KODDAI METH. SEM. REP.
Nos. 5-6, Dec., 1949.
ON COMMUTATORS OF MATRICES
By Hiraku toyama

Prof. K. Shod proved[1] that in an algebraically closed field every unimodular matrix A can be expressed as the commutator of two suitable matrices B and C, as follows

$$
A=B C B^{-1} C^{-!} .
$$

In the present paper we will inquire about the validity of the theorem of this kind for the well known classes of compact Lie groups - Unimodular unitary, unitary symplectic and proper orthogonal groups. [2] The answer is in the affirm mative for all these groups except 0 (2), which is commutative. Chief method consifts in the transformation to the iazonal form.
(i). Unimodular unitary group. ${ }^{5} U(n)$. Let ${ }^{S} U(n)$ be the unimodular unitary group of n-th order. [3] In $S U(n)$ every element A can be transformed to a diagonal form by some element F belonging to $s U(n)$:

$$
F^{-1} A F=\left(\begin{array}{llll}
a_{1} & & & \\
& a_{n} & & \\
& & \ddots & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right)
$$

Hence we can suppose without loss of generality that the element A is diagonal.

$$
A=\left(\begin{array}{llll}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right)
$$

where $\left|a_{1}\right|=\left|a_{2}\right|==\left|a_{n}\right|=1$ and $a_{1} a_{2} \cdots a_{n}=1$, because A is unimoduler unitary.

If we put
then we get easily:

$$
A C=\left(\begin{array}{lllll}
C_{2} & & & \\
& & & & \\
& C_{3} & & \\
& & \ddots & \\
& & & C_{n} \\
& & & C_{1}
\end{array}\right)
$$

Here we choose the permutation matrix

$$
B=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
\vdots & & \ddots & 1 \\
1 & \cdots & \cdots & 0
\end{array}\right)
$$

then we get

$$
A C=B C B^{-1}
$$

so that

$$
A=B C B^{-1} C^{-1} .
$$

If B and C are not unimodular, we can easily make them so by multipiticatron of $|B|^{-\frac{1}{n}}$ and $|C|^{-\frac{1}{x}}$.[4]
(ii). Unitary symplectic group. US $\mathrm{S}_{\mathrm{p}}(2 n)$

In this case holds also the theorem of diagonal transformation [5]

$$
F^{-1} A F=\left(\begin{array}{cccc}
\lambda_{1} & & & \\
& \lambda_{1}^{-1} & & \\
& & & \\
& & & \\
& & \lambda_{2}^{-1} & \\
& & \ddots & \\
& & & \lambda_{n} \\
& & & \\
& \lambda_{n}^{-1}
\end{array}\right)
$$

If we can prove the theorem for each sub-matrix $\left(\begin{array}{cc}\lambda_{c} & \\ & \lambda_{l}^{-1}\end{array}\right)$ belonging to
$U S_{p}(2)$ in the main diagonal, then our theorem is evidently valid for general $U S_{p}(2 n)$. As is already known,
$U S_{p}(2)$ is isomorphic to ${ }^{s} U(2)$,[6] for which our theorem is already proved in (i).
(iii). Proper orthogonal group $\mathrm{O}^{+}(n)$.

This case is somewhat more complicated than the above two cases. We denote the $\operatorname{matrix}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ by $R(\theta)$ and the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ by Q.

Then the following identity holds:

$$
R(\theta)=Q R(-\theta) Q^{-1}
$$

At first we shall show the theorem for $0^{+}(4)$ - Using this identity we obtain
$\binom{R\left(\theta_{1}\right)}{R\left(\theta_{2}\right)}=\binom{R\left(\frac{\theta_{1}}{2}\right)}{R\left(\frac{\theta_{2}}{2}\right)}\binom{Q}{Q}\left(\left.\begin{array}{c}R\left(\frac{-\theta_{2}}{2}\right) \\ R\left(-\frac{\theta_{2}}{2}\right)\end{array} \right\rvert\, \begin{array}{l}Q \\ Q\end{array}\right)$
Hence we can choose
$B=\left(\begin{array}{ll}R\left(\frac{\theta_{1}}{2}\right) & \\ & R\left(\frac{\theta_{2}}{2}\right)\end{array}\right)$ and $C=\left(\begin{array}{cc}Q & \\ & Q\end{array}\right)$
each of which belongs to $\mathrm{O}^{+}(4)$. Similarly the same reasoning holds for any $n=0 \quad$ (mod. 4), if we combine the consecutive $R\left(\theta_{2 i-1}\right)$ and $R\left(\theta_{21}\right)$ in the main diagonal in pairs.

$$
\text { as to } O^{+}(3) \text {, we can choose }
$$

$$
B=\binom{R\left(\frac{\theta_{1}}{2}\right)}{1}, \quad C=\left(\begin{array}{ll}
Q & \\
& -1
\end{array}\right)
$$

because
$\binom{R\left(\theta_{1}\right)}{1}=\binom{R\left(\frac{\theta_{1}}{2}\right)}{1}\left(\begin{array}{ll}Q & \\ -1\end{array}\right)\left(\begin{array}{rl}R\left(-\frac{\theta_{1}}{2}\right) \\ & 1\end{array}\right)\left(\begin{array}{ll}Q^{-1} & \\ & -1\end{array}\right)$

And the same for any $n \equiv 3$ (mod. 4).
Our theorem is almost trivial for $0^{+}(1)$, so we can directly conclude the validity for any $n \equiv 1$ (mod.4).

Finally we consider the $0^{+}(6)$ In this case we can choose

considering the following identity,
$\left(\begin{array}{c}R\left(\theta_{1}\right) \\ R\left(\theta_{2}\right) \\ R\left(\theta_{3}\right)\end{array}\right)=\left(\begin{array}{c}R\left(\frac{\theta_{2}+\theta_{1}}{2}\right) \\ \\ R\left(\frac{\theta_{2}-\theta_{1}}{2}\right) \\ \\ \\ \\ \\ \\ \\ \end{array}\right) x\left(\frac{\theta_{3}}{2}\right) . ~ x$
$x\left(\begin{array}{ccc}0 & E & 0 \\ Q & 0 & C \\ 0 & 0 & Q\end{array}\right)\left(\begin{array}{c}R\left(\frac{-\theta_{2}-\theta_{1}}{2}\right) \\ R\left(\frac{\theta_{1}-\theta_{2}}{2}\right) \\ \\ \\ R\left(\frac{\theta_{3}}{2}\right)\end{array}\right)\left(\begin{array}{lll}C & Q^{-1} & 0 \\ E & 0 & 0 \\ 0 & 0 & Q^{-1}\end{array}\right)$

Hence our assertion holds for every $n \equiv 6 \equiv 2(\bmod .4)$.

As the final result we obtain the Theorem Every element of the unimodular unitary the unitary symplectic or the proper orthogonal group (except
$0^{+}(2)$ can be expressed as the commutator of two suitably chosen elements belonging to that group.
(*) Received August 31, 1949.
(|) K.Shoda, Einige Saetze weber Marizen, Japanese Journal of Mathermatics, 13 (1937) 361-365.
(2) H.Woyl, Classical groups, Princeton, 1939.
(3) The same notations will be used as in Weyl, loc.cit.
(4) H. TOyama, Ueber eine nicht-Abelsche Theorise der algebraischen Funktionen (to appear soon).
(5) Hey. lac, cit, p.217.
(6) L.Pontrjagin, Topological groups, Princeton, 1939, p.276.

