By Tsuyoshi HAYASHIDA.

That the fundamental group of a Riemannian surface has no relation other than

(1) $A_1 B_1 A_1^{-1} B_1^{-1} \cdots A_s B_s A_s^{-1} B_s^{-1} = E$

is recognized from the algebraic function theory. But in general it is hard to see whether or not certain given matrices considered as a multiplicative group have any relation such as (1). And when we represent a group by matrices, above all in the case of free groups, we must be careful about the existence of the intrinsic matrices-relations (for non-singular matrices) like

(2)
$$A^{\alpha_1}B^{\beta_1}\cdots A^{\alpha_{i-1}}L^{\lambda_{j-1}} = E$$

finite

In fact in the case of characteristic P_{p} there are such identities as (2). I shall prove that there are no such identities in the case of characteristic O or infinite field, or if "length" is short in the case of finite field. I shall show in a similar manner that a free group which is generated by countable elements, is contained in the unimodular group of order two whose components are integers.

Theorem. Let A, B, ..., L be matrix-variables of order n and let their components run through the field R having infinitely many elements. Then there is no system of a finite number of non-zero integers α_1 , $\beta_1, \dots, \alpha_i, \dots, \lambda_j \dots$ such that $A^{\alpha_1}B^{\beta_1}\cdots A^{\alpha_{i-1}}L^{\lambda_{i-1}} = E$ is an identity for non-singular matrices. Proof. When a system of integers $(\alpha_1, \beta_1, \dots, \alpha_i, \dots, \lambda_j, \dots)$ is given, we can find matrices A_0, B_0, \dots, L_0 , whose components are elements of k and $A_0^{\sigma_1} B_0^{\sigma_1} \dots A_0^{\sigma_1} \dots L_0^{\sigma_1} \dots \neq E$. It is suf-ficient to show this in the case n=2, for if n>2 we can choose $a_{1i}=1$ (i>2), $a_{ij}=0$ (i or j > 2) etc. Put $A = B^{x}C^{y}$ and let $x \neq 0$, $y \neq 0$, $x + \beta_i \neq 0$, $y + \gamma_j \neq 0$. Then, if A is substituted by $B^x C^y$ we find $A^{\alpha'} B^{\beta_1} \cdots A^{\alpha' i} \cdots L^{\gamma_i} \cdots = E$ is not reduced to the trivial case: E = EProceeding in this manner, the proposition will be reduced to the case when the number of matrix-variables is two. Now we have to show that there are

no identity like

(3)
$$A^{\alpha_1} B^{\beta_1} \cdots A^{\alpha_m} B^{\beta_m} = E$$
.
Suppose there exist such one. Put A_0
 $= \begin{pmatrix} i & j \\ 0 & l \end{pmatrix}, B_0 = \begin{pmatrix} i & 0 \\ \lambda & l \end{pmatrix}$ in (3). Then we obtain:
 $A_0^{\alpha_1} B_0^{\beta_1} \cdots A_0^{\alpha_m} B_0^{\beta_m} = \begin{pmatrix} 1 + \alpha_i \beta_i \lambda & \alpha_i \\ \beta_i \lambda & l \end{pmatrix} \cdots \begin{pmatrix} 1 + \alpha_m \beta_m \lambda & \alpha_m \\ \beta_m \lambda & l \end{pmatrix}$
 $= \begin{pmatrix} \alpha_i \beta_i \cdots \alpha_m \beta_m \lambda^m + \cdots & * \\ * & * \end{pmatrix},$
 $\alpha_i \beta_i \cdots \alpha_m \beta_m \neq 0.$

The polynomial $\alpha_i \theta_i \cdots \alpha_m \beta_m \lambda^m + \cdots$ must be l for all values of λ in \mathcal{B} . But if $m \ge i$ and \mathcal{R} contains infinitely many elements, this is impossible.

many elements, this is impossible. Remark. In the case of Galois field 12^{\prime} , if the order p^{S} of k is greater than the "length" m, the above proof is applicable.

When we take $H = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$ $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

any element M of the unimodular group can be expressed uniquely in the form

 $M = \pm H^{\alpha_0} T H^{\alpha_1} T \cdots T H^{\alpha_{m-1}} T H^{\alpha_m}$, in which we must take $\alpha_i = \pm 1$ or -1, but α_0 and α_m are possibly zero [Takagi: Shotd Seisuron Kôgi]. This is easily verified when we notice that

$$TH = -(| i), TH' = (| i).$$

If we represent M by $\pm (\alpha_0, \alpha_1, \cdots, \alpha_{m-1}, \alpha_m)_g$ then as an example, countable elements $(1, -1, 1), (1, 1, -1, 1, 1), \cdots, (1, 1, \cdots, 1, 1, 1), \cdots, q_m$ (1, 1, ..., 1, ..., 1, ..., ..., q_m), ..., generate a free group.

(*) Received March 7, 1949.

Tokyo Institute of Technology.