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ON COMMUTATORS OP MATRICES

By Hiraku TOYAMA

Prof K.Shoda proved[l] that in an
algebraically closed field every unimo-
dular matrix /\ can be expressed as the
commutator of two suitable matrices β
and £,

 9
 as follows

In the present paper we will inquire
about the validity of the theorem of
this kind for the well known classes of
compact Lie groups - linimodular unitary,
unitary symplectic and proper orthogonal
groups CzH The answer is in the affir-
mative for all these groups except Q(z),
which is commutative* Chief method con-
sists in the transformation to the dia-
gonal form.

(i). Unimgdular unitary $roup«
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Let U (-**$ be the unimodular unitary
group of Tt-th or^er C?] In
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every element A can be transformed to
a diagonal form by some element p be-
longing to
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Hence we can suppose without loss of
generality thab the element A i s
diagonal.

where I&l = l4t! = HΛ,|=l and Λ,^- - ύ«= 1 $
because A is unimodular unitary.
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If B and C are not unimodular
 9
 we

can easily make them so bv multiplica-

tion of | B Γ ^ and I C\~~ . [ «

(ii) Unitary symplectic group•(JS[>(zn)

In this case holds also the theorem of
diagonal transformation C
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If we can prove the theorem for each

sub-matrix [ χ-ι J belonging to

U Jf>(2) in the main diagonal, then
our theorem is evidently valid for ge-
neral U Sj? (*-'*') As is already known,
UStίZ) is iaomorphic to

 s
(J(z) ,CQ

for wnich our theorem is already proved
in (i).

(ϋi). Proper orthogonal group 0
+
(^)»

This case is somewhat more complicated
than the above two cases* We denote the

matrix I ̂ Q <U*ΘJ *Ύ Kίθ) and

the matrix / _ ) *>7 Q~ »

Then the fallowing identity holdss
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At first we shall show the theorem for
0

+
(^) Using this identity we

obtain

Hence we can choose

'R(l)
Wl),

and C

each of which belongs to 0 '*) . Si-
milarly the same reasoning holds for any
Ή & 0 (laod 4- )» lί we combine the

consecutive R ( Bzί-i) and R{θzJ in

the main diagonal in pairs

As to 0 1-3)
 f

 we can choose
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And the same for any n ΈB 3 (mod 4)

Our theorem is almost trivial for 0 0),
so we can directly conclude the validity
for any Ύ I S. / (mod 4 )

o

Finally we consider the
In this case we can choose

crcn

0 ED)

considering the following identity,

x

Hence our assertion holds for every
yι~= £ ̂ Z (mod 4)

As the final result we obtain the
Theorem* Every element of the unl-

modular unitary> the unitary aynmlectic
or the ̂ proper orthogonal group (except

Q
r
(^) ) can be expressed as the com-

mutator of two suitably chosen elements
belonging to that
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