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ON COMMUTATORS OF MATRICES

By Hiraku TOYAMA

Prof. K.Shoda proved[1]that in an
algebraically closed fleld every unimo-
dular matrix can be expressed as the
commutator of two sulitable matrices
and ( , as follows

A=BCBC

In the present paper we will inquire
about the validity of the theorem of
this kind for the well known classes of
compact Lie groups « unimodualar unitary,
unitary symplectic and proper orthogonal
groups.[2] The answer is in the affir-
mative for all these groups except {(){2),
which is commutative. Chief method con-
aists in the transformation to the dia-
gonal form.

(1). Unimpdular unitary group.’Jn).

tet "U(M) be the unimodular unitery
group of M -th ordar.{3] In S{(n)
every element can be transformed to
a dlagonal form by some element | be-
longing to 3 U(‘(S t
a,

FPAF=|

Gnj.
Hence we can suppose without loss of
generality that the element is
diagonal.
4
75
A= ‘

.a“
where |Al=1d:! = -<|a.|=land 4,8,- - G.=1

because 1s unimodular unitary.
If we put
¢
vz
C- wheve Ce=(@,d, 0,

\C (l'-"- !.‘2, .- 71)
then we get easily:

(x
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AC=

Here we choose the permutation matrix

0 lo:;-0
oo lo
B= ' 1
L----" o)
then we get
-1
AC=BCB
so that
-1
A=-BCBC.

1if B and C are not unimodular, we
can easlly make them so by multiplica-

-5 i
tion of ’B\ and IC! ™ .[4]
(11). Unitary symplectic group.“ﬁﬂzn)

In this case holds also the tﬁooren of
disgonal transformation [§7]

A
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—~ AZ .
FAF= A
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If we tan prove the theorem for each

Al
sub-matrix ( /\—l) belonging to
USP(Z) in the main diagonal, then
our theorem is evidently valid for ge-
neral (J Sp (2m) . As 1s salready known,
US,(2) '1s 1somorphic to SU(z) {41
for(wg)xlch our theorem is already proved
in (%). :

(111). Broper orthogonal group (J*(n).

This case 1s somewhat more complicated
than the above two cases. We denote the

s B ~8n B
o O cmB) by R(@) and

‘1 o
the matrix (o—r) by Q_ »
Then the following identity holdss

R(O=Q R-0)Q"

matrix



At first we shall show the theorem for
* ( . Using this ldentity we

obtain

R(6) R(Z) a) R () a)
R(6.) =( REN o)l REEN 8

Hence we can choose
o
R &
o T
2
+
each of which belongs to O (“) Si-

milarly the same reasoning holds for any
m= 0 (mode 4 ), if we combine the

consecutive R ( Gu-/) and R ( 9‘2‘) in
the main dlagonal in pairs,
A+
As to O (3) , Wwe can choose
R(Z) d
B: C=
1) ~f
because

(R(e,)l>= (R(%/XQ-J(R(—%)) (@’)

And the same for any M= 3 (mod. 4).

+
Our theorem is almost trivial for O (’)
so we can directly conclude the validity
for any =] (moded).

0 (6) .

Finally we consider the
In this case we can choose

(Gu&) 0 EO

9
B- é),) (=& o0
(9;) 0 0&

considering the following identity,

R(&) R(&9)
RO =]  REYH )«
R(6) R(%)
0EO R(‘—QZ‘—G) 6 4 o
X[ 0¢C R(@Z:@) EC 0
0 0G R\ 0 &

Hence our assertion holds for every
= 5 2, (mod 4).

As the final result we obtain the
Every element of the uni-

Theorem,
modular unitery, the unit. ectic
or he orth 1
) can be gép;ggggg gg the com-

t of tw elements
belonging to that gx:;mn.
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