The fundamental
equation is reducible or irreducible
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