matrices:

/ )\glz /\2'&3
o] 1 A bz
o o 1/ ’

where ‘6’,2, %15, b23 are integers and A

a real number. Then can be appro-
ximated by a sequence Jn , when A—> 0.

The second example: ( consists

of matrices:
a, .

o

Q2 o]

o o)

o 0 a??

where Qu, Q33 are feal positive and Gz
real. Such a matrix is denoted simply
by (A, Q2 Q3 )e If (Qu, Qz, Qs
(@, + | ) belongs to a discrete sub-
group % , then a suitable conjugate
subgroup c9 ¢ contains a=(a, 0, dss),
If €9 ¢ ‘contains an elements
(811, 8.2, £55)(¥0)we make & commutator of ¢
and ‘2™ ,

a8 = (1, o (i—an) 1)

Let M tend to — oo 1in the case @, >/ ,
and to +¢° 1in the case Q;;< | , then
it converges to ( [/, 6,2, / o
Hence (¢~ 4s not discrete and the
seme for ¢ . Thsrefore % does not
econtain such a element ¢ ( G, =+ 0 ),
and is commutative, which cannot approxi.
mate {T °

However, our problem is completely
solved for compact Lie groups:

Theorem 2. Every non-commutative
compact Lie group is not approximable by
finite subgroups,

Proof is easily established, if we
conaider the Levi decomposition of Lie
groups, and the commutativity of sclvable
compact Lie groups.

(%) Received March 7, 1948.

(1) L.Pontrjagin,Topological groups, p.l70.
(2) loc.eit.p.187.

(3) loc.cit.p.236.
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AN ELEMENTARY METHOD TO DERIVE THE
NORMAL FORM OF N-DIMENSIONAL REAL
EUCLIDEAN ROTATION

By Takizo MINAGAWA.

It is a well-known theorem that n-~
dimensional real orthogonal matrix A
can be transformed into a direct-product
of several 2-dimensional rotatlions and,
if it exists, one reflection, In this
paper an elementary geometric method is
explained. The essential point of this
method is to find the fixed planes of
the rotation.

Let X,Y %, ..., @5D,C .. be real
vectors in n-dimensional.real euclidean
space Rn , and let A,B,C, ... be real
orthogonal (n,n)-matrices, while small
‘Greek letters mean real numbers. We
use the ordinary symbols of matrix-cal-
culus, 1.0., @ and A mean the trans-
posed ones, A' is its inverse and
is the unit-matrix.

THEOREM. Let A  be 'any real ortho-
gonal matrix, i.e., A=A", Suppose that
X'AX with Ixl=1, attains the maximum

value A for x= Q 4 where ja| =1.
Then IAl=1 and
a., if A=1, Aa=2;

bo if A=-~1, A=-E ;
c. if -(<axi, Aa-22\Aa +a =0,
1.0., & and A
spen & fixed plane of A ,
Proof. Put
= max TAX,

(1) A jxi=41
Then it is evident that IAl=1. Since

the unit-sphere 8" in R. is compact,

there oxists at least one vector a
with |aj=2 1 , where
(2) A = dAQ,
We know that l:::i-ljl =|xy| if and _

only if x and y’ are linearly de-

pendent. Therefore if A=1, Aa=0,
1.2, & 1s a fixed point, If A=-1,
we have xX'AX=-1 for any x, Ixl=1,

l.60y A=-E , PFinally-if -l<a<l ,

two wectors a

and Aa are linearly
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indeperdent. So there exists in the
plane spanned by a and AG a none
vanishing vector b= Aa~Ag ortho-
gonal to a . Put

(3) =a+pb, -e9<pP<ton,

Then we have -
(4) XAx = dAa+2pd(AsA) b +p*PAD,

Since IbIS2 and |PAbIS2, A(A+ADD
is to be zero., For if 1t were not zero
we could easily constr}wt a vector 'li s
where IYyl=1 and AYy>A . This
contradicts the fact that A.—.m xAx
Y
in (1). The equality d/(A+A)b=0 ia
equivalent to

(5) o AQ - 2A0AQ + 00 =0,

Put

(6) z = Ao -20o + O,

Then we have by .(5)

(7) 0z=0, (Aa)yz =0, (ARa)2=0,

i.,6,, Z2'Z =0 and consequently &=0 ,
This means that the plane spanned by Q.
and Aa iz a fixed plane, Now we get
the results that we can transform A by
a real orthogonal metrix into the follow~
ing three forms according to the cases .
ey b. and c.}

a. A=1,
1o---0
o
TAT = B
o
b. A=-1, A=-E
C. -1<AL, [@s® ~4in 0 --- 0
And Cos@ D000 |
o ©
TAT=1{ ¢ (O
°o 0

where Cos@ = A . We can repeat the
processes upon B or ¥ to get
the final form:
(1
v t,
€osp - Mnd!
i@ €06 8;
s mainl
Al ebl
\ =)

where the final ‘={' which means the

reflection with respect to the hyper-

plane appears which and only when |Al=-)
=10’

if every o ‘l':

ST
Wi T e

ie denoted by

(%) Received March 7, 1949.
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