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1. Introductien. The present
short note 1s a preliminary report on an
attempt to generalize the ciasslcal exi-
stence theorem of enalytic functions on
closed Riemann surfaces”to the case of
the theory of functions of two complex
varianles. Let W( be a c¢closed analytle
surface, l.6. a 2-dlmensional {Sopologle
cally 4-dimensional) analytic manifold;
the local {analytic) coordinates on M
willl be denoted by ' %*. The poles
and zero-pcinte of a ong-valued meromor-
phic function $(% g*) defined on ¥l con-
atitute a l-dimensionsl anaiytic submani-
fold of ¥{ consisting of o finite number
of irreduclble closed analytlc curves
T, Dy, - T s> each of which ls
s poler or’sa Zero-point curve of H(xt &%)
The formal sum

D"‘Z“ﬂ‘kr};

of these curves multiplied respectively
by the multiplicity m, of [y is called
the. divisor of 4{z! ¥, where the multi-
plicities of the polar curves are to bs
associated with the negative sign, The
divisor D of f(£: 2*) can be also defined
in case f(z‘, %% is e many-valued meromor-
phic function, if the abseclute value
$(2 )] is one-valued on P . Such a
function 1s called multiplicative, since,
if one prolongs #$(2' 2*) analytically
along a closed contimuous curve ¥ , then
f(zi, %) is multiplied by a constant rfactor
A(¥) depending only on the homology
clags of ¥ on P . From the topclogical
viewpeint, the divisor ) 1s a 2-cycle on
M. It can be readily proved that the
divisor D of an arbitrary multiplicastive.
meromorphlic function on Y satisfieas

D= 0o (homology with divisicn sllowed),

Assume now that a ecycle D= Fm,[3
consisting of a finite number of irredu.
cible closed analytic curves [, j5 ---
is glven. Then, does a multiplicative
meromorphic function £(z% 2%) on M
having D as i%s divisor exist? In what
follows thls fundamental question will be
anagwered affirmatively under the azsumpe
tion that a positive definite Hermitlan
netric

a5 = Gaa drnd&f

without torsion is defined on W(. Im
this note we shall glve the main reaults
and the cutline of the proofs only. The
desailed proofs and more systemstic the-
ory of apslytic functions on analytic
surraces will be glven elsewhore,

2, Harmonle Integrals. Futting
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we introduce tue resl coordinates xi x% x}
x* on ¢ . Then® becomes 'a 4~dimension-
8l closed Risemannian manifold with the
positive definite metric

; BT i 1%

) dg* e 2’5"‘? dx®dFP = gj&dx’cl.x

{in what follows Latin subseripts j, &
etc, take values ranging from ! to 4 and
Greek subscripts o denote 1 or 2),
Now we shall consider differential
forms '

defined onN7, where p denotes the rank
of Y « The form 4 is sald to be mea~
surable, to have continuous derlivatives
or to be regulsr, if the coefflclents
'\}'3&“.2 are measurable, have contlinuous
derlvatives or regulsp analytic as funce
tions of the local coordinates x*x% x3 x*.
The derived form and the dual form of 4
will be denoted by 9 and ¢ , reosp.;
as is well known, they are deflned by

Ppta Ll g delataxty,

g (it
YyF= ST Pt fg“sﬂn(lz-wf‘f

q
X 8 Jja Ye..p [dxP... dx _];

where § = det(9gjg) o The dual deriva-
tion 4" and the Laplacian A are defined
by

= Jut¥,

A= -t oy



We introduce further.iore the product
Po'= ot P L
W? =? w‘_(p-ﬁ)!GY WJ"'&E---m

o ?E'"’" [dx‘i---«dxﬁj) Fsp

and the inner product

4 P [, v e

where G- means an arbltrary open suvset
of M . Especially if G=M, we write
(¥, 9) for (¥, @)y . Agaln we intro-
duce the “absolute value’

1
[y )| = [ (- yip) = [% Y. P i ]2

of ¥ at a point in M and, by its
means, define the norm ﬂ'\{l!lq_ by

g = J, 1917 dedat i’

In case G =M, we write I¥i for U P
We shall mean by ¢ C G that the clo-
sure of the set {4; Iy¥(pl4o} 1is con-
tained in o

A differential form ¥ 1s sald to
be regular harmonic 1n a open subset
of Wt , if admits continuous first
derivatives and satisfiles

"
Yy=0, w¢=o0

everywhere in G- « By a harmonic form
we shall mean a form % which is regu-
lar harmonic in M except for a nowhere
dense compact subset S of N ; then ¥
1s sald to be regular in M-8 and sin-
gular on S . Considered as a linear
functional of variable chains C , the
integral

fov

of a harmonic form ¥ 1is called a harmo-
nic integral., If 4 is regular harmonic
everywhere in WU , then [y 1s called a
harmonic integral of the lat kind., Be-~
sides the theorem of Hodge® concerning
the harmonic integrals of the lst kind,
we need following two theorems from the
theory of harmonic forms:

Theorem 1 {Principle of Orthogonal
Projections5’), Let & be an open sub-
set of W . If a measurable form
defined in G with i, <+eo satisfies
the “integral equations®

{ W, ") =o,
("P, ”‘1)@-‘2 [s]

for arbitrary forms A, M © &  Thaving
continuous second derivatives, then
i3 regular hermonic in (G . .
Theorem 2 {Existense Theopem” ).
For svery pechtin (¢ on W . the
stas one and only one harmon]
with Jell' 1< 400 satisfy
tegral equations”

() (elCy, Z,)mfc Z,

(2) (elCl1, wm)=o0,

where [ 1a an arbitrery form with cone
tinuous first derivatives satisfylng
#*7=0 and M an arbitrary form having
continuous second derivatives. e[(C]
is regular in WL except for the boundery
of (¢ . The period of the dual form

e*(Cl= Yell)

on an arbltrary (4 ~ p ) - eyele 7, is
given by the formula

@ [, €0 = 10z, 0,

where I{Z, () denotes the inkersoctlon
number of 7 snd C .

Por our purpose 1t 1ls convenlisni 0
uge the coordinates 2% F: 2% F' instend
of xt x? x3 x% "Then the dAiffsrantlal
forms can be writien as

1}/'3'9; tyu de®™ 4 "{4'5( dge

l Yh e bop U] 4 Y g BT Loy RO
ete,

Corresponding %o this, the pertial 4lf-
ferentlatlons 9/92%  3/3%% ere o be
defined as 3

| A-Eead)

etc,

Then, as one readlily infers, a function
£(24 B 22 E2) having conbinuous first de-
rivatives is & regular anelytic funchtion
of 2% &% if and only if 8f/3%% and 34/s%2
vanish identlcally.

A differentlal form of the type
& = §,dg™* will be called regular analytic
in o subdomain G of M if Yo = B, (x} 22)
are regular enalytic functions of g* =2
{whereas by a regular form we mesn a dif.
ferential form wlth coefficients which
are regular analytlc functlons of real
coordinates x* x® x? X*), By using the
hypothesis that the metric ds= :L%F;dzgd.i%ﬁ



has no torsion, it can be readily veri-

fied that every regular analytic form &
satisfles automatically

v$=o0,

Hence a regular snalytic form € in G
is regular harmonic if § satisfles #%§
=0, Thus the differential d$ of a regu-
lar analytic function #Hf= $(z! z*) of
', %> 1s always a regular harmonic form.
By an exact analytic form we shall mean
a form & = $ydx* which is regular anasly-
tic and satisfies #*$ = 0 1in M except
for a nowhere dense compact subset S

of ML with dim S£2. The integral

j@udz"‘

of an exact analytic form Q“dz“ is cal-
led a (simple) abelian integral., An
abelian integral 1s sald to be of the
first, second or third kind according as
it possesses no singularities, polar sin-
gularities only, or logarithmic singula-
ritles.

Lemma 1., A differential form of the
type & = $,dz™ having continuous first
derivatives 1s regular analytic in & if
@ satisfies #*F =0 in &G, &G being an
open subset of M{ . .

Proof., From "3 =0 follows 3%«/a&P=0
for &, =1, 2. Hence & 1is regular
analytic, q.e.d,

Lemma 2, If a differentlal form ¢
admits continuous second derivatives and
satisfles AY'= 0 everywhere in MW{ , then
4 1s regular harmonic everirwhere in M.

Lerma 37, If ¢ = pudz®+ psdE* is
regular harmonic in a subdomein” G of T,
then & = g.dx¥satisfies AP =0 in .

Combining this with Lemma 1 and Lem~
ma 2, we infer the following theorem of
W.V.D, Hodge: ) -

Theorem 3 . If ¢ = Pudz®+ @udiE* 15
regular harmonic everywhere in 47U, then

the integral
J udz®

is an abelian integral of the first kind,

§3. Abelian integrals of the third
kind. A compact subset [” of WL will be
called a closed snalytie curve, if, for
every point pe " , there exists a regu-
lar analytic function 51,(2‘, %%) defined
in a nelghbourhoocd N($) 'of $ such that
" coincides in N{p) with the zero-point
manifold of ﬁ?(z*, £2) 3 then

3’-1,(2‘, 23y =0
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will be called the local equation of [N

at % . Choose the local coordinates z!
z* so that P coincides with the orlgin
(0, 0), Then the set of all holomor~

phic functions

n L o 1 e -}

A, 8N = ot Feq BT F L Cupg¥ B e
defined in some neighbourhoods of $=(0,0)
constitutes a ring » without null divi-
sor, in which every A(z!g* with Ao, 00%0
i3 considered as a unit. As an element
of By ﬁ*(z‘, #%*) 18 decomposed into
the power product

fy (¥, 2 =Y, )T {50, 23] 77 (Ute, 014 0)

of irreducible factors $7°(a% 2*) , where
the decomposition is unique up to the
unit U2 € in 084 %P . In accordance
with this, " is decomposed in N($) into
the sum

VS DEVETEE v ["1:"’U -----

of the branches ]";” which are the zero-
point manifolds of the ‘factors F¥(a} 2.
Obviously the local equation f’p(lﬁ 23y=0
of " at P 1is equivalent to

fae g = TFPa v =0,

which will be cslled the minimal local

equation of J© at P . The minimal lccal
equation is characterized by the follow-
ing property: If i;(z‘, 2%) 1s represente

.ed as the product

Fhoxt 2 = gEs 2Rz, 2

of two functions g, f in 0, and g(2% 2%
vanighes on [” , then A 1is a unit in Ay,
1.0 £(0, )% 0 . By a suitable choice of
the local coordinates £i %*, each branch
J"f;’ can be represented as

¢ ztz tv
(4-)J

1 opoa Lot 4 74 Cut*h o (% 0)
) R

where t means the local uniformization
variable on '’ and v, p, @, p ----.8re
positive integers having no common dlivi-
gor such that 0< v < u < W< u’<---, The

exponent ¥ 1in (4) 18 called the multi-

pli?ity of p with respect to the branch
Ig?e "If, 1n N(P), J' consists of a

single branch r‘.;, and has the multi-
plicity 1 with respect to ['4 , then b 1is
called s simple point of 7 § otherwise %
is.a singular point, Obviously I has
only a finlte number of singular points.
A closed analytic curve J° is sald to be



jrreducible, if |7 can not be decompossd
into the sum of two closed analytie cure
ves TV, ™% ' . &n iprreducible clo-
ged analytic curve T can be considerad
as a closed Riemsni surface with the loe
cal uniformization variables % introduced
in (4). Evidently a closed analytic cure
ve 1s decomposed into the sum of irredue
cible closed analytlc curves.

Let D= Fangl'y, Dbe a cycle with
integral coefficients in Y consisting of
e finite number of irreducible closed
analytic eurves ['g , and let

5;&1’ (ﬁ‘z"is %) =0

be the minimal local equations of I et
4 (1f P does not lie on g , WO have
to put fiae=s L ). The analytlc curve com=
posed of 'Yy, [, -, Ty, - will be denoted
by {D} » Then we have .
Theorem 4. If D=3 mglj =0 (ho=
mology with division allowed); then there
exists on 7L one and cnly one exact ana-
1ytic form @5dx® =such that, for svery

penl , ghdz® 1s preprogented as
(53 ‘92 de¥ = 3, g dﬁ@g 53,&?

% zvegular"analytic form
in some M¥ighbourhood NP} of P end thalb
the integral

B %o gl s’

is one-valued on N .
Proofs By hypothesis, D 1is the
boundery of a 3-chsin C on (O]

D=vC.

Consider now the harmonlic form g Lo

=%e[C] introduced in Theorem 2., Then

1t foliows from (1) and (&) thet €*[C]
aatisfles

w* (e, ) "“5;,&"?,

af  (eIQ1, ¥'A=0

for arbiirary differentisl forms W= n*s
=A° ., 1In order to dekermine the
#gingularities®, of e[’ on ID| , we fix
an erbitrary point oniD} and com=
pere €{CJ) with the hermonic form

Gy = 5 I Ty dlog fiy

defined in N(p) . hssumo first that P
13 a simple point of 1L} o Then it can

—
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be readlly verified by a simple cale
lation that é‘? satisfles pie caleu-

J (6%’7 WGT?-‘;IDJ@!’
U, =0
for arbitrary differential forms i
£ ma 9, A with
MNP, AC N - We get theg':eforg "
(e*1C1~ G, wn)=o0,

(e*[CT - &, #¥A)=o,
Hence, by Theorem 1, €*{(’1~
harmonic in N{$) . » €LC]
Secondly, we consider the o
4 1s a singular point of |Dj. ?‘i:nthat
3ince, for a sufficiently small neigl’h

bourhood NP of P , ever
¥y point
F P , is a simple point of %‘Ejm’,nf'(cw,
G

follows from sbove result® ti 3 -
is regular harmonic in N(p)n—aPP e.cc‘ll’o
prove that €[C1- Gy 1s regular harmonic
also in b, 1t is sufficient %o consider
th9 case that lles on a single branch
5} of IDI . In M{$y, '] is represented

(‘3’,?, is regular

orpin - s
erC1= i-j;, w30, §) 18R]
P

+ rogular form,

whore Z,.(x, )= 4% s, £yrdnidx®
: 2 AT =B emifes ("ﬁ é)idxgdx

msans the elementary {8t ution of Lap%La«-
ce’s squation AZ =06’ . Choose the
local coordinates 2, £% with the origin
* 59 that the parametric representation
ofu f'? takes the form (4). Then, using
the explicit oxpression of e[C] men=
tioned above, we lnfer roadily

2 { o A
3&.5@]1*@(’%% , for #'=0,
while 1t 1s obwviocus that
. i
’G'?l “O(@), for zl= 0,
The difference
satisfies therefore also the inequality
TNES
n 1= o(;zg'), for &t=o,

On the other hand, ¢ 1is reguls
h¥: ] ar haprmo-
nic in MN(f)- ¢ and satisfio% arHe

ﬁé’nmw

§ 1s therefore ropresented as

< 4 o0,

Sty= e d3(o, X) + rogular form,



where 2(x, £) moeana tha elementary sca-
lar solution of A5 =0 , Tow (7) shows
that the coefliclent ¢, in this expres-
sion must vanish, since | B{(o, x3| ~ {l&t*
+12%%} 7! Consequently &= e[ — Gp is
regular harmonic elso in %, Thus we
conclude that, for every point p € M,
e*IC1 is represented as

(8) &1Ci= Gy + regular harmonic form

in a neighbourhovod N(P) of P ,
Now we write 4u,~ie*[(C3 as

4 12" Cl = gudz® - F dx*
and put
$= P dz'y:
Then, since
s =% 5?} = Zm&di’»ﬂj fé?' Z’m%dﬂog f:&z?,
it follows from (8) that

(19 & - Zmydlogfy,

i1s regular (with respect %o real coordi-
nates x! x% x3 x*) in N($», This shows
thet #*§ 1s regular everywhere in ML »
On the cther hand, & satlsfies, by
Lertr‘xma 35, 8¢ =0 in 3~ D], whence we
get

A'h’“@ = ﬁ.ﬁ'Aé = oh.

Thusg +*® aatisfies A¥§=o everywhore in
L. - Consequently, by Lemrma 2, " is
& harmonic form of the first kind. To
praove qr*c% =0 , it iz sufficiont therow
fore to show '
(1o 5‘ 7§ =0
Z

for every 2-cycle Z ,» Assuming that 2
meets with D] only in a finite number
of simple points of {D| , we infer from
the fact that the difference (9) 1s roe
gular in N{$) the oquality

[prre=anrt vz, m,

where I(Z,D) means the intersaction
number of 7 and I ., Now, sinceDwx o0,
we have  I{Z, D)=0 , proving (i0),

Thus we get 2*¢ = o0, and consequently,
by Lerma 1, @ = ¢, 4™ iz an exact ana~
lytic form. It is obvious that the ox-
act analytic form Q.dz* thus obtained
can be represented as {(5), but the inte-
gral mf?adg"‘ is not necesgsarily onse-

valued.
Since
S [ 1
R P b = g o Log ! .’f%«;..

roonlary harmonic form

in N{($) ; the harmocic integral ’Fufygdg“
is loeally one-voiued. Lho perlod

# Yor .
'AQﬂJ 4 Fut

on a lecvole ¥ dap%mﬂ,s only on the

homology c¢lass of 4 < Hence, by a

theorom of Hodge, thore exlots a real

harmonic form

q= e Fyda®

of tha first kind such that
o

@) “Js 1

for all l-cycle 3 .« On the other hand,
by Theovem 3, €ud2® 38 on everywhere roe
gular, cxact analytic form. Hence, pute
ting
Gp d&* = Puile - r ™

we obtain an sxact analiytic ferm @2&2“
having the proportios mentloned in Thae-
orem 4, whi’ s tho uniqueness of suech
ghdz® is cbvious, y.e.d,

" Now we shall evalucite the integral
gf g2 dg® o Flwat from {(3) follows

o [ g

120 3 gudas 2w 105, €,

( <9
To caleulate J), k., dz™
the hermenlc form

introduce

rd 11

o J52h
hag Ll

L o= Jd

Thon, uslng the identity

o N T & el
Lo oy e Y dE) = i dat by 4R

we goh
3 T e de®s 2 [ 0 ¥
(i 3) J\S'; o Z . Ah("‘ni' j‘?} 9. ’
iy %‘;f, Te{éf": RO frw'QEC]
t ;

Combined with {(31), {14) yvields
g " .
FRELIC welCi+q}=0,

prroving that ¢ is represented sa

15y 4= -2m /o elT] + 79,
vhore ¢ i5 & seslar harmonic functien



having logarithmic singulerities on ID] .
Now, using (1), (13) snd {(15), we gst
readily

;’IIK Ky dx% = ~ z'rc—j(d e* ¥,

Thus we conclude:
Theorem 5. For an arbitrary l-cycle
¥ on M(, we have

46) [ ghdst= m/T{108,C ¢ fe ey},

where C means a 3-chain whose boundary

isD : »C=D,

bviously [¢%dz* 1is an abelian
integral of the third kind,

§4. Maln theorem. The exlistence

of the multiplicative meromorphle funce
tion having the given divisor I} follows
now lmmedistely from Theorem 4. Indeed,
putting

2t 2%

F'D(z‘, gy = exp | j 9:2 dE“]

we ohtain from Theorem 4 the following
Theorem -6 (Main Theorem). Let

D= Zm&r‘{ be a cyclex ¢ on Y{ consiste

ing of irreducible closed analytic cur-

ves T'& with the minimal local équations

Fap (%) ¥ =0,

Then there exists one and only one mule
tiplicative meromorphic function FP(zt 2%
onM such that, for every point Pe Wl
P2¢z %% 1s represented in a noigh-
bourhood N(P3 of 4 as

Foe! 2% = Up(at 2% T{fptes 2 }he

(Uﬁﬁz%#o%

where Uy (%' %) 1s o holomorphic function
defined in Np) not vanishing at P .
Agaln, from Theorem 5 follows the
following
Theorem 7. If one prolongs F‘”(zi 2
along an arbitrary closed continuous cur-

ve ¥ , then FP(! 2% 1is multipliied by
the factor

2208) = exp am /T {1(%, ) +j'ce*1;x:z};
A =D),
I8, C)+ [, e*t31=0 (mod 1)
for all I-eyele B,

26

D=3

‘valued meromorphic functi

Inece
(%)
{

=

Aﬁ,‘,\n,\ﬁﬁ
0 M AR D G
LIS

10}
11

ey

LCorollary. In order that g cycle.

Mefa 2 ¢ ls the divisor of a onee
on on M, it is

ssary and sufficlent that
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