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1. Introduction. A function which
maps a circular disc or a half-plane con-
formally onto a rectilinear polygon is,
as is well known, given by Schwarz-ϋhri-
stoffel formulae Let ™*"~J(fc) be such a
function, and let the interior angle at
vertex 5(0-*.) (p~*=t, •-, w - ) of the
image-polygon, having -m, vertices, be
denoted by oc^nc , the formula may be
written in the form:

(i.i)

and C are both constants de-
pending only on position and magnitude of
the image-polygon.

The present authorί
1
) has previously

shown that this formula can be generalized
to the case of analogous mapping of doub-
ly-connected domains. Vie may .adopt, as a
standard doubly-connected basic domain,
an annular domain ^ < ί£l <: 1 , — Ig ̂
being a uniquely determined conformal in-
variant, i.e« the so-called modulus of
given polygonal ring domain. Let the
"boundary components corresponding to cir-
cumferences jxj = 1 and \

t
z.\^^

<
\
J
 be recti-

linear polygons with OTL and τ\~. vertices
respectively. Let further «yτc and ^ T C
denote the interior angles (with respect
to each boundary polygon itself) at ver-
tices f-(e^) and f (fe

Xi
k) respectively.

The mapping function ~*r?=f(tc) is then
expressed in the form:
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where the sigma-functions are those of
Weierstrass with primitive periods Xώ^
and Zώ*~-2dv
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given oy
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the constants C and C having similar
meanings as before,, It can, moreover,
be shown that the Schwarz-Christoffel
formula (1.1), for basic donain j%| < i ,
may be regarded as being a limiting case
of (1«2) when o —> 0

On the other hand, any function- vf^Jίz)
which maps a circular disc or a half-plane
conformally onto the interior of a cir-
cular polygonal domain, i.e. the interior
of a polygon having circular arcs as Its
sides, is linear-polymorphic. A differ-
ential equation of the third order of the
formϊ

{Hz), z}=

holds good always for such a function
PC The left member of this equation
enotes, as usual, Schwarzian derivative
/C ih

, ,
of ,/Cfc) with respect to Z , i

o
e

andjR^ft) is a rational function which
possesses, as poles of order at most
two, the points d (/<-«= L, --> ^y^ ) cor-
responding to the'vertices of image-
polygon. More precisely, if we denote
by oLjic the interior angle at fCoUf^)
of tπe image-polygon, we have, at the
pole in question, the relation:

(1.5)

r
The above mentioned results (1.1) and

(1.4) are usually derived by making use
of analytic continuability of mapping
function, that is, by performing succe-
ssive inversions with respect to boundary
arcs. But the author of this paper(

A
)

previously pointed out that Schwarz-
Christoffel formula (1.1) can be deduced
immediately from Poisson integral re-
presentation of functions analytic in a
circular disc. Keί

1
) also has derived

the formula (1.2) by means of Villat's
integral representation of functions
analytic in an annular domain. It will,
however, be shown that the formula (1.2)
can also be derived "by the classical
method without particular difficulty.

7/e can, on the other hand, consider
the problem of generalization of (1.4)
corresponding tc that of (1.1) to (1.2).



In the present preliminary Note, we shall
mention, from a more general standpoint,
general relations corresponding to (1*1)
and (1 4) in the case of multiply-con-
nected domains, and then remark that, by
specifying them to doubly-connected cape,
we can obtain the expression (1 2) again
anί. the result generalizing (1 4) too

Complete paper involving details and
proofs will be published elsewhere,
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 Mapping onto circular poly^onai

domaingΓΓ" Consider, in W-plane, an Vi <
ply connected domain Δ whose boundary
consists of ΎL, circular polygons Π
( * = ί, ..> , m^ ), each Γ being
formed by

 /
m.. circular arcs We can now

take several types of domains as a
standard "vu -ply connected basic domain *
But we shall first take a domain £)
bounded by σv full circles. This domain
D is uniquely determined for the given
domain Δ $ except possible linear
transformations(

3
;. Such a domain is

defined in general by 3 ^ real para-
meters denoting the coordinates of cen-
ters and the radii of vu boundary cir-
cles* But, since a linear transforma-
tion depends on & real parameters, es-
sentially 3ov—6 real conformal invari-
ants belong to an ot-ply connected domain
(with non-degenerating boundary compo-
nents) as moduli, provided τu> 2~ In
an exceptional case 0^=-^ , there
exists just one invariant, and in case
ΎU = 1 there remains freedom correspond-
ing o 3 real parameters

New, let the boundary circle of
corresponding to Γ be

(2.1)
a

, "0,
and the mapping function be, as before,
vr = f(&) Let further the points
corresponding to vertices of Π be
6U^ ( M — ^ ">

 /γn
-
ί
. ) and the interior

angle of Q. at its vertex f O^/o) with
respect to Z\ be

 O
^U

C
'

7
^ ϊne func-

tion fOO remains, or course, regular
even on each interior part of Cj, divided
by &iM- ^

 w θ
 denote the inversion

Z I X* with respect to C by

then Λ-jCfc) being all linear in
the composed functions

are also linear with respect to ^
The transformation X [ ίμ(z) is com-
posed of s-ucicθss ive inversions with re-
spect first to C i

 a n d
 next to Ĉ . •

Since operation of inversion is involu
tory, i θ. the identical relation λ- (

l h f ) **
(z)tory, i θ. th

~ PL.(«) holds, we have f

μ j
The aggregate of all linear transforma-
tions corresponding to inversions repeated
even times with respect to boundary cir-
cles (2.1) (and their successive trans-
forms ) forms a group ~ό generated thus
by (V£) linear transformations Z \ L

After these preparatory considera-
tions, we shall now state a result gene
ralizing (1.4):

Theorem l Let ΎV~—/θ£) denote a
mapping function from D onto /\
Then

(2 3)

is an automorphic differential belonging
to the group βi , whose fundamental
domain may be composed of basic domain Γ>
and its inverse with respect to any one
of boundary circles of t> (speaking more
exactly, the fundamental domain must be
the open kernel of closure of the above
mentioned one), ϊhe function {f(tθ, zj $
being meromorphic in D Ξ D ^ X ^ L J C ^ »
is regular everywhere except possibly at

where a pole of order at most two appears
as shows the following relations

(2.4) ii-m CZ-CL^

*-* v *
In a particular case, ̂ L . = 1 , that

is, when Δ is simply-connected, φ de-
generates to a trivial group composed of
a unique element, the identical transfor-
mation. In virtue of this degeneration,
the automorphic property of (2

β
3) vani-

shes out, and the Schwarzian derivative
{ S-Cz-}, 'Z } becomes an analytic func-
tion possessing CL^ ( s= CL

L
^ )( ̂ — 1,

", <mj as its poles of order at most two,
and hence becomes a rational function*

If the ima^e-domain Δ is particularly
bounded by rectilinear polygons, more
concrete properties of the mapping func-
tion £(%} can be derived. In fact, we
have the following theorem;



Theorem 2. If, in the theorem 1, the
boundary components of Δ &**

θ
 &3J-

rectilinear polygons, then the differen-
tial expression

possesses an automorphic property,
 t

and cL^ both denoting differentiation
operators o The function £"{*>/f'fZ)
Γiieromorphic in J) is regular except at
the points Λ^~ which are poles of order
one with residue oL. — 1 .

In the particular case ί
consists of the identical transformation
alone. The automorphic ppopββiy of (2«5)
thus vanishes out, and $•"(%.") / f'Cx,)
becomes an analytic function in the en-
tire plane possessing &Λ& &ILO (p-=

s
i,-*v'n0'

as poles of order one. •' Furthermore>
since J-(Z) remains evidently regular
at % ~ oo C =*=• ̂  ) *

 w e
 ^

a v e

f fa)

w^ich, by integration, leads us to the
Schwarz-Ohristoffel formula (1.1).

3 Specialization to doubly-connected
domains. In case of doubly-connected
domains, we can take the annular domain
P ' j < IXI< ί as a standard basic
domain of modulus — lg <\y « Two general
theorems of the last section then take
more clear and concrete forms. In the
first place, by specializing theorem 1,
we obtain the following result:

Theorem 3. Any function - W j f
mapping the annular domain £) confor-
mally onto a ring domain Δ bounded by
two circular polygons, satisfies the
differential equation of the third orαers

%

E(Z) being an elliptic function with
primitive periods 2nt and — ZJil^y
(or being a constant). If we now denote
by -e/

9
/"- (|u_= l, - , -yvu.) and < j ^ ^

( V ==• ί. - •
 y
 T^S ) the boundary

points of J) corresponding to vertices of
boundary polygons Q and Π of /\
respectively, and further by oL

t
 ic anάoί

z
/

the interior angles of Γ
L
 and

 r
Γ^ at

vertices ^ (
e
^ ) and c f C f e ^ O

respectively, then the function £7 (£)
possesses at Z = — %u

 a n d a t
 Z

--ψ+ίlgΐ, its primitive poles of order at
most two, and further

T

ks was already stated In the section
1, if the boundary of doubly-connected
domain Δ consists of two rectilinear
polygons, the explicit integral repre-
sentation (1.2) is valid. This resJlt
has previously been obtained by thefpre-
sent author by means of Villat's formula,
but the general theorem 2 may also he
specified in this case to derive the same
result which is stated as follows;

Theorem 4
β
 Δny~ function which maps

the annular domain <? < \Z{ < i con-
formally onto a ring domain bounded by
rectilinear polygons, is expressed by
formula (1.2), the constant c* being
given by (1.3).

4 Another basic domains * As a
standard multiply-connected basic domain,
we can take any one of various possible
types other than that used in the sec-
tion 2. For Instance, as is often used,
parallel slit domain obtained from entire
plane by cutting along parallel segments,
circular slit domain or radial slit do-
main which is obtained from either entire
plane, circular disc or annular ring by
cutting along circular arcs or radial
segments(^) For such a basic domain, a
group βtL with analogous fundamental
domain can also be constructed in quite
similar manner as in theorems 1 and 2. .
These theorems themselves remain to hold
in almost the same form. We have only
to carry out a few modifications by con-
sidering that the regularity of boundary
curves is lost at end points of the slits.

Theorem 5« In any case of such a
basic domain of above-mentioned type, the
conclusion of theorem 1 remains to hold
with following modifications. If an end
point of a 3lit coincides with a point
CL L^ » ^

n e
 relation (2 4) is replaced by

(4.D ira^,
jt
J{

Hzhz]
^±

and if an end point, say jo , of a slit
coincides with none of &j

r
 , the Scfr-

warsian derivative possesses it aε a pole
of the second order and satisfies the rela-
tion :

y )^ -§-•
Theorem 6

O
 If /i is bounded merely

by rectilinear polygons, the conclusion
of theorem 2 remains to be true, in any
case of the above-mentioned basic domains,
with following modifications. If an end
point of a slit coincides with CL^

 9

the residue of φ"(zy/^f '(z) t
point becomes



(4.3)

and if an end point f> of a slit
cides with none of (L^ , then £"
has the point f> as a pole also of the
first order with residue —ί/X that is,

In conclusion, we remark that a circu-
lar disc with ΎO sheets may also be taken
as a standard type of 'PL-ply connected
domains(^) The group {fy considered in
theorem 1 then consists of a unique trans-
formation Z\% , all inversions z |A;CO
referring to a coπmon circumference. *
Hence, the group degenerates to a trivial
one, while the mapping function becomes
τi-valued one on the disc In this case
a corresponding theorem may be stated as
follows i

Theorem 7. Let
 /
v^ = f (Zϊ be a func-

tion which maps a circular disc p with
oi^ sheets covering a circle £)

o

 o n
 %* ~

plane conformally onto an 'TL-ply con-
nected circular polygonal domain Δ o
Then, each branch 4 (z} C j. =̂  i, •- , "O
of $(z) satisfies'a differential equa-
tion of the third order of the forms

where Ai fx) is a one-valued meromor-
phic funcΓtion Denoting by Π a .bound-
ary polygon of Δ mapped from boundary
circle C. of D by W=/ΓZ) , i.e. by

vsr — £ C^) *
 a n d b

y Hh-
 a p o i n t l y l n g

on C and corresponding 'to a vertex of
Π *f the function M

Λ
 OO possesses at

otj/j^ a pole of order at most two and
satisfies the relation:

(4.6) Jim (z-a.

where oL;^ denotes, as before, tne
interior'Sngle at i«c<O

 w i t h
 respect

to A o Let further'"Γ* be a branch
point of D of order τ

κ
 - 1 , then,

for all the branches j~ (z,) relating to
this branch point, the function JVL-C^
possesses there a pole of order at most
two and satisfies the relation

Excepting those points
9
 M

}
(%) is

regular* evervwhβrfl. °

Theorem 8* If, in the previous theorem,
/\ is bounded particularly by rectilinear
polygpns, then, we have, for each branch
of the mapping function, an explicit ex»
pression of the form;

(4.8} f tJA[ (Z)dLl)dZ + C',

where NΛX) is a one-valued meromorphic
function

β
 Corresponding to (4*6) and

(4,7), we have, at its pole (L,~~ d
branch point t

k
 $ the relations

and a

(4.9

Iim

4

regular everywhere*

respectively
β
 Af^(ty is, except those

points, regular everywhere.

(*) Received July 13, 1949.
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