KODaI M4TH. SiM. REP.
Nos. 5-6, Dec., 1949.

SOME GAP THEOREMS

By Tatsuo KAWATA and Masatomo UDAGAWA

1., If a trigonometric series with gaps
(1.1 3 (a, cosnx + b sin nex ),

nuﬂ ;)\>1

is a Fourier series of a periodic bound-
ed function, then the serles converges
absolutely, that is

Z( laK|+lb“!) < oo,

1)
This theorem is due to S.sidon and is
well known. We shall prove in § 2, that
the similar theorem is also valid for
non-harmonic trigonometric series, which
seems us to be not yet published. The
idea of proof 1s to use an elegant de-
vise which is used by Hartmanin proving
the divergence of (1l.1)

when 2o (ad+bo)=00
We consider the more general series

SIS N g ),
n=1
where ¢@(x) is a periodic function
with period 2% and satlsfies some con-
tinulty conditions., Mean convergence
and almost everywhere convergence of
(1.2) were discussed by several writers.

M.Kac has proved that if {A.} is an
increasing sequence of integers which
satisfles Hadamard gap condition

(43) Anu/An 2A D1,

and
(4) 3 (af+b2) < oo,

then the series (1.2) is convergent
almost everywhere in { —o00, co ),
and is [, -mean convergent in every
finite interval, provided that ¢(x)
satisfies the Lipschitz condition:

I?(x)— <P(x’)| = O(Ix~x’l°‘), o<,

uniformly,

We shall prove in § 3, this theorem
also holds even if the integral cha-
racter of A, 1s not supposed. In the
proof of mean convergence, we shall
again make use of the Hartman’s device
above mentioned, and the almost every-
where convergence then can be proved

in quitely similar manner.
2., Theorem 1. Let the geries

(2.1) ‘;Z.: {AucosAix + besinix),

Aue/ A 2 A> 1

be a Fourier series of a bounded S%*a a.p-
function Fixy then

(2.2) 33 (lag +1bd)

is convergent,

Proof. As usual, we may restrict
ourselves to the case of purely cosine
or sine Fourier series. We now treat,
for example, the purely cosine series,
Let

(2.3)  GE) "[;_*—’t*/z dt, hyo

for any measurable set E. Then for
fixed h>0 , O6w(E) 1s a non-
negative completely additive set func=-
tion of Lebesque measurable set on the
X =axis and moreover

@4 [ hx dago= (1= B1), ich,
=0 , x> Ill,)

SILAL Ao (=0, by
J; (3 f"’”"‘“’"j .

Thus {Vvz cos Aux , JT sinA«x}
is an ortho-normal set of functions in
( ~00, co ) with respect to the measure

Th (E) when [Ax, -Axl2h, Ak2h.
Since (2.1) is an almost periodic
Fourier series, we have

2ol adf<oeo,
So by Riesz-Fisher Theorem on orthogonal
series, there exists a function f¥wyel,
L, meaning here the class of functions

quarily integrable with respect to
6 (E) in (-0, 0o ), such that

(25) 'l’"— J [f(z)..Z:.a,‘wsl X‘ d

= ‘im Z ,qxlz-":‘o.

n-300 k=ntj
From (2.5) we can prove that
fto
u. bf!f(x)——Za,tcos;(lealx o
as n- oo,

19 -



where o&::m;//\,m. Hence 1if we assume

2w2h , then f£%x) 1s an S%a
function and we conclude that f"’rx) L¥x)
almost everywhere., Thus we get from
(2.5)

I. fl - ; /\. l =
m fx ay cos X{"do; (x)=0
] () Z=; 3 K W (X) =0,

(2 2h)
from which it results that

oo |
f Fix) cos Am T d gy,

- 00

= //'m.f Zaxcosz\ zco.S/\mxda;L

neo oo K=/

o0
= am.f o052 x daz
Yoo )

o

(2.7)  Qm = "/f-{z) cn.sl x do'(x)

Then we can follew after Sidon’s well-
known method to prove our theorem. Let

‘ a .
(28)  Px= 1+JZ}‘6- o5 jX,

«
where AJ-) vanishes except the case

indices jg ©® 1s of .the form

£ A £ Auy 2oeee £ Ak, .
Returning to the series (7), take an
integer r such that AY»>3,

put
(s)

and let
P“’m l‘/‘ (1+e cos (o),

where <&« = sign a « Then

Kre+sS

since ,um //‘L(‘) 2 AV > 3 s We
obtain

L oo
(2.9) Zl‘akf'#S! =ff(1) FZ{S)(X) aaq,
K=t Yoo

(s)

oo .
éM‘/;ol ’DL(S)CI7/4¢Z =M:/mPL (x)do"(x)
:M_

Making (e o We get
(520, 1,22 7=1)

2l a5l €M
K=/

which results, summing up with respect
to §

0o
ZIdn((OO.
h=y

This completes the proof.

£ = fl,ms , k=1,2,... 0£5 57y,

3. Let ¢P(xX) be a periodic func-
tion with period 2%, and suppose that

P(x) satisfles the Lipschitz condi-
tion of order X 4 o< x <1 which
we denote

Cf(x)E-LLPo() o<x &1,
We consider the series

(3.1) ch(})()\ x),

n=|

When A,  are integers, having
Hadamard gaps (1.3), (3.1) is conver-
gent in mean L, 1in (0.2m) and fur-
ther (3.1) is convergent almost every-
where. This is due to M.Kac (°) . We
shall prove the theorem for the case
{An} 1is not necessarily a sequence of
integers.

Theorem 2. If ¢P(x) 1is a periodic
function which ‘has the mean 0 or

5, @) dx = 0 and belongs to Lip

o~ (0<o £1) and Ay, K=1,2,
is a sequence of positive numbers sa-

1sfzi§5
(3.2) )\kf,/’\xéx> 1’

then the convergence of the series

(3.3) ic’*

K=y

implies the convergence in mean LJJ_ of

(3.4) Z_, Cu @ (Aux)

in every finite interval and also imp-
1ies the convergence of (3.4) fo for al-

most all x 1In (-o00,00)

For the proof, we need the following

lemma .

Lemma l. Under the conditions of
Theorem 2, we have

—oli~k|
o8 lj q)uz)?u 1) dea)[£AA

2

Jr k=12,
where
t/2)
- L ﬁ”"_zi_,
) T t2/2 5

and A 1s a constant independent of
j 8and «

e
~—

Lot - PX) ~ % (apcos ny +basinnx)

let  Sn(x) be its n-th partial sum,
and let oOn(x) denote the n-th F‘ejer
mean. Then by (2.6), we have

oo 2
lim, 5 | P (Akx) - Sa (Ax) ] do(x)= o
oo

n->00 2
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for f$xed K , from which we have

(3.6) .fmcp(Ajz) P (Ae%) dox)

= lim /s (A x) Sy (N 2) L 0(x).

m-300 J

The right hand side 1s now equal to

[ 0y
m Z.. {a,‘cos /\jnl+!)n8fn)j"-1}

nIoo Lo

3\

< (ancos \unmx + b, smkxn;()d_,m(,
n= 1

= Z ( Bys Ay a5 + ’{r.s Lr bs )‘,

|vk}.~5ku!<1

where 18ys5t s 1, IMrsl £ 1.

let j <k . For given integer s ,
there 1s at most one integer v which
satisfles the inequality m\;—siali<{
Consequently we have, by the Schwarz
inequality

pal (8,52, aswz”,b)‘

\w,\j~ sAuf <1

sC[2

rgA.‘/)&J

v 2
G 2 ¢ [ 2, (at+ b))
12 AK//\j ’

L
s 2
PERSLPAERY

n Y 2 2 Oi 2 2
< T (aZv bE)+T, (ateb
YZ:‘;nH ® Y) el {)

T
= f tpo) - T} dn,
- T
which is, by Bernstein’s result that
Px) — o x) = Q™) holds uniform-
1y,

D being a constant independent of . .
Hence we have by (3.7)

L,f POyx) Pr K daw| < 4 z,\K/A)

é A A~0\(jvk)

which proves the lemma.
We shall now prove Theorem 2. We have,
by lemma 1,

) m 2
j | 2.t laxr]| o x)

Yoo k=n
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(’.
j,k"l. 4 =00
= ¢t 1g i’
e nZ Ll ety e
Jrk=n AXU Jok=n ,\“’f
< » P !
S 22041 2 S
J'-‘—'L K=n
(3.8) > et
. < 5 . v
A Zh:_;/()l = A

which is tend to zero as m —c, ®n->°0
by the sssumption that >, 1C 1 <00,

Similarly every positive integer h

»
we have

Imn jw{ifu?’“«’()iiﬂla‘d(l):o

m,n -3 00 Yo K=TL
that is,

(3.9) “’"L J ! Z(K?LAKX)) _er_&)}dx o

m,n-doo Loo

Now we take any two numbers a and P
(a< b) ; and we choose h such that
lhal, thbi < /2« Then

sin 1'19( 212
hixe %(;E} for u<x<b
Ve have
oo 2 sinthx

Lz sgaen | =i

o

b m 2h
> . sin X
2 f i ?h @ ()] ~—h;~:—d;(

A m 2
2(2) [N g tex
By (3.8), we get

b m .
(39 lim l | 22t Puher) [dx =0,
in other words the series (3.1) conver-
ges in meen L., 1in every finite inter-
val.

The almost everywhere convergence of
(3.1) can be proved in quitely similar
manner as in Kac’s paper by using the
fact (3.8), and the proof is omitted
here.

(#) Received December 20, 1949.
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For the proof, we need the following
lemma.
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