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PREFACE.

The whole thesis consists of three
chapters. In chapter I, we deal with
the structure of Rational functions at
various places of the Rlemann - Surface
of an Algebralc Function and deduce some
new results. It also serves as an in-
troduction to the rest of the chapters.

The second chapter consists of three
parts; the first one glves three theo-
rems concerning the structure of the
branching of the Riemann - Surface of
the Funddmental Equation. The second
one deals with the lnvestigation of the
differential coefficlent of an Algebraic
Munction. This produces a result which
is an improvement over the result al-~
ready published by Beatty. The thirad
part 1s merely to show how to extend
these results to all algebralcally clo-
sed fields of characteristic zero.

Chapter III consists of two mailn
parts. The first part is a proof of
the Riemann - Roch Theorem, and the
second 1s 1ts applications. A new me-
thod of proof for the Riemann - Roch
Theorem based mostly on the 1ldeas of
analysis is given. In doing so IiImport-
ant new theorems are introduced. In
the second part"it is demonstrated that
some of the well-known results in the
Algebraic Function Theory are easily
deduced by the application of the new
method.

References to various chapters are
glven at the end of the thesis in the
Bibliography. ’

CHAPTER 1I.

THEOREMS ON THE STRUCTURE OF RATIONAL

ALGEBRATC CTL o
1. Let Frw=fuw+ful e a o,
=0 be an irreducible al=-

gebraic equation ( f4 are rational
functions in z with coefficients in
the field of complex numbers £ ),

defining the yield of rational functions
f(zu)e If a ek 1s a solution of

F(z wy=0

then there exists a formal power series,
solution of

fcz. w=0
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in the form

{ Fou= A"

@)

U8 = 27 (Qp+ Qpud +++ )
As¥ O

where i, s~ are integers and o >0
such a pair of functions (a) is called
a place-representation of the Riemann-
Surface of the Algebraic Function.

2. Value of a Rational fFunction
at a Place,

Let a Rational Function R(z.w e ®(z.W)
Let ™ be glven by a place-representa-
tion (a). In virtue of the substitu-
tion (a), we have at ™ ,

Rz W= tf@e+a, t + )

where Q0¥ 0.
If §f£>0 , then R(M) 1s sald to have
zero of order ¢ at the place 7T ,
and fP<o 18 sald to have a pole of
order -¢ at the place, and P=¢, R(M)
is regular,

3. At every place of the Riemsnne
Surface of the Algebralc Function, any
rational function R(z.u) has elther a
pole, or a zero of some definite order
or is regular in the sense of paragraph
2: Also every rational function 7
has s unique divisor except for a con-
stant. This can be represented sym-
bolically as

R".-- R*
N en v —{G
& Q)
where P .- P, are places at which
the rational function 7 has zeros
of order v .-,y and Q,... 9 are places
at which 1t has poles of order 4, ... 4,

4, At svery cycle @ of Q° of the
denominator, the expansion for the ra-
tional function 7 has the form,

P= e

where 28 1s a constant different from
zero. At other cycles this expansion
has the form,

N= o+ B+ - -



where 3 18 again different from zero
and o 1is a constant which vanishes st
the factors of the numerator of the
divisor of 7 .« If &=0 then 7 has
gero of order v at P , In such
cases we have the relation that the sum
of the orders of a rational function 7
is zero. That is

4, (1) Zh - 24 =0

Y <4

the first summetion is over zero places,
and the second over poles,

In cases where

4, (11) M=ot +dgts---

where o *0 and o 1is a positive
number not equal to one, nothing is
known so far about the nature of o4 .
First of all we note that there are only
a finlte number of places of the type

4, (11). For M we shall denote the
sum

Z(o-1)= Srl
&

THEOREM 1.

For every rational algebralc function
N we have,

S'IE T(e-1) =2 2p

o
where & 1s as defined in 4. (11), and
the summation extends to all such pla-

ces, end P 1s the genus of the alge-
bralc equation I.

PROOF: -

Applying the
the genus number .

Invariant property of
» we have,

4. (133) TO~D+Z-D+ Ee- -2 A =T

where T is an invarisnt and is equal
to 2p~-2 , and the other surmations
have already been defined. On simpli-
fication, by using the property 4. (1),
4, (111) vecomes,

S(e-N=2b-2+L+t

r

4, (1iv)

where [/ 1s the number of factors of
the denominator and -+ that of the
numerator of the divisor of 7 . We
.also know that Pzo0 and that if there
should exist any 77 at all then,

{21,
t=z1

Hemce we have,

Z(e-1)Z 2p

COROLLARY I.

, 1f and only if p=0,

Z(e-1=0
then f=t=1

COROLLARY IT.

S (6-)=f+t, if and only 1if
p=1 .

COROLLARY IITI.

If there exlsts a rational function
N with a single simple pole, then the
value of the genus P must be zero.

PROOF: -

If 7 has a single pole, then for
every constant « the difference
n—-o has a single simple zero. The
expansion of M at a place where it
is finite has the form, N=7,+Ct+----
and the constant ¢ 1is different from
zero, since otherwise 1 -7, would
have a double zero. At the pole of 7

we hsave, o
= = - 1%0
n T
Hence,
Sp= Z@-1=0
and

I=t=1.
Applying the result 4. (iv) we have,
p=o0.

5. THEOREM 1II.

For an adjoint function of a polyno-
mial algebraic equation of degree m
which has single sheets at infinity,

I(e-1) > zp+ -2,

PROOK: ~

The divisor con which an adjoint
function ls built is D*/X , where
D is the divisor which is the pro-
duct of the cycles at x =< and
X=TpP"* the divisor of the
branch cycles, P 1s a branch cycle,
and v is8 the number of roots u, of
the equation f(z w=0 furnished by
i1t and the product is taken for all of
the branch cycles. If i is an adjoint

2
P

function then, 7 ¢ —J% p.
where s are positive integers.
We know that applying 4. (1) we have,

ry

5 (1) XA +2n —-%(v-—ﬂro

and
5., (11) +§ju—1)+§(v-2)+§(o~-1)~2§lvd)

=2p-2
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Ze-0 has the same meaning as
in 4. (11). Simplifying 5 (11) using
the result 5 (1), we have

S(E-1)=2p-2+ N+t + Z(V-1)-5(V-2)

where <+t 1s an integer or zero, and

Sv-1) > Z(v-2),
Therefore

SE-1) >2pP-2+m .

a

6. THEOREM III.

If the divisor of an algebralic func-

tion 1 18 Increased by introducing

in the denominator and numerator factors

P and Q@ elther different from or
equal to those of 7# , such that the

sum of the indices of the extra factors

30 introduced in the numerator and the
denominator is /U each, and if there
exists a rational function &t for the
new divisor, then

PROOF: =

6. (1) Le
(1) Let RN P

e -
QM. @t

where
IX=Z/

6..(11) and SyE3e-n = 2p-2+14+ £,

(Refer result 4. (iv))

Let A g

.
(For i=t,oo0 )
MEM (0 i=) )

Following 6. (11) we have for § ,
6. (11i1) SEE S =2p-2+ 8+t
q‘l
From 6. (111) and 6, (11) we have,
Sg=S;=U=~D+'- 1)
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and since
-2 n,
t-tsn,
we have,
: "S,, <2h.
COROLLARY I,
6. (1v) 1¢ P ---RR, are all

different and distinet from Q,---Q,.Q,,,
which are also different

o Q- Q" Qe
then
SE "‘Sﬂ=2

COROLLARY II.

If the conditions 6. (1v) are sa-
tisfied except

.Pt&lspi i%t,
N Qzu=Qi ise
then
S§ “Sn=‘-

COROLLARY III,

If conditions 6. (iv) are satisfied

except
P =P, =%,
OEH‘Qi iél
then
'Sf "512:"0

COROLLARY _IV.

If conditions 6. (iv) are satisfied
except

R'I":Q" L‘:lv

Q,[+|=Pi igt
then

Se-S,=0

COROLLARY V.

If conditions 6. (iv) are satisfied
except
P, =Qq; ist
then

SE'S,I""}» .



CHAPTER II. MISCELLANEOUS THEXOREMS
PART I,

I. SOME THEOREMS CONCERNING THE STRUC-
TURE OF THE BRANCHING OF THE FUNDA-
MENTAL EQUATION.

INTRODUCTION

Let « be an integral algebraic
function of % defined by an irredu-
ecible polynomial equation, f(z,x)=0
of degree M. in u .

Denote by JL;, i(a.,#) the value of
[3 ¥
9z  Jub. z:a at the place P(a.f)

of the Riemann-Surface, and

K a f gﬁ
1 (a.$)= 37+ ﬂz"gzza , B(a'g)_ a—ue)c(z.u 20
u=t u=6-
- A
Let ™(C, , be the notation for the

conditions to be satisfied by f(¥u)=0
in order to have the following place
representation at the place p .

II (1) z-q=2" )
u-¥=o,d.t°'+am,t +-r~-~

(Ae¥0)

. where t 1s the local parameter and m

‘I8 a positive integer denoting the m-

ple root of f(z,w)=0 .

From f(z,w)=0 » calculate the
differential coefficient of 1 with
respect to %z at the place representa-
tion given by II (1).-

Then, du 1

-1
(o‘n 2 r) Qg £ )
PR '

If o<h , then %% will have a
principal part -at the place P , and
is a function of the local parameter

tt’. Let D, .(-a,u-8) be the

principal part of 44 at the place re-

presentation given by II (i) where

fca,wy=0 has a m=ple has & m =
ple root., The principal part is there-
fore a rational function of the base
elements (z-o) and (u-4) .

THEOREM I.

Let FfCa,u)=0 have roots of mul-
tiplicity v and let (4., 1), (42, /2 - -
«~ (4dg.ng) be £ different sets of
positive integers such that the two
numbers in each set are prime® to each

other; further let them satisfy the-
following conditions: -

r(a1) disde o <Ae-«< 4
' T2 T :/'I /Leo

IT (131) y+il+ s vyt =p

then the necessary and sufficient con-
ditions that  f(z.u)=0 8should have the
scheme of branching as in II (ii) atz-q
of the Riemann-‘durface vize, °*

z-a=t" .

u-4=q,, t . Lot

are Qy.30)

ol
II (iv) §B=o for all integral values

of « and B (including O values)
such that

VAR < VB~ (Myr---+ Ny ) B,
+(Bi+ ¥ DN
for (imt,---, L),
Of these some of the conditions may
be repeated.
11 (v) And

oLy Ar=d +--- +4;
‘fﬁl#o .{ﬂ Bi=v__(,,7‘.,....'f D)

Proof: -
roos-2

(a) We shall first prove the theorem
for II (11) inequalities and then extend
it to equalities,

Suppose - < o< s <

The conditions are necessary, for suppose

ftz.u)=0 has the scheme of branch-
ing as in IT (11) at Z=a ,u=4 then
by Newton’s Polygon Theorem it must be
capable of being represented a8 a poly-
gon with vertices ( «;, B, ) given

o= i+~~~ +4;,
by Bi= YV~ (A4 + ;).

Lot (Xo=0. Be=V), (.8, - -. , (Xg. Bp=0)
be the vertices of the Newton’s Polygon

in the o, p plane, we have then the
following relations:-
IT (v1) .y,
N, = B,— Ba2,
/7-1 -1= PL "sg-
ng = Pe—Be
and
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b=y,
Az‘z‘dn-—d"/

o e e e e

IT (vii)

44‘-)"‘ 0(1..,"°1"l-:z,
e =oly —0lp_y,

From II (vi) and IT (vii) we have,

o;=Ah+ —-fA;)

Bi=p—(r+-eny) |
1=0,1,--., 4,

Equation to the line joining the two
p°1nta (i, ﬁx‘—c) ,(‘dl. pi)in the d’lﬁ
plane 1is,

II (vi11) !
Rt p;p =V~ U‘"‘“f”‘"’) d; “'(A,*'-»*J;..)n.;

The conditions® that there may be
no other points (o, B> .between the
axes and the Polygon are that

f:(o,£3=0 where «,3 &are posi-

tive integers such that,

Rkt BB < Way = (ay+e v WA+ (B v ALYN
i=1,--- L
And the existence of the Polygon en-
sures the existence of the Vertices.
Hence the vertices of the Polygon are
o..B for which

Fala 8350

whe!
here A=A+ --+43,

ﬁi =yY=A(n,+---+N,)
l“-‘o,l: "',1

(It 18 clean that Ng=0=4do ).

Sufficlency of the condlitions is
easily proved for with the given condi-
tions the polynomial equation will have
Newton's Polygon of the required typé.

(b) Consider the theorem when

—AL=A3=;'~=;‘6_1:J=AI

R Negs N2
other conditions remaining the same as
in the theorem. In this case the
Newton’s Polygon degenerates into one
straight line with all the vertices
situated on it. Then the conditions
II (1v) become FS=0 for all inte-
gral values of «,3 (%including zero
values) such that
IT (1x)  nyo(+4ep < Ve
o g = b+ + A2
fp#o f{)'f‘ B;=V—(’l.‘f""’n|’)

i=0,1,---£.

PROOF: -

Put =4
(1v) then,

in the conditions II

II (x) nﬂd+,61p < YAhBg—= N+t Np_ ) A
+ (A,+--~+A¢-l)/l'z.,

Since
Do Ba LB Ap Aoy
e Ay Ny Mg Ryt ~-+N1g
we have,

Ao (Ru4--- t R )=y (3+---+4,.)

hence II (x) on substituticn of this
result becomes

n'[d * AAP < V"Al .
This is evident from the equgtion to
the stright line jolning the two ex-
treme points of the Newton’s degene-
rated Polygon vi2., (Xo=0, Bo=V)
and (0(1 =D+ - Ay, Bi=0)
II (x1) Vol +otyB =Yy .

But. d~2= A—,-h-‘--*’Ai.

IT (x1i) and
BB Be_ Bre-vbe _ oLy
e na e n+-+ng VYo
since

h. + a4~ *hg= V,
Hence
Agng=y-dy frem 3T (X)

also from II (x1)
B Bp.
proce BB =

snce YEO
Therefore,

RGO+ B8, B =V 2
Hence the result,
COROLLARY I,

If v 1is a prime number and is the
multiplicity of the roots of f(a,w=o0
z-a=4Y
U= = Qg t T+ Aot + o=
where “ag %0 and T <V
then f(z,u)=0 should satisfy at

and

N

(a, %), [-,’To'(o'+-)+v+1] conditions namely,

11 (xi11) f (a.6)=0" A=o0.1, -, (v-1),
f, (a.5)%0. ’
flo,fo, 20, %o,

-2 =



1 (R
:f;:o; T j’u:’o,

PROOFS -
At Z=a , U=4
II (x1v) o= fz, w= f(a,{;)+f'-(z~a)
+ f, (u-8)+ —é—[f’~(z~a)2+ 2 (z—ad)(u-
+ £, (u-&*|+ -~ + —Lé—[’flp(2~n)"+ (A )‘,P~l
o (F=03 (U=€4 -+ "C.L-f,:%(z—~ ) tu- e
et f,;(u-—@)"] .

Impose the conditions II (xiii) on
the equdation and construct the Newton’s
Polygon with the remaining equation,
Then 1t will be seen that the Newton’s

Polygon will have a sinesle side. Hence
the result.

As 1n the beginning of this chapter
let "C, , be the symbol for the con-

ditions to be satisfied by F(z,wW=0
in order to have the followlng place
representation at the place p of the
Riemann-Surface of f(z, u)=o0

z-a=t",
]
U-B=0p T+ Qgpy b teee
where t 1is the local parameter eviu

m 1s a positive integer denoting the
m-ple root of f(a, wW=o0 .

THEOREM II.

SOME RESULTS NOT COVERED BY THEOREM I
:-

—————

M fi60.8y=0 for 420 1.2
’C," s 4 f‘ (a'g)* o

| F'abr=0, f'(a,8)%0
‘“ £0.6)20 fm 4=0,1,2,3

417 | fyabrdo
| f'xo
feta®)=0 Jon s=0.1.2.3

“‘C*Q ~3 | fylarto

L-:F“o . f:"-'o ’ f‘*o

. fs0)=0  fu daoraz
Cs1— [Fraero

‘=0, flta.8)%0
R fiatr=0 for s=0.1,-.4
Cor—> | frtaprzo

f'=0, f!(a.8)%x0
5 fa@lrmo £ guot..4

%9~ f_{:(@‘)‘i‘o

fa=o.f'=0, fXa. )40
s fia.6r=0 £, Ao, %
Cot— | flabro

fl=0, f%o. f; %0

A proof for one of the results, name-
1y, 3ot is given below. The proofs
for the rest of the results follow exact-
ly the same lines of arguement. 1.e. con-
rest of the results follow exactly the
same lines of arguement. i.e, con-
ditions that f(®,wy=0 may have two
sheets in one cycle and each sheet an
expansion beginning with the local para-

z-o=1"
meter ¢ , that 1s T s wto

and  f(g,wy=0 has 3 -ple root.,

1T fxv) 3C2,L are
fy@.6=0 fors-0.1.2
f1(a.8)%0
f'(a.€y=0, -f::\:o,
PROOF's -

Consider the equation f(z,10=0 at
Z2=a , and u=4§ of the Riemann-
Surface and get the expansion for f(zw=0

as in II (xiv)., Impose the ccnditions
as stated in II (xv) on the coefficients
of the equation II (xiv), With the re-
maining equation construct Newton’s
Polygon. We find that it will give rilse
to the place representation

Z--a =243

bl."‘&‘:alt"'a;fﬂ—(-v** Q%0 .

THEOREM III.

At & place representation P of the
z—a=4"%
u—&aﬂAh;L’d"+...

(AgX0 k=t -, 0)
the terms of the lowest order in the

expansion of f(z.w=0 at z=qa ,
u=4§ , which has the branching arran-
gement as given in II (11) and II (111)

Riemann-Surface
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are  (z-a) -8y ana (z -4 N ea- g
with appropriate coefficients, where
(di;8;)in o, B plane are the vertices
of the corresponding Newton’s Polygon

satlsfying tondltions
L A -
Bi= Y= (Ryr - +13)

PROOF?: »

Construct Newton’s Polygon for. f(z,w=0

et B=a, u=4 . Suppose ' ( i, By )
18 the | -th vertex of the Newton’s
Polygon, then the, order of the corres-
ponding term A(z-a)*(u-£)% at the
glven place 18 .+ 4, 8; -

Put Ci= npoe + Spps,

Since oAi = Ayt on + 45,
B: =Y =Syt R

)Y,
Ci= N8+t d ) AW -Tw v AT ),

Therefore C; - Cici=Nbi—Alpn;.

(a) Using the inequalities II (11) among

the ns- and 4s we have

CI>C97" - Ck-—l”‘"ch< CkH( - < CP,.

Hence the theorem.

(b) Using the equalities of II (11)

among the 7§ and 4s we have,

Cim= Ciy
Hence all the terma in question at
Z=a, u=4 "~ will begin with the

lowest order,

for all values .i=l;-- £,

PART 1IX.
THE DERIVATIVES OF AN )A'LGEBH%IC FUNCTION

INTRODUCTION

Let w be an integral algebraic
function of ¥ defined by an irreducl-
ble polynomlal equation f(2,w)=0
of degree m in U and £ in =
The coefficient of wu™ in f(z, w)
1s obviously independent of =z and

f(z,u)/z™ = 9(L> )
where g (&.m)

in and the coef-
is independent of &

is of degree m
ficient of 1"

.

If the equations

fta,uy=0 for all finite

a,

IT (xvi)

- 29 -

and

1T (xvii) 9 (0.1)=0 have roots
of multiplicity not greater than two,
Beatty in the Transaction Royal Society,

Canada Section III (1931) has shown
that .
du _ 26 f(a,w)
4z "V T T Sz
II (xviil) "
+ P
where P(%  1s a polynomial of de-

gree ( §-1) at most, 4 runs through
the .finite multiple roots of II(xvi), &
through the associated values of Z and

O .ls the first power of ( Z—~a ) o
have different. coefficients in the ex-
pansions of. the several branches of
(M=% ) in terms.of ( 2~a ),

The' object of ‘this part 1§ to exténd
the ‘above’ résult-to’'the case’ whére: the
multiplicity of the #oots of equations
II (X¥1) and IT (xvi1) 18 not greater
tharrt 3 . For this an entirely new
methoed 18 adopted,
At z=a 1let F(a.u)=0 have 3-ple
root wu=% . And let * be the .lo-
cal parameter on the Riemann-Surface,
Thé following branching may be possible

&t Z-=a

.

One branch of 3 sheets, viz.,

TI (xix) z-a=g?
W=k ot 0yt~

where ‘either Q,=0
ol Q;=Q3=0

M 4,=Q;=03=0 ofc.

II (xx) ‘Oné .Branch ‘of ‘2 ‘sheets and

another Branch oI one aheet,
.,
zea=4"

U-8=q t+0 1% -

where @,=0 ot Qg=0g= 0 slc.
z~-a=4t,
U—8= Wit + Qs £% -
Q,=0 or a,=Qs=0, olc.
II {xx1) Or again at z=a , f(a.w)=0

may have 2.+-ple roots and if t %s the
local parameter on the Riemann-Surface,
the following branching may be possible:

z-p=12 .
u—f=0,/F+azt+ -

where Q,=0 o a,=d,=0, olc.

=

II (xx1f) At =z=¢ , F(a,w=0
may have 8ingle roots and if ¢ 'ia the

local paranieter: then,



z—-a=1t,
u-4=a, £t + Qa2 t"" b

where a,=0

or
a,=a.=0 <.

We have exhausted all the possible
branching at Z=Q ~, where f(a.u)=0
may bave roots of miltiplicity not -
greater than 3 .

Let us find the principle part of

% » supposing that all the cases
II (xix) to II (xxii) exist on the
Riemann-Surface. We note that the fol-
lowing will not contrlbute anything
towards the principle part of 4%
For example all expansions of ( u-+4 )
in II (x1x) which begin with orders in

£33 , Also all cases in II (xx)
of ( u-% ) which begin with orders

t =2 etc. do not contribute towards

the pririciple part of % .
Find &1l the principle parts of %“;

in other cases at all multiple points
(a, ¢ ) in the finite part of the plane.
Then the following is true:-

%‘“5 — all the principle parts in the
finite part of the plane = a rational
tunction regular everywhere in the fi-
nite part of the plane = an integral
rational function f.e. T (=, W) o

Hence g‘i{- = principle part + [(z,u).
Suppose we denote by D:’((z-n., u-4)
the principle part at =z=4a, u=4 of

%‘% , at the place representation given
by II (1) and similarly all other cases
II (xix) to II (xxii) which contribute
principle parts. Then we shall prove
the following

THEOREM
If the roots of II (xvi) and II

{xvii) be of multiplicity not greater
than three we have,

%-‘ PN Das,; +3% :D:,z "ZZD;L*ZZD:L
+T(zw

where the first summation extends to all
cycles of three sheets or less at all’
points ( o,% ), and the second summa~
tion to all the multiple points in the
finite part of the plane, and T (z,uw)
is an integral rational function in

{ 2, w ) and is of the form according

- 30 -

to Bsatty, in the Journal of the London
Mathematical Society, Vol. 4, Part I,
(1928),

I{x.w=PR@+P@u+ -+ RB_ (i

+R@UE W+ + B ®U, 20

where Ps are polynomials in = sUS
and X are defined in the paper re-
ferred to abovej

} eau-fy= —2f@W T sff g
and D), ,(z-0,u-é)= Py ‘),(Y_a)[l 3%.}5_}

x (U— 8)},

3 ____%#faw
D3-2 (E-a,u-6)= fa-(u-8y(z-a)’

3 3 fla,u)
Doi(z-a.u-6)= fs - (u-ef(z-a)’

D; 1 (2-0, u-8)= ?;r,i%‘%',%;ﬁ:;) :
D33.3= :,azD:,::: =0
PROOF: ~
Take the total differential of
fzw)=0, we have f;(z,u)+ fu(z,u)%
=0 ., Hence %‘%; - f%fn .

u"_ (Z—-O»)f
II (xx111) fll'i"-(z—a)fi'

At the place P(z-a,u~6) , the
following expansions hold good:-

1T (xiv) O=f(z,u)= f-;i-a)+ﬁ- Ef?(z~af'

+ ﬂf,‘-(u—c)(z—ah f,-(u-e)’]-t ses
and at 2=0Q

II (xxiv) ffz,u) ,=f'(a', w+ f(za,u)-(?-a)

+_li§ Fla,w-E-als

II (xxv) O'f(i.u)éf(mu)+f£a.,u)-(z—a)
+ g Flaw-@-ais -

Hence from II (xxiv) we have,

i
II (xxvi)(2-0)f(7u)=(%- Q)[ﬁa,u, + ffa’u)
“(2-0)+ih £ u ) (z-ar% ]

- f‘ f'?a,u) 2
= Z-0F(@a.u)+;—>(Z-a)

RN



Since .
fauy=5ca, g3+ fre~ 8+ -~ ~

j:l:fa‘_"o ) amd f,*o.

From II (xxv) —(Z~a)f'(a,u)=f(a,u)
+ = flawz-ars .
Z .

Substituting this value in II (xxvi) We have P . £ 5
we have, 1, (a,w)= -6+ E‘(u—$)+ s

—(z-a)f(z, u)= [:f(a W+ g f (@, u)(z-0) % ]
o 4~ A
2 2 13 3 E-0)) -0 % @ w=E-0f, (0w (z-a)
i N _ = ’
_[-'If(a,u)(z a)+gf(a,u)(z a ‘Z{?_d %?a,w.
+J Hence the denominator of II (xxix) can
II (xxvil) —(z-a)F (7w = fa, w be written as

227y N A _ 4-2 ¥
+(Z-0)A§(Z L,_o_._;_)f(ﬂ,u)(i’ ), II (xx=x) Ea(u—&)afi-éﬁ(u-g)3+~n +(z-a)(:ﬁ'

4

o A2
[ S (F- ?
+f,'(u—8)+~~)+(2—a)‘§-(—,zﬁ fcaw,
Again at z=a ,

fiz wW=F @w+f(auE-a+ - II (xxx1) From II (xxvii)

Hence - (z~a)f'(2,u)= -é-f3'(u~£)3+ forms

IT (xxviii) ~(z—-a)£(z,u)=('z~a)f(a W containing orders higher than 3 in #+ .

Led

II (xxx) because of IT (xxxi) will be-
f(a w), come
Ts S

5 -1 )+-—(u—£)3—- G)j’(u £f+,twm4

)

Hence from substituting the values

of IT (xxvi) and II (xxviii) in %x,&i_ containing orders higher than 3 in t .

—g::’-——))—j% we have, or
§ " Liung?] f'-fa}
T3y~ ——(u— —~
II (xxix) o0 . s U+ g lu8Y [~ 2 o
f § 2 - fawE-a)
@,u) +{#-a) S\ B a1
(7~ )a_ = v . containing orders higher than 3 in t ,
fw+E-a) 3 t2-a)l ” a jc‘ (. w
‘=' The numerator of II (xxix)

=f@ i)+ terms containing orders

du
Comsider Gz &t ¥-=a for cycles higher than 6 in £ .

of order 3 beginning with (¥-a)?
Hence (z-a)u'

z-a=1t
1.0. u—-‘:ﬁ.,t-fazt’-i-nv a,%0 - Fla,u) + terms u‘rdﬂl}mmgd‘tdm.s highen thom 6 ant
’ B g Lou- 6 5’ [£,~ + Rrma colaimin
This case will occur when 2 3 T oduns &Wﬂa/namt
I
f=0, fi=0. fumo. fiko. 0. 2 [f(a,u)-r Act+Ante ]
= Py T
From II (xxix) we have, fa- -4y E+—3’—(%__J;v7 u-8)+ By £ 2]
-
oo -2 6
(7F-o)u'= ﬁn,u)-b(‘?-a)zZ(é‘ '1!:')-;(“ ] =2 H“‘"?”(isi;ﬁvt* 1[“ ?'?ﬁmgj
_ ) (u
faw+E-aF @E=a* "4
1 ( 2= )4 f(a.u) Qf(a u)[l—'i( e)""{ht: B
'f3 (u- ﬂ)
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In the numerator, neglecting all
terms whose orders 'are equal to or
greater than 5 in t we have,

. _
E-au'= ?f(a,u)[-l—é(-ﬁ--—!)(u—g)]
£ (u-2>»"
Hence
fo _fi
¥ - 2fewli-3lE-Fe-s)
’ i (u-63(z~a)

3
Since fa, u):é j;(u--& + powers of

( u-% ) higher than 4, D],  1s

finlte at all other cycles of the mule
tiple point and is also finite at ‘all
other multiple points in the finite

part of tha" plane.. Similerly Dz 2

can be obtained from

JC(Q.LL)z [l*'é“ ;i:,(“”ﬂ’_]

Z-u'=
U= g g

On simplification we have,

3 __4f(aw)
Ds,a sy

£y @E-a)(u-4)*

Similar results for Di,x » 6tc. are

obtained. It is to be noted that the
principle parts D;,3=D1,,=D:1= =0,
Hence

w-TI,,~33 D= 38Dy, - SE D,

1s a rational function finite every-
where in the finite part of the plane
= & rational Tntegral function

T(EU) o
NOTE: -

Similar results for roots of F(a.u)
=0 of multiplicity greater than 3
may be derived by using the theorems I

to III.
PART III

EXTENSION OF THE RESULTS OF PARTS I AND
I C 3 &) & Q

These results do not add anything new
to those already discovered in the case
of Algebraically Closed Fields with cha-
racteristic zero, but the method of de-
riving the results from Parts I and II
1s new. It is for this purpose that we
add a note to this part which will be
helpful in applying the results of Parts
I apd II to all Algebralcally Closed

Fields.,

In the fleld #(x) we can def
the derivative of g polynomial tne

_— n ~1
f(x):().ox +a,x"+“. +Qp X+ Ay

as
4 n~i
f(x):*rlaax +o 4 Qg
/
'gl)us f(x)i 1s the coefficient of 4 1in
6 expansion of ( 1
op° gxpanst Fix+4) n powers

faxrty=foo+hAfx+ - + £,

This definition 1s therefore equivalent

to [tf(?uﬁ)—f_(z)
+ "dh=0

The operation of derivation as defined
above is easily seen to satisfy the
usual relations,

{foo+ 3(1)}’-—— fexy + 9%
{for-de} =Fbo-Joo + - fey

f)
Defining the derivatives of 700 as

{_l_ farh) _ fx) }
Al 9(x+h) g Jp=o¢

we have
ol [ amfﬁxm-ﬁn%f@ﬂx_@;@ﬁﬂ
g £ Jx)g(xth) 4
=0
. 30 flo- fegtw
N 907

Also we have,

[JC( 9(1))J/= [le(3(:<+&> ;Mﬂ]“=o

F[9eers) ~F[300) gt h)—3) .
[ gk — 300 h =0

- #3039 9.

Again we can also deduce from this de-
finition Taylor’s theorem for polyno-
mials viz.,

fexrfy= Fxy+hF o+ -

Newton'’s Polygon could also be conat-

ructed without any difrficulty for the

new Algebraic rield. Deducing results
similar to Parts I and iI follows as a
matter of routine,
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CHAPTER 1II.

RIEMANN ~ ROCH THEOREM AND ITS
T APPLICAMIONS.

INTRODUCTION

The Arithmetic Theory of Algebrailc
Functlions of one variable gave rise to
a great number of variety of proofs for
the famous Riemann~Roch Theorem. Most
of them are long and involve great de-
talls. The theories differ greatly in
detail but have in common as central
features the construction and analysis
of the rational functions which are the
integrands of Abelian .Integrals. The
object of the present chapter is to
give a simple and direct proof based on
the theory of analysis. No elaborate
appeal is therefore made to divisors and

their properties as in Bliss’s 'algeb-
ralc Functions’,
et FEWEUW+Hu™ % f=0

be an irreducible monic slgebralc esqua=
tion ( f& are polynomials in % with
coefficients in the fleld of complex
numbers # ) defining the field of ra-
tional functions.

I. FUNDAMENTALS AND NOTATION.

it a, fen 18 a sclution of
f(z,ury=0 then there exiats a for.
mal power series, solution of f(xw=0
in the form
?*Q’,tu/
U—E= £ T(Ag +Ugpy T+~ )
Qg %0,

Such a pair of functions we shall call
a place representation of the Riemann-
Surface of the algebrailc function.

This was already stated in Chapter I.

YVALUE OF A RATIONAL, FUNCTION

AT A PLACE.

Let Rz, u)e £(zu).

Let a place T be given by & place
representation
E=Zo+ £ :’

U= Ue+ X 7 ,t/l_‘-
In virtue of the subatitution of this
place representation we have,

R w=t b
where FE(+) 18 a power seriaes in #£
and FE(0)%0 «
of TR(z w) at the place in question.

We asslgn uniquely the value of R(Z u)
at the place T as follows:=

We call P/v the order

- 33 -

o 4 Pso
R(Tr)={ o i P<o
E0) ¢ P=o0.
If v={ the place is called regular,

otherwise #ingular. For any given al-
gebralc curve there are only a finite
number of stch singularities,

It is seen that for all the branches
in a"cycle a rationel function has the
same order. ILet there be /. cycles of

Vi;*-~, Vv, sheets each at z=a of the
Riemann-Surface, Take »n  numbers T,
--~, T, of the type 4 and denote. this
set by (G ). Such sets assigned at dif-
ferent places .of the Riemann~Surface
are denoted by ((v)) . The orders of

the rational function 2

2ix &t the cy-

cles of the Riemann-Surface at z=a
are denoted by u,.--, x4, vreaspsctively.
Complementary order-basis at z=a are
numbers (¥) such that

IIT (%)
~+T=p-l+5at finite places z=a
T+T=#+I+—)—‘; at #=00
(iven an order-basis ((T)) at points
of the Riemann-Surface, in general
there alweys exist* rational functions
Riz.u) € £(2,u) which have orders
equal to or greater than the given ((¥))
order-basis at all places in question
and greater than or equal to gero every-
where else. Denote by A; the maximum
number of linsarly independent rational
functions of the set, and by M,_.__.g

the maximum number of linearly inde~-
pendent rational functions constructed
on ((v)) everywhere and (T—3;) at one
cycle.

Similarly we define /V¥ and N,-s+_£_

is the complementary
() °

where (T))
order~basis to

II. PRELIMINARY THEOREMS LEADING
UYPTO RIEMANN=-ROCH THEOREM.

THEOREM I.

The maximum numbsr of linearly inde-
pendent rational functions bullt on a
negative order-~basis (o) is z->X¥ TV .

PROOF: ~

Let the negative order-basis at a
multiple point M be T.,---, T, and let
Vi,---, Vo be the cycles, We can re-
present the order-besis by means of a
civisor Q in the sense of Bliss as

TV S Tath
Q=R R or putting ;=T ¥



Q=P,‘f~- p:'b

Let the multiples constructed on this
order=basis be

N, M2, My, s

Take any one of the multiples say 7,
and out of the remaining multiples
select a multiple 7%, such that

CITZ, +CaM, 0

{ c,and cs e% and not all zero),

if G+ C2aMy =0 s then the maximum
number of linearly independent rational
functions is 1 - then out of the remain-
ing multiples choose 7; such that

CiMy+CaMa+CaM,y #0,

(1e CTy+CaMy+ 3N, =0 then the
maximum number of linearly independent
rational functions is 2, Cs€# and
not all zero.) <Continuing this process
of selection suppose we come to the
stage where C,7,+Ca7at "~ *+CayMa.i¥0
and CiM,+CaMy+ -+ +Caflxn =0 (Csete
and not all zero). It is to find the
value of A o First of all we shall
note that if 7, M, .--, N, are multiples
then MN=c¢7+ +* +Ca%la is also a
multiple, where Cs are constants

{ef ).

Let the following expansions of the
multiples in terms of the local para-
meter t at the varlous places P.--- P.
of the multiple point M Dbe considaredo

At P;
A+l
M=y i, * +a’~n4 P
[?:‘,"'.1;
p=1,--2.
then at P;

A-
Colr=Cre Qpp g, 0, # ERRE

and

LH
1= ;Cuﬂn=z-ckann,); £+

In order that 7 may have no orders
<o at P; we have,
k=1, A,
EC” Qp, k. 448 =0 [=~0, 1, - (=d:+1)

Conditions that 7 may have no orders

<0 at &ll cycles P,,---, P, of the
place are,
kR=1,---, 2,
;CkaM,k,A.-fl:o {1=0, 1, “"-(—A‘HJ,
i=1,2,--.n.

Hence the total number of conditions
that M may have no orders <O gt
all cycles of the place 1s - = 4,

1=, -, R

Similar conditions exist at all the
other multiple points M of the Rie-
mann-Surface. Hence the conditions that

7 may have no orders <O at all mul-
tiple points of the Riemann-Surface are

IIT (11)
R=1,", X
L=o0, «on (=diwt)
%C"’am R, 8+ i=1,2, .
M huns Hhrnough oll
the mulbiple points

Therefore the total number of condi-
tions that Y may have no orders <o
at all the multiple points of the

Riemann~Surface 1s —;{’Z' A; .
k3

The least number of conditions imposed
on Cg that 7 may be zero is -5 4;
+ 1 . The number of constants Cs
in III (11) 1s A , In order that it
may be possible to have values for Cs
from equation III (1), not all of them

zero, it is necessary that

1-2—-—%42/’;*1

But the maximum number of linearly in-
dependent multiples 1is (A ~1) °

Hence Ne = 2%
T

THEOREM II.
(NT")‘/' ~NT)+(N;~N$+_L_):: l

PROOF: -

If the number of linearly inde-
pendent rational functions built on (D)
order-basis is £ , then the number of
1inearly independent ratdonal functions
built on ((T-4») 18 either equal to

£ or Q414 o That is p, =and

N’c__}; differ by one at most. For

suppose
IIT (111)

‘k(z'“)- Rizw, - Py(zw), Py (220)

are (£+1) 1linearly independent ra-

tional functions built on (T~%))

then we can always choose one out of
C(L+1> functions, which 1s not

bullt on  ()) o Let it be P .

- 34 -



It is possible always to choose £
constants ¢,,C;,+».,¢; (not all zero be-
longing to k , the field of complex
numbers) such that

‘#v'*c"#’m st @*CJ‘E“

are functions built on (™) . If
these £ functions are linearly depen-
dent,; then 1t follows that the ({2+1)
functions in III (1i1) are also linearly
dependent, which 1s a contradiction.
Hence it follows that if A,.={¢ then

NT_.‘} is at most equal to (L£+1)> .
Similarly A/'_F-N;;*%:.o o L.
Hence

ITI (iv)
Ny =No) + (M =N, 1)= 0.1, 02 2

case 1,
SB30 e

(N-C-LV—NT)‘* (Ve ~Nz.p) %2

For i1f III (iv) were equal to £ then

(We_g, =No)=1
and

(N—? -

'?~'+—,E)='1 .

This 1s possible only 1f there exlst
rational functions constructed on

((t-1%)) having orders sxactly -5

at the excspted cycle, and those con-
structed on (%)) s having orders

exactly T at the excepted cycle.

Let R'r—-b

rational functions which have exsct

and Ry be any two such

orders T~ and T at the excepted
cyole respactively, Consider the re-

sidues of the rational function

Fle.u) = _El‘:.z"._.}zf

wl® 1)

. [F(s, uye kez u;)]

The expanalon of F(7w) in terms
of (g~ay at finite places are,

ITL (v}

- " i+
Fzu) = o,H_"‘_ (z-a) ¥

clrd
+ a—u% (B-a) 4.

for e ordon of Fz.u)an

'r+“t’-/£=-1+,—£ frem I G).
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at infinity,
1
= Ly*Y
TIT (vi) Flrw=6., &) +d.3by
o (Refer I ).

at the excepted cycle,

ITI (vii)

et
Flz.u)=Cy (203" Cppp (20D P4 -nn
C, %0

(Refer m(12)

The residue from III (v) is O , aend
the residue from III (vi) 1s 0. F(z,w
gives rise to a residue (, (Refer
expanafon III (vil)) at the excepted
cycle and if the cycle contains V
branches, then the sum of the residues
of  F(Z w) is Vv (,=0 . Since Vo

Cy=0 , which i3 a contradiction
contradicting III (vii),

IIT (viii) Case 2o
(Vg = Ne) + Nz - N7a )0

For ((EN=(0) .

{a) This result III (viil) is easily
proved for ((TN= (W)) , since

/V?el. N,_{__'Tv,_r.c (M’r-;‘;_NT)z
not negative.
(&» <

(b) Result III (viii) for
W)

From the set of adjoint orders to the
given set of orders we may pass by a
geries of steps each individual one
which involves an addition to the order
of coincidence of the function with the
branches of one and of only one of the
cycles, the addition to the order belng

14 in case the cycle in question be
the one of order v . Every step in
the process just described implies a
further condition on the coefficients
of the function, and only one further
condition as ig evident, for the order
of a ratlional function of (W, %) with
the branches of a cycle of order Vv is
always measured by an integral multiple
of /44 . For this explanation in Case
2 (b) I am indebted to J.C.Fields. He
makes use of this idea aa the very
foundation for his book ‘Algebraic
Function of One Variable’, almost at
the very beginning of the book. Making
use of this result we heve III (vil)
for (BN <W®m} ., Hence IM (iv) %0 .
Therefore from . Jases 1 and 2

(N-r-# =N )+(Ne ~Ngey)=1 for (IR ),

i



THEOREM III,

To show that any rational function
can be made to have order-basis (™)
< (o).

METHOD OF GETTING THE DESIRED FUNCTION.

Let Rf. be a rational function built

on any given order-basis ((£)) .
Then particular values can be ascribed

to the Nz arbitrary constants in R?« s

in such a way that the resulting specl-
fic function R(=,uw) 18 not zero
identically. But the orders of the spe-
¢ific function form an order=basis ((o))
such. that T=(#,-6) are elther
gero or negative, The general rational
function bullt on the basis ((¥F)) 1is
_R'i « It is also seen that Ng
R 1

=Nz .
Hence Theorem II,

I1I. RIEMANN - ROCH THEOREM.

Ne know from Theorem I.L that
(N't—-;-; —N‘t) +(N; - N:!.-.,..{.‘.‘) =1,
Applying it successlively we have,

IIT (ix)
(Ng=Ne) + (N5 = Ng)=ZL(T-2)V

where
M=l + 5 at finite places
t+Z =y end

}A+s+-,l,- at infinite place.
Put #=T, #=7T 1in the equation III
(1x) then,
(Vo =N,) #(Ng =N)= S5 (x-Bv

Hence the Riemann=Roch Theorem,
N+t SZrv=Nz+E5EsTV.

IV. APPLICATIONS OF THEOREM II.

1. To demonstrate the existence of
Abelian Integrals of the 2nd and 3rd
kind in a simple way.

Suppose ((T)=((0)) . Then the
ofders ((r)) are adjolint.

Theretf'ore Ne=p

( b 1s the genus of the funda-
mental curve),

Also Nz=1
and Nzyt=0
Applying Theorem II we get,

Neor =p

Hence v

THEOREM IV (1)

Decrease in the adjoint order-basis
at a place by a minimum order quantity
does not affect the number of linearly
independent adjoint rational functions.

THEOREM IV (11)

Existence of the Abelfian Integrals
of the 2nd kind.

PROOF: -

Change the order at a place by twice
the minimum quantity.

Theorem II then gives
Nao 2 = W)+ Nz =Ny 3)= 2

But
N’t‘_' P,N;'—'—' , and A/:F,‘_%=O

Therefore
N‘t— %_ = P+ /.

There exist rational functions R(Z.w)

€ R(z,u) which have exactly v-3-
order at the excepted cycle., Its ex-
pansion in terms of the element (z-a)
is

S -
R(wW=Au2-0) % A(z-a)"
+ highen powens of (2—a).

A;=0 since 1t is the only residue
of the rational function and A.%0

-L
Now (R dz= é:"(r—a)”-r Righer powens of
-y

(z~-a),
This integral has poles only and no

logarithms; hence it is the Abelian
Integral of the 2nd kind.
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THEOREM IV (111).

Existence of the Abelian Integrals
of the 3rd kind.

PROOF: -

Reduce ((T))
ces € and Ca
minimum quantity.
we have,

at two different pla-
the orders by a
Applying Theorem II

(Neo g b =N )+ Wz ~Nz, 4o )= 2
Since
N?=P, N—F=1, and NY‘*T""'Z!;?'O

Hence
L =p+]
T-4-% =P

There exist rational functions R(Zu)
which have exactly the prescribed orders
at the two excepted cycles. Their ex-
pansions at these excepted places are at

C - L
Rz w=Ag(Z-a) +A,(Z~a) "+ powars

of (2-a) higher than ~ 145 -
A %0

at Cg
!

R(z,u)= —A,(z~a$'+ B,(z-oj” PN

and their integrals are,

.c[ Rdz=A, log,(?."aﬂ VA.(2~a)T'+ cesy

4
Jc. Rdz=~A, Iog (Z-a)+y, Bl(z-a)”b, cen
2

These are therefore Abellan integrals
of the third kind as they have no polea
but logarithms.

2. A method for investigating the
reducibility of the fundamental

equation,

Evaluate the expression,

I1I (x) (N-r-¢" No)+ (Vg --N,-;.,{,)

for any order-basis. The fundamental
equation is reducible or irreducible

according to the expression III (x)
=1 . The proof follows the lines
we have already indicated.

) Recelved December 31, 1949.

€) M,sc.Thesis in the University of
Cambridge, 1946,

1) Algebraic Functions, U.A.Bliss.

2) The theorem is still true 1f instead
of 4; and ~n; belng prime to
each other are such that the
highest common factor of ~n: and
all the exponents 4:; in the
series for (u-+4) s 18 one.

3) The perpendicular distance ¢

(0,0) on the line

from

TL;OL*A:B=VA;—(/Z.+-- R AL (B 2N
is given by
,/T-‘f"f'-TFfVA; R Y W VIEN CR A *4-‘—""3,
Jet («:. ;) Dbe any point in
the (x.g) plane and p’ be the
perpendicular distance from («,. B8)
on the given 1line then
Prznzofﬂ' N

The condition that (&, B) may

be on the same side of the strai-
ght line as the origin is p'< p
i.e.

Ry o+ B VB (Mt )B; 4 (8,748, Y0

Hence the conditions stated above.
4) dor example 1f the given order-basis
((v1) at poirts of the Riemann-Sur-
face 1s positive or its sum is
positive then no rational function
R(z,w) € R(z.u) exists. Or
the only function in this case is

zero.

- 37 =



BIBL1OGRAPHY.

CHAPTER I.

Memiographed notes of Lefschetz
Algebraic Geometry 1936-37,
Theorem 8.2, page l4.

F.K.Sehmidt, Math. Zeitschrift,
{1936) page 415.

Z. GeheBliss, Algebralc Functions,
page 44.

teAsBliss, Algebralc kunctions,
Theorem 25,1, page 63.

41.

CHAPTER II.

1, “.beatty, The Derivatives of an

Algebraic Function , Transactlons,

Royal Soclety of Canada, Section
111, 1931, pp. 79-82 4

2. S.Bsatty, University of Toronto
Studies, Mathematical Serles No.
I.Q

3.h,Bliss, Algebraic runctions,
AJMcS.Cnll, Publications (1933).

- =aatty, Integral Bases for an
Algebraic Function Fleld ,
J.LeM. Soc. Vole. 4, Part I, ppe.
10=-17,

A asae, and Feo¥.Schmidt,

Wocl: eine Begrundung der Theo-
rie der honeren Dirferential-
@uotlenten , Crelles Journal,
177, S.215 (1987).

. D.Teichmilller, Differential-
Rechnung bel Characteristilk
Crelles Journal, 175, S 89,
{195¢).

*, d.hasse;

P

Tneorie aer Ulfieren-

tiale in algebraichen runktionen-

Korpern mit Vollkommenen Kon-

atanter Lorper , Cralles Journal,

172, s 55, (1935).

“,lefschetz, Algebralc teometry
Vols. 1 and 2, Princeton Notes
193637, 1937-38,

CHAPTER _III.

Nedekind and Weber,
Theorle der Algebraischen Funke-

tjonen einer Veranderllchen .
Journal fur Mathematik, X cll
(1882) pp. 181-290,

Hensel, K, and Landaberg, G.,
Theorle der Algebralschen HFunk-
tionen einsr Varisblen und lhre
anwendung auf Algebralsche
Yurven und Abelsche Integrale ,
{1602,

*, J.C.Fiela, aAlgebralc Punctions of

a Uomplex Variable, (1906).

4, H.¥.E.Jung, Der Riemann-rochsche
Satz Algebralscher Funktlonen
Zweler Versanderlichen , Jahresb.
Deutschen Math.-Ver. 18 (1921)
Bel, 267-339,

J. Cerields, Complementary Theo=
rem , American Journal of Math.
-1, XXXII (1910) ppe. 1-16.

-

s

ic.

15,

1&.

17'.

18.

20,

21.

- 38 -

Hensel, XK.,

JeColFlelds, Direct derivation of
the Complementary Theorem from
Klementary Properties of the
Rational Functions , Proe. 3,
International Math. Congress
(1913), ppe. 312-326,

JeCoFlelds, On the r'oundations
of the Theory of the algebralc
unctions of one Variable ,
Transactions Lond. Phile. Soce
tA) 212 pp. 339-373, (1913),

S.Beatty, Derivation of the Com-
rlementary Theorem from the
Riemann-Roch Theorem ,
american Journal Vol.39, pp.257-
262, (1917).

Ko.Fensel, Arithmetische Theorie
der Algebraischen Funktionen
Eneyklo. d. Math. Wiss,, II C.
5, 533-650 (1921).

S.peatty, The Algebraic Theory of
Algebrelc runction of one
Variasble , L.M.S. Proc. (2)
20 pp. 435-449 (1922),

U.A.B1liss, Algebraic tunctions
and their Divisors ., Annals of
Math. (2) 26 (1924) pp. 95-124,

(reroBliss, Algebraic Functions,
(1933). ..

¥,Klein, Uber Riemann’s Theorie
der Algebralschen lunktionen und
ihre integrale, (15u42).

Appell and Goursat, Théorie des
ronctions Algébriques et de leurs
integrale, Gauthier-Villars,
Paris 1895, revised by Fatou,
1929,

Fascal, vie Algebraischen Funk-
tionen und die abel’ schen
Integrale, Repertorium der
hoheren Mathematik, revised by
Schep, Teubner, lelpzig (1900-}.

Nirtinger, Algebraische Funk-
tionen und ihre Integrale , sn=-
cyklopadie der Mathematlschen
Wissenschaften, 11 B 2 (1901),
PP, 415175,

driny Noether, Jie Arithmeti-
scrnen ‘theorie der slgebraischen
Funktionen einer Veranderlichen in
itrer Eeziehunyg zu den uUbrigen
Theorien und zu der Zahlkérper-
Theorie , Jabresbericht der
Deutschen Mathemetiker-Verel!nigung,
X¥VITI (1919) pp. 182-203,

Neue Begriundung der
Arithmetischen Theorie der Al~-
gebrelischen runktionen einer
Variablen , Mathematische
Zeitschrift V (1919) pp. 118=-
131,

Jung, binfihrung in die Theorils
der Algebraischen Funktionen
einer Veranderlichen, Berlin
and Leipzig, (1923).

Jung, Algebralschen Funktione?
und ihre Integrale , Pascal’s
Repcrtorium I 2 , Teubner,
Leipzig (1927).

refschetz, S., Algebraic Geometry,
2 Vols. (1936-37; 1837-38).
Princeton Mathematical Notes.





