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SOME GAP THEOREMS

By T a t s u o KAWATA a n d M a s a t o m o TOAGAWA

.̂ If a trigonometric series with gaps

K

is a Fourier series of a periodic bound-
ed function, then the series converges
absolutely, that is

(1)

This theorem is due to S.ΰidon and is
well known. We shall prove in § 2, that
the similar theorem is also valid for
non-harmonic trigonometric series, which
seems us to be not yet published. The
idea of proof is to use an elegant de-
vlβθ which is used by Hartmarf^in proving
the divergence of (1*1)

when Z ( K ) =
We consider the more general series

«'*> Z , C*.cj>(λ
n
X),

n =-1

where fix) is a periodic function
with period 2% and satisfies some con-
tinuity conditions* Mean convergence
and almost everywhere convergence of
(l 2) were discussed by several writers*

M Kac nas proved that if { λ
n
) is an

increasing sequence of integers which
satisfies Hadamard gap condition

and

λ
ni
.,/λu i λ

ΣLl^n- <X>

then the series (1*2) is convergent
almost everywhere in ( - cx> , oo ),
and is Π-

A
 -mean convergent in every

finite interval, provided that (fix)
satisfies the Lipschitz condition:

= OΠx-x'f),

uni formly

We shall prove in J 3 , this theorem
also holds even if the integral cha-
racter of λ*. Is not supposed* In the
proof of mean convergence, we shall
again make use of the Hartman's device
above mentioned, and the almost every-
where convergence then can be proved

in quitely similar manner.

JL theorem .l Let the series

(2.1) Σ
i
ί

of a. bounded
then

be. a_ Fourier serie
function

(2.2) Σ> Uαj

is convergent.

Proof. As usual, we may restrict
ourselves to the case of purely cosine
or sine Fourier series. We now treat,
for example, the purely cosine series*
Let

(2.3)

for any measurable set E. Then for
fixed k>o

 t
 <rh.(E) is a non-

negative completely additive set func-
tion of Lebeβque measurable set on the
X -axis and moreover

flosλx
Zoo

J sikλx,

Thus {fl cos λfcX. , /57 slnλκx}
is an ortho-normal set of functions in
( - oo, oo ) with respect to the measure
<nv(£) when lλ

κ+)
 -λ

κ
l4lι, λ

κ
^k.

Since (2.1) la an almost periodic
Fourier series, we have

So by Riesz-Fisher Theorem on orthogonal
series, there exists a function f *(x?eL.̂ ,
L.

α
 meaning here the class of functions'

squarily integrable with respect to
in ( -oo, oo ), such that

.̂ 5)

From (2*5) we can prove that

V J if'xJ-
τ
 t

as n ->

- 19 .



where oc-;JL7C./A ^ Hence if we assume

2 TtZ A, 9 then j-*(x) is an S
1
. α. ja.

function and we conclude that f*~(X) £
almost everywhere* Thus we get from
(2*5)

A«/

3> Let <p(x) be a periodic func-
tion with period 2%

9
 and suppose that

<p(x) satisfies the Lipschitz condi-
tion of order <*. , o< « < ) which
we denote

We consider the series

from which it results that

- σo

= //m. I 2L aκcosLx.cosλ»ιxd(π

ox,

(2.p a* «-£

Then we can follow after Sidon's well-
known method to prove our theorem Let

(2.8) p. (x) = /
I

2,

where A: vanishes except the case
indices j I Θ is of .the form

i λ
K/
± A

Λi
 ± .. ±λ/<^.

Returning to the series (7), take an
integer r such that λ

r
>3,

put

and let

t ^ -

where t
κ
 = sign α

κ

since μK+ΐ/p-*
obtain

λ
r

Then

, we

ύ M

Making , we get

which results, summing up with respect

to 5 ,
oo

This completes the proof.'

When λ^ are integers, having
Hadamard gaps (l.δ), (3 1) is conver-
gent in mean L,̂  in (0 2π) and fur-
ther (3 1) is convergent almost every-
where. This is due to M Kac (

5
) . We

shall prove the theorem for the case
jλ*,\ is not necessarily a sequence of
integers

Theorem 2. If <PM is. a periodic
function which has the mean o or

= o and belongs to Lip

i) and ί K) $ κ^.2,-
is a. sequence of positive numbers sa-
tisfying

(3.1) λ^/λ* U > 1
;

then the convergence of the series

implies the convergence in mean L^ of

C3.4-) Σl
 c
* <f ίλ

κ
x)

In every finite interval and also imp-
lies the convergence of (3.4) for al-
HLQs_t all x in c-oô  oo)
F?pr the proof, we need the following
lemma •

Lemma 1. Under the conditions of
Theorem 2

a
 we have

<Γ(χ ) •f

and_ /) is a constant independent of
dj and K

Let <pΛ) ^ Σ f ^
le t ίίrvί*) be i t s n-th partial sum, /
and le t σ^fx) denote the n-th Pejer
mean. Then by (2 6), we have
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for fixed k , from which we have

(3-6) /"fίλ z) f α
κ
JC)

ς

The right hand side is now equal to

21 ( &>
K V - 1

' " v. 7

I rλ. - 5 λ
u
 I <. 1

where \Θ
YS

 ι
 $ ^ > \ \rs \ ± \ .

Let j < k * For given integer 5 ,
there is at most one integer r which
satisfies the inequality ffλj- sλ* l< f .
Consequently w© have, by the Schwars
inequality

ΣL i Q c^j I / (prλ x; φcλκx)acrίx)\

H —} °owhich is tend to zero as m ~

by the assumption that 2L 'c
y
/

t
<tχ5.

Similarly every positive integer ft ,
we have

' • • ; " " " - - 0

that is,

"7 A X. ••

"2λκ/λj

Ju+1

But

which is, by Bernstein
/
s result that

φ
{ χ J
 „ <τ (

X
j - o in"*) holds uniform-

D being a constant independent of n.
Hence we have by (3 7)

<λ<Γ(χ)j ̂  /J α
κ
/ λ ;

Λ
 -

< A λ

which proves th© lemma

We shall now prove Theorem 2
β
 We have,

by Lemma 1*

Now we take any two numbers α and b

( α< b^ > and v/e choose k. such that

! k α. I ̂  I k b I < * A
 r r h θ n

α < x <

V/Θ have

By (5.8), we get

C3.9> / I 2L

in other words the series (5.1) conver-
ges in mean U^ in every finite inter-
val.

The almost everywhere convergence of
(3.1) can be proved in quitely similar
manner as in Kac

;
s paper by using the

fact (3.8), and the proof 5s omitted
here.
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e
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