1. introduction. A function which maps a circular disc or a halî-plane conformally onto a rectilinear polygon is, as is well known, given by Schwarz-ohristoffel formula. Let $w=f(z)$ be such a function, and let the interior angle at vertex $f\left(a_{\mu}\right)(\mu=1, \cdots, m)$ of the image-polygon, having $m$ vertices, be denoted by $\alpha_{\mu} \pi$, the formula may be written in the form:
(1.1) $f(z)=C \int_{\mu=1}^{z} \prod_{\mu}^{m}\left(a_{\mu}-z\right)^{\alpha}{ }^{\alpha-1} d z+C^{\prime}$,
where $C$ and $C^{\prime}$ are both constants depending only on position and magnitude of the image-polygon.

The present author(1) has previously shown that this formula can be generalized to the case of analogous mapping of doub-ly-connected domains. We may adopt, as a standard doubly-connected basic domain, an annular domain $q<|z|<1$, $-\lg q$ being a uniquely determined conformal invariant, i.e. the so-called modulus of given polygonal ring domain. Let the boundary components corresponding to circumferences $|z|=1$ and $|z|=q$ be rectiinear polygons with $m$ and $n$ vertices respectively. Let further $\alpha_{\mu} \pi$ and $\beta_{\nu} \pi$ denote the interior angles (with respect to each boundary polygon itself) at vertices $f\left(e^{i \varphi_{\mu}}\right)$ and $f\left(q e^{i / \psi_{\nu}}\right)$ respectively. The mapping function $w=f(z)$ is then expressed in the form:

$$
\begin{align*}
f(z)=C & \int^{z} z^{\iota c^{*}-1}\left\{\prod_{\mu=1}^{m} \sigma\left(i \lg z+\varphi_{\mu}\right)^{\alpha_{\mu}-1}\right.  \tag{1.2}\\
& \left.\div \prod_{\nu=1}^{n} \sigma_{3}\left(i \lg z+\psi_{\nu}\right)^{\beta_{\nu}-1}\right\} d z+C^{\prime},
\end{align*}
$$

Where the sigma-functions are those of Weierstrass with primitive periods $2 \omega_{1}=2 \pi$ and $2 \omega_{3}=-2 i \lg q$ and the constant $c^{*}$ is given by
(1.3)

$$
c^{*}=\frac{\eta_{1}}{\pi}\left(\sum_{\mu=1}^{m}\left(1-\alpha_{\mu}\right) \varphi_{\mu}-\sum_{\nu=1}^{n}\left(1-\beta_{\nu}\right) \psi_{\nu}\right)
$$

the constants $C$ and $C^{\prime}$ having similar meanings as before. It can, moreover, be shown that the Schwarz-Ohristoffel formula (1.1), for basic domain $|z|<1$, may be regarded as being a limiting case of (1.2) when $q \rightarrow 0$.

On the other hand, any function $w=f(z)$ which maps a circular disc or a half-ilane conformally onto the interior of a circular polygonal domain, i.e. the interior of a polygon having circular arcs as its sides, is linear-polymorphic. A differential equation of the third orcier of the form:

$$
\text { (1.4) } \quad\{f(z), z\}=R(z)
$$

holds gooc always for such a function $f(z)$. The left member of this equation denotes, as usual, Schwarzian derivative of $f(z)$ with respect to $z$, i。e。

$$
\begin{aligned}
\{f(z), z\} & \equiv \frac{d^{2}}{d z^{2}} \lg \frac{d f(z)}{d z}-\frac{1}{2}\left(\frac{d}{d z} \lg \frac{d \cdot f}{d z}\right)^{2} \\
& =\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2},
\end{aligned}
$$

and $R(z)$ is a rational function which possesses, as poles of order at most two, the points $a_{\mu}(\mu=1, \cdots, m)$ corresponding to the vertices of imagepolycion. More precisely, if we denote by $\alpha_{\mu} \pi$ the interior angle at $f\left(a_{\mu}\right)$ of the image-polygon, we have, at the pole in question, the relation:
(1.5) $\lim _{z \rightarrow a_{\mu}}\left(z-a_{\mu}\right)^{2} R(z)=\frac{1-\alpha_{\mu}^{2}}{2}$.

The above mentioned results (1.I) and (1.4) are usually derived by making use of analytic continuability of mapring function, trat is, by performing successive inversions with respect to boundary arcs. But the author of this paper (2) previously pointed out that chwarzShristoffel formula (1.1) can be deduced immediately from Poisson integral representation of functions analytic in a circular disc. He(1) also has cierived the formula (1.2) by means of villat's intecral representation of functions analytic in an annular domain. it will, however, be shown that the formula (1.2) can also be derived by the classical method without particular difficulty.

We can, on the other hand, consider the problem of ceneralization of (1.4) correspondine to that of (1.1) to (1.2).

In the present preliminary Note, we shall mention, from a more general standpoint, general relations corresponding to (1.l) and (1.4) in the case of multiply-connected domains, and then remark that, by specifying them to doubly-connected case, we can obtain the expression (1.2) again and the result generalizing (1.4) too.

Somplete paper involving details and proofs will be published elsewhere.
2. Mappinz onto circular polygonaj domains. Consider, in w-plane, an : ply connected domain $\Delta$ whose boundar. consists of $n$ circular polygons $\Gamma$ ( $j=1, \ldots, n$ ), each $\Gamma_{j}$ being formed by $m$ circular arcsi. We can now take several types of domains as a standard $n$-ply connected basic domain. But we shall first take a domain $D$ bounded by $n$ full circies. Ihis domain $D$ is uniquely determined for the given domain $\Delta$, except possible linear transformations ${ }^{(3)}$. Such a domain is derined in general by $3 n$ real parameters denoting the coordinates of centers and the radil of $n$ boundary circles. But, since a linear transformation depends on 6 real parameters, essentially $3 n-6$ real conformal invariants belong to an $n-p l y$ connected domain (with non-degenerating boundary components) as moduli, provided $n>2$. In an exceptional case $n=2$, there exists just one invariant, and in case $n=1$ there remains freedom corresponding ;o 3 real parameters.

Now, let the boundary circle of $D$ corresponding to $\Gamma_{j}$ be

$$
\text { (2.1) } C_{j}: \quad\left|z-c_{j}\right|=r_{j} \quad(j=1, \cdots, n),
$$

and the mapping function be, as before, $w=f(\boldsymbol{z})$. Let further the points corresponding to vertices of $\Gamma_{j}$ be $a_{j \mu}\left(\mu=1, \cdots, m_{j}\right)$ and the interior angle of $\Gamma_{j}$ at its vertex $f\left(a_{j \mu}\right)$ with respect to $\triangle$ be $\alpha_{j \mu} \pi$. The function $f(z)$ remains, of course, regular even on each interior part of $C_{j}$ divided by $a_{1 \mu}$. If we denote the inversion $z \mid z_{j}^{*} \quad$ with respect to $C_{j}$ by

$$
z_{j}^{*}=\lambda_{j}(z) \equiv c_{j}+\frac{r_{j}^{2}}{\bar{z}-\overline{c_{j}}},
$$

then $\lambda_{2}(\boldsymbol{x})$ being all Inear in $\bar{z}$, the composed functions

$$
\text { (2.2) } \quad \ell_{j k}(z) \equiv \lambda_{j}\left(\lambda_{k}(x)\right) \quad(j, k=1, \cdots, n)
$$

are also linear with respect to $Z$. The transformation $z \mid \ell_{j k}(z)$ is composed of successive inversions with rem spect first to $C_{k}$ and next to $C_{j}$. Since operation of inversion is involua tory, i.e. the identical relation $\lambda_{j}^{-1}(z)$ $\equiv \lambda_{j}(z)$ holds, we have $l_{j \dot{j}}(z)=z^{-j}$ and

$$
l_{j k}^{-1}(z)=\lambda_{k}^{-1}\left(\lambda_{j}^{-1}(z)\right)=\lambda_{k}\left(\lambda_{j}(z)\right)=l_{k j}(z) .
$$

The aggregate of all linear transformations corresponding to inversions repeated even times with respect to boundary circles (2.1) (and their successive transforms forms a group ly generated thus by ( $\left.\begin{array}{c}n \\ 2\end{array}\right)$ Iinear transformations $z \mid l_{j k}(z)$ $(y<k)$.

After these preparatory considerations, we shall now state a result generalizing (1.4):

Theorem 1. Let $w=f(z)$ denote a mapping function from $D$ onto $\Delta$. Then

$$
\begin{equation*}
\{f(z), z\} d z^{2} \tag{2.3}
\end{equation*}
$$

is an automorphic differential belonging to the group of , whose fundamental domain may be composed of basic domain $D$ and its inverse with respect to any one of boundary circles of $D$ (speaking more exactly, the fundamental domain must be the open kernel of closure of the above mentioned on $\theta$ ). The function $\{f(z), z\}$, being meromorphic in $\bar{D} \equiv D+\sum_{j=1}^{n} C_{j}$, is reguiar everywhere except possibly at $a_{j \mu}\left(\mu=1, \cdots, m_{j} ; j=1, \cdots, n\right)$, where a pole of order at most two appears as shows the following relation:
(2.4) $\lim _{z \rightarrow a_{j \mu}}\left(z-a_{j \mu}\right)^{2}\{f(z), z\}=\frac{1-\alpha_{j \mu}^{2}}{2}$.

In a particular case, $n=1$, that is, when $\triangle$ is simply-connected, fy degenerates to a trivial group composed of a unique element, the identical transformation. In virtue of this degeneration, the automorphic property of (2.3) vanishes out, and the Schwarzian derivative $\{f(z), z\}$ becomes an analytic function possessing $a_{\mu}\left(\equiv a_{1 \mu}\right)(\mu=1$, $\cdots, m$ ) as its poles of order at most two, and hence becomes a rational function.
-f the imase-domain $\triangle$ is particularly bowded by rectilinear polygons, more concrete pronerties of the mapping function $f(z)$ can be derived. In fact: we have the followine theorem:

Theorem 2. If, in the theorem 1, the boundary components of $\Delta$ are all rectilinear polvoons, then the differential sxpression
(2.5)

$$
d_{2} \lg d_{1} f(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{d_{2} d_{1} z}{d_{2} z d_{1} z}\right) d_{2} z
$$ possesses an automorphic property, $d_{1}$ anc $d_{2}$ both denoting differentiation operators. The function $f^{\prime \prime}(z) / f^{\prime}(z)$ neromorphic in $\bar{D}$ is regular except at the points $a_{\gamma \mu}$ which are poles of order one with residue $\alpha_{j \mu}-1$.

In the particular case $n=1$, If consists of the identical transformation alone. The automorphic propeaty of (2.5) thus vanishes out, and $f^{\prime \prime}(z) / f^{\prime}(z)$ becomes an analytic function in the entire plane possessing $a_{\mu}\left(\equiv a_{1 \mu}\right)(\mu=1, \cdots, m)$ as poles of order one. Furthermore, since $f(Z)$ remains evidently regular at $z=\infty\left(\neq a_{\mu}\right)$, we have

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\sum_{\mu=1}^{m} \frac{\alpha_{\mu}-1}{z-a_{\mu}}
$$

Which, by integration, leads us to the Schwarz-Christoffel formula (1.1).
3. Specialization to doubly-connected domains. In case of doubly-connected domains, we can take the annular domain $D: \quad q<|z|<1$ as a standard basic domain of modulus - $\lg q$. Two general theorems of the last section then take more clear and concrete forms. In the first place, by specializing theorem 1, we obtain the following result:

Theorem 3. Any function $w=f(z)$, mapping the annular domain $D$ conformally onto a ring domain $\Delta$ bounded by two circular polygons, satisfies the differential equation of the third oraer:

$$
\begin{equation*}
\{f(z), z\}=\frac{E(i \lg z)}{z^{2}} \tag{3.1}
\end{equation*}
$$

$E(Z)$ being an elliptic function with primitive periods $2 \pi$ and $-2 i \lg q$ (or being a constant). If we now denote by $e^{i \varphi_{\mu}}(\mu=1, \cdots, m)$ and $q e^{i \psi_{\nu}}$ $(\nu=1, \ldots, n$ ) the boundary points of $D$ 'corresponding to vertices of boundary polygons $\Gamma_{1}$ and $\Gamma_{2}$ of $\Delta$ respectively, and further by $\alpha_{1 \mu} \pi$ and $\alpha_{2 \nu} \pi$ the interior angles of $\Gamma_{1}$ and $\Gamma_{2}$ at vertices $f\left(e^{i \varphi_{\mu}}\right)$ and $f\left(q e^{i y_{\nu}}\right)$ respectively, then the function $E(Z)$ possesses at $Z=-\varphi_{\mu}$ and at $Z$ $=-\psi_{\nu}+i l_{g} q$ its primitive poles of order at most two, and further

$$
\lim _{Z \rightarrow-\varphi_{\mu}}\left(Z+\varphi_{\mu}\right)^{2} E(Z)=\frac{1-\alpha_{1 \mu}^{2}}{2}
$$

(3.2) $\lim _{Z \rightarrow-\psi_{\nu}+i l_{g q}}\left(Z+\psi_{\nu}-\lambda \operatorname{lgq}\right)^{2} E(Z)=\frac{1-\alpha{ }^{2}}{z}$

As was already stated in the section 1. If the boundary of doubly-connected domain $\triangle$ consists of two rectillnear polygons, the explicit integral representation (1.2) is valid. This resfft has previously been obtained by thelpresent author by means of villat's fopmula, but the general theorem 2 may also be specified in this case to derive the same result which is stated as follows:

Theorem 4. Any function which maps the annular domain $q<|z|<1$ conformally onto a ring domain bounded by rectilinear polygons, is expressed by formula (1.2), the constant $c^{*}$ being given by (1.3).
4. Another basic domains. As a standard multiply-connected basic domain, we can take any one of various possible types other than that used in the section 2. For instance, as is often used, parallel slit domain obtained from entire plane by cutting along parallel segments, circular slit domain or radial slit domain which is obtained from oither entire plane, circular disc or annular ring by cutting along circular arcs or radial segments (4). For such a basic domain, a group if with analogous fundamental domain can also be constructed in quite similar manner as in theorems 1 and 2. These theorems themselves remain to hold in almost the same form. We have only to carry out a few modifications by considering that the regularity of boundary curves is lost at end points of the slits.

Theorem 5. In any case of such a basic domain of abovementioned type, the conclusion of theorem 1 remains to hold with following modifications. If an end point of a slit coincides with a point $a_{j \mu}$, the relation (2.4) is replaced by
(4.1) $\lim _{z \rightarrow a_{j \mu}}\left(z-a_{j \mu}\right)^{2}\{f(z), z\}=\frac{4-\alpha_{j \mu}^{2}}{8}$,
and if an end point, say $\beta$, of a slit coincides with none of $a_{j \mu}$, the Schwarzian derivative possesses it as a pole of the second order and satisfies the reletion :
(4.2) $\lim _{z \rightarrow p}(z-p)^{2}\{f(z), z\}=\frac{3}{8}$.

Theorem $\epsilon_{0}$ If $\Delta$ is bounded merely by rectilinear polygons the conclusion of theorem 2 remains to be true, in any case of the above-mentioned basic domains, with following modifications. If an end point of a slit coincides with $a_{j \mu}$. the residue of $f^{\prime \prime}(z) / f^{\prime}(z)$ at this
（4．3）

$$
\lim _{z \rightarrow a_{j \mu}}\left(z-a_{j \mu}\right) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha_{j \mu}-2}{2},
$$

and if an end point $p$ of a slit coin－ cides with none of $a_{j \mu}$ ，then $f^{\prime \prime}(z) / f^{\prime}(z)$ has the point $p$ as a pole also of the first order with residue $-1 / 2$ ；that is，

$$
\text { (4.4) } \quad \lim _{z \rightarrow p}(z-p) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=-\frac{1}{2}
$$

In conclusion，we remarl that a circu－ lar disc with $n$ sheets may also be taken as a standard type of $n-p l y$ connected domains（5）．The group of considered in theorem 1 then consists of a unique transm formation $z \mid z$ ，all inversions $z \mid \lambda_{j}(z)$ referring to a common circumference． Hence，the group degenerates to a trivial one，while the mapping function becomes $n$－valued one on the disc．In this case a corresponding theorem may be stated as follows：

Theorem 7．Let $w=f(z)$ be a func－ tion which maps a circular disc $D$ with $n$ sheets covering a circle $D_{0}$ on $z$－ plane conformally onto an $n-p l y$ con－ nected circular polygonal domain $\triangle$ 。 Then，each branch $f_{j}(z)(j=1, \cdots, n)$ of $f(z)$ satisfies a differential equa－ tion of the third order of the form：

$$
\begin{equation*}
\left\{f_{j}(z), z\right\}=M_{j}(z) \tag{4.5}
\end{equation*}
$$

where $M_{\gamma}(z)$ is a one－valued meromor－ phic function．Denoting by $\Gamma_{j}$ a bound－ ary polygon of $\Delta$ mapped from boundary circle $C_{j}$ of $D$ by $w=f(z)$ ，i．e．by $w=f_{j}(z)$ ，and by $a_{j \mu}$ a point lying on $C_{f}$ and corresponding to a vertex of the function $M,(z)$ possesses at $a_{j \mu}^{j}$ a pole of order at most two and satisfies the relation：
（4．6） $\lim _{z \rightarrow a_{j \mu}}\left(z-a_{j \mu}\right)^{2} M_{j}(z)=\frac{1-\alpha_{j \mu}^{2}}{2}$ ， where $\alpha_{j \mu}$ denotes，as before，the interior angle at $f_{j}\left(a_{\mu \mu}\right)$ with respect to $\Delta$－Let further ${ }^{\text {d }} t_{k}$ be a branch point of $D$ of order $\tau_{\kappa}-1$ ，then， for all the branches $f_{2}(z)$ relating to this branch point，the function $M_{j}(z)$ possesses there a pole of order at most two and satisfies the relation
（4．7）

$$
\lim _{z \rightarrow t_{k}}\left(z-t_{k}\right)^{2} M_{j}(z)=\frac{\tau_{k}^{2}-1}{2 \tau_{k}^{2}}
$$

Excepting those points，$M_{j}(z)$ is regular everywhere．

Theo em 8．If，in the previous theorem， $\triangle$ is bounded particularly by rectilintar polygons，ther，we have，for each branch of the mapping function，an explicit ex－ pression of the form：
（4．8）

$$
f_{j}(z)=C \int^{z}\left(\exp \int^{z} N_{j}(z) d z\right) d z+C^{\prime}
$$

where $N_{j}(z)$ is a one－valiaed meromorphic function．Corresponding to $(4,6)$ and （4．7），we have，at its pole $a_{j \mu}$ and a branch point $t_{k}$ ，the relations
（4．9） $\lim _{z \rightarrow a_{j \mu}}\left(z-a_{j \mu}\right) N_{j}(z)=\alpha_{j \mu}-1$ ．
（4．10） $\lim _{z \rightarrow t_{k}}\left(z-t_{k}\right) N_{j}(z)=\frac{1-\tau_{k}}{\tau_{k}}$ respectively。 $\quad N_{j}(z)$ is，except those points，regular everywhere．
（＊）Received July 13， 1949 ．
（1）Y．Komatu，Darstellungen der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf kontorme Abbildung ueber Polygonalring－ gebiete．Jap．JournoMath．19（1945）， 203－215．
（2）YoKomatu，Einige Darstellungen analy－ tischer Funktionen und ihre inwen－ dungen auf konforme Abbillung． Proc．Imp．Acad．Tokyo 20（1044），536－ 541.
（3）As to the possibility of taking such a domain，see，e．g．L． $\mathrm{R}_{0} \overrightarrow{\text { Ford }}$ ， Automorphic Functions，New York （1929），po279 et seq．；or R．Courant， Plateau＇s problem and Dirichlet＇s principle．Ann．of Math． $38(1937)$ ， 679－724．
（4）Cf．Rode Possel，Zum Parallelschlitz－ theorem unendilich vielfach zusammen－ haencender Gebiete．Goettinger Nachr。（1931）．i92－202；D，Rencel， Existenzbeweise fuer schlichte Ab－ bildungen mehrfach zusammenhaengen－ der Bereiche auf gewisse Normal－ bereiche．Jahresber．DeutschoMath．－ Vereinig．44（1934），51－55．
（5）Cf。 L．Bieberbach，Ueber einen Riemann－ schen Satz aus der Lehre von der konformen Abivildung．Sitzungsber． Berliner Math．Ges。 24 （1925），6－9； HoGrunsky，Üeber die konforme Abo bildung mehrfach zusammenhaengender vereiche auf mehrblaettrige Kreise． Sitzungsber．preuss．Akad．Niss． （1037），1－9。

Tokyo Institute of Technology．

