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1* Introduction The present
short note is a preliminary repor-t on an
attempt to generalize the classical exi-
stence theorem of analytic functions on
closed Riemann surfaces^to the case of
the theory of functions of two complex
variables

β
 Let KtL be a closed analytic

surface, i.e. a 2"dimensional {uopologi»
cally 4-dimensional) analytic manifold;
the local (analytic) coordinates on Ht
will be denoted by z

i

$
 %

%
 * The pbles^

and zero-points of a one-valued meromor-
phic function jH%\ %

x
) defined on Wl con-

stitute a 1-dimensional analytic submani-
fold of Wt consisting of a finite number
of irreducible closed analytic curves

ΠL, ΓZ Πl ------ ? each of which is
a pola'r or'a zero-point curve of $(%\ %

%
)

The formal sum

of these curves multiplied respectively
by the multiplicity m $ of Γ^ is called
the, divisor of j*iz\ g

2
*} * where the multi«

plicities of the polar curves are to be
associated with the negative sign* Th©
divisor D,of f(%\ t

&
) can De also defined

in case #(&* %
%
) is a many-valued meromor-

phic function, if the absolute value
\$(%\ Z

%
)\ is one-valued on 7ft * Such a

function is called multiplicative, since,
%f one prolongs f (jt* I

2
-) analytically

along a closed continuous curve %
 9
 then

-§{%\ %
%
) is multiplied by a constant factor

%(ί) depending only on the homology
class of % on

 /
}ft « Pt*om the topological

viewpoint, the divisor J) is k 2-cyclθ on
Tϊt. It can be readily proved' that the
divisor D

 oί
*

 a n
 arbitrary multiplicative,

meromorphic function on 1tt satisfies

X) vz 0 (homology with division allowed)

Assume now that a cycle P = Σ ^ Γ ^
consisting of a finite number of irredu-
cible closed analytic curves Γ

t>
 Tχ

f
""""

is given* Then, does a multiplicative
meromorphic function f (%

%

s
 %

%
) on OYt

having J) as its divisor exist? In what
follows this fundamental question will be
answered affirmatively under the assump"
tion that a positive definite Hermitian
metric

without, torsion is defined onHΐ. la
this note we shall give the main results
and the outline of the 'proofs only

β
 The

derailed proofs and more systematic the-
ory of analytic functions on analytic
surfaces will be given elsewhere*,

§2
β
 Harmonic integrals. Putting

we Introduce the real coordinates x
ι

f
 x^ χ

X* on Wt * Than W- becomes 'a 4-dimension-
al closed Riβmannian manifold with fch^
positive definite metric

(in what follows Latin subscripts J, -fe
etc, take values ranging from 1 to 4 and
Greek subscripts d

f
 p denote 1 or 2)

Now we shall consider differential
forma

defined on 1ft
 y
 where p denotes the rank

of <ψ * Tne form <ψ Is said to be mea-
surable, to have continuous derivatives
or to be regular, if the coefficients
Ϋj&o-Z are measurable, have continuous
derivatives or regular analytic as func-
tions of the local coordinates x

1
,** x\x\

The derived form and the dual form of ψ
will be denoted by u*^ and $ψ

 9
 resp j

as Is well known, they are defined by

where %*= da& ($)%,) . The dual deriva-
tion it and the Laplacian A &r® defined
by



We introduce furthermore the product

and the inner product

where (J means an arbitrary open subset
of 73Γt • Especially if Q-ftl, we write
(ψ, 9) for (ψ, 9 L . Again we intro-
duce the "absolute value*'

 ±

of ijί at a point ^ in
means, define the norm

£ and, by its

In case £ = 'ΪΫt, we write Iψl for iψδ^
We shall mean by if; c £? that

%
 the clo«

sure of the set {<}>; lψ(f)| 4 0 }
%
 is con-

tained in Q «
A differential form ψ is said to

be regular harmonic in'a open subset £}•>
of WC

 9
 if αjf admits continuous first

derivatives and satisfies

a 0 = 0

everywhere in Gf By a harmonic form
we shall mean a form ψ which is regu-
lar harmonic in Ύtl except for a nowhere
dense compact subset £> of Ht then *γ
is said to be regular in 1ft — $ and sin»
gular on S Considered as a linear
functional of variable chains C , the
integral

of a harmonic form ψ Is called a harmo-
nic integral. If ijr is regular harmonic
everywhere in 1tt

 9
 then /off is called a

harmonic integral of the 1st kind* Be-
sides the theorem of Hodge4° concerning
the harmonic integrals of the 1st kind,
we need following two theorems from the
theory of harmonic forms;

Theorem 1 (Principle of Orthogonal
Projections 5> )• Let C} *>s an open sub-
set of OVt c If a measurable form ψ
defined in £ with IjψjL < + a© satisfies
the "integral equations^

f ίψ,

for arbitrary forms λ, η C (J having
continuous second derivatives

#
 then 'ψ

is regular harmonic in (J
Theorem 2 (Existence fbeorei )o

For every p-chtίn C on Trt t there exi-
sts one and only one harmonic fopi-i e[ί
with II e ΓCΉ Λ < + βo satisfying the " 1 in-
tegral equations

>;

(ί)

where ξ is an arbitrary form with con-
tinuous first derivatives satisfying
1*̂2 = 0 and η an arbitrary form having
continuous second derivatives© βΓC!]
is regular in Ύtί except for the boundary
of C o The period of the dual form

on an arbitrary (4 — p 3 - cycle 2»
given by the formula

(3) - HZ, C),
where I(Z

9
 C) denotes the intersection

number of Z and C «
For our purpose it J.s convenient to

use the coordinates z\ Z
ι
 2

5
; S

f
- instead

of x* χ* χ\ χ\ "O?hen the differential
forms can be written as

Corresponding to this
f
 the partial dif-

ferentiations B/θjfc*, 3/31* ar© bo be
defined as

A ~»1 ( A.
351 "" 2. V Λ*i

etc.
as one Readily infers, a function

fe
1
, 5* £

a

9
 I

2
-) having continuous first de«

rivatives is a regular analytic function
of %\ %

%
 if and only if df/afi and af/ag

2
-

vanish identically©
k differential form of the type

$ ~ ΦciA** will be called regular analytic
in a subdoma3-n (^ of ΊtfL if φ^ ss φ

&
 {%*

 t
 ^

a
)

are regular analytic functions of %
A

f
 %®

(whereas by a regular form w@ mean a dif-
ferential form with coefficients which
are regular analytic functions of real
coordinates x^ x

a

3
 x^ X**) * By using the

hypothesis that the metric ά%
x
^ %q



has no torsion, it can be readily verir
fiβd that every regular analytic form $
satisfies automatically

Hence a regular analytic form $ in (J
is regular harmonic if $ satisfies

 t
ir

#
φ

as 0. Thus the differential d£ of a regu-
lar analytic function ί = $(Z\ Z

x
) of

Z
1
, x

2
" is always a regular harmonic form.

By an exact analytic form we shall mean
a form §=§0(^31* which is regular analy-
tic and satisfies tf*φ as o in ΎfL except
for a nowhere dense compact subset 5
of 7ft with dim $ £ 2 * The integral

of an exact analytic form φ^dfc* is cal-
led a (simple) abelian integral

o
 An

abelian integral is said to be of the
first, second or third kind according as
it possesses no singularities, polar sin-
gularities only, or logarithmic singula-
rities©

Lemma 1. A differential form of the
type § ss Φadfc* having continuous first
derivatives is regular analytic in Gj. if
φ satisfies ήt*ξ = o in Gj , (̂  being an
open subset of yfl .

Proof . Prom 1^$ «o follows 8 θ /
for βC, j& s 1, SL Hence $ is regular
analytic, q.e.d

β

Lemma 2. If a differential form τ|f
admits continuous second derivatives and
satisfies Δ ψ s 0 everywhere in Offt » then
ψ is regular harmonic everywhere in 7ft

 β

Lemma 3
7>

β
 If ψ = ŷ dLss** + φ&iz* is

regular harmonic in a subdomain (J of TfC,
then § = cpctdbfsatisfies Δ § ~ 0 in (J

Combining this with Lemma 1 and Lem-
ma 2, we infer the following theorem of
W.V*D. Hodge:

Theorem 3 . If ψ « φ* dz* 4 ?A«5* is
regular harmonic everywhere In 1τC , then
the integral

will be called the local equation of Γ
at Φ * Choose the local coordinates %\
%
%
 so that ^ coincides with the origin

(0, 0 )• Then the set of all holomor-
phic functions

defined in some neighbourhoods of ^ ( o , 0)
constitutes a ring ύ^ without null divi-
sor, in which every Ai^t

1
) with A(O,O)φO

is considered as a unit. As an element
of &f

 9
 ίφ(2

ι
, %

%
)
 i s

 decomposed into
the power product

of irreducible factors f^U* %
%
)
 9
 where

the decomposition is unique up to the
unit U(3* £

α
) in ώφ ̂

}
. In accordance

with this, Γ is decomposed in NC^O into
the sum

of the branches Γ^
J)
 which are the zero-

point manifolds of the factors f
ψ
ί%\ Z

x
).

l i fy*
 %p

Obviously the local equation
of Γ at ^ is equivalent to

* SL
%
)-0

which will be called the minimal local
equation of P at 1p . The minimal local
equation is characterized by the follow-
ing property; If f^ίZ

1
, %

x
) is represent-

ved as the product

of two functions 5, & in όφ and g(as* ̂
a
;

vanishes on Γ » then A is a unit in of,
i

β
e

β
 JtCO, 0) + 0 . By a suitable choice of

the local coordinates %% %
x
, each branch

£ can be represented as

(4)

where t means the local uniformization
is an abelian integral of the first kind. variable on Γi' and v

3
 μ

f
 μ\ μ'\ are

13. Abelian integrals of the third
kind. A compact subset Γ of Vt will b©
called a closed analytic curve, if, for
every point ήp 6 Γ » there exists a regu-
lar analytic function JU(fe

4
, %

%
) defined

in a neighbourhood NCt
 5 o f

 1*
 s u c n t h a t

Γ coincides in Hiΐp) with the zero-point
manifold of j^(a* H

4
) then

Γ
 9

 μ, μ\ μ\
positive integers having no common divi-
sor such that 0 < v <μ <μ'<μ"<~ — * The
exponent V in (4) Is called the multi-
plicity of ήp with respect to the branch
ΠfΓ If, in N(t># Γ consists of a
single branch Γ̂ j and 1p has the multi-
plicity 1 with respect to Γy , then ήp is
called a simple point of Γ * otherwise *p
Is.a singular point. Obviously Γ has
only a finite number of singular points.
A closed analytic curve Γ is said to be

23



irreducible, if P can not b© decomposed
into the sum of two closed analytic cur»
ves Γ

p
, Γ

f/
 Φ Γ An irreducible clo-

sed analytic curve p can bo considered
as a closed RJLemami surface with the lo^
cal uniformisation variables t introduced
in (4)« Evidently a closed analytic cur-
ve is decomposed; into th© sum of irredu-
cible closed analytic curves«

Let D ~ Σ ^ ^ Γ ^ be a cycle with
integral coefficients in 7ft. consisting of
a finite number of irreducible closed
analytic curves Γ^ $ and let

be the minimal local equations of P^ at
*P (if *p does not lie on F^

 9
 we hav®

to put feφa 1 )
e
 The analytic curve com-

posed of Πi, Pa
f
 - ,Γ^ —- will be denoted

by jD! Then we llave
Theorem 4

β
 If D ~ Σ

m
^ Γ ^ ^ 0 (no-

mology with division
31
 allowed) ̂ then there

exists on 7ft one and only one exac€
lytic form φjj i ^ such that, for ς
4> € 7Λ * ^SΓd^^ is represented as

in some neighbourhood Hiψ) of

the integral

U) 1

regular analytic fora

and that

is one-valued on 1fC «
Proof« By hypothesis

9
 D is tho

boundary of a 5»chain C on T/t s

Consider now the harmonic form β
^yeCCίj introduced in Theorem 2
it follows from (1) and (2) that

satisfies

Then

be readily verified by a simple calcu-
lation that (ftj, satisfies'

I ((Sj,, Λ \ ) ^ 0

for arbitrary differential forms %'X with
λ C N(ψ) We get therefore

regularHence, by Theorem 1
harmonic in Nίφ)

Secondly, .we consider the case that
J3 is a singular point of |BI Then,
since, for a sufficiently small neigh-
bourhood N(f>} of *p

 $
 every point qέfDlΛNff

q.Φ f̂> » is a simple point of |p| , it
follows from above result* that e^ίCl - β^
is regular harmonic .in f4(f) - *p To
prove that β*ΓdJ - 6^ is regular harmonic
also in *p , it is sufficient to consider
the case that j) lies on a single branch
ΓJp of ID I In MCf)

5
 ΘlCl is represented

as

regular

τnen»

where E
n
(x, I) « iSjAm

(
*' ̂ Cebc^x^

means the elementary solution of Lapla^
ce

5
β equation Λ 3 = 0

ί e )
 * Choose the

local coordinates z\ %
%
 with the origin

*p so that th© parametric representation
of Γψ takes the form (4)« Then, using
th© explicit expression of Θ ίCl
tionβd above, we infer readily

for

for

satisfies therefore also the inequality

while It is obvious that

The difference

ay
for arbitrary differential forms η'

Xssλ°
 β
 In order to determine the - ι* ' "

«sinβ^ilaritiβ3
81
, of ̂ ίC2 on ID! p ̂ © *ix On the other hand* <£ is regular harmo-

for o
s

singularitie, tC3 on ID I t>
an arbitrary point -fe on!DI and com
pare e*£C.3 with the narmonlc form

n other hand* $ is
:
 reg

nic in N ί ^ ) - ^ and satisfies

defined in NC^^ Assume first that ^
is a simple point of IB! « Then it can

is therefore represented as

a C
0
 dS(o,

 x
> +



where Ξ(x, %) meaπ3 the elementary aca-
lar solution of Δ Ξ = 0

 β
 Now (7) shows

that the 'coefficient C
Q

sion must vanish*, since j g (o, xί |
+ IZ^ΓΪ Consequently <f« e*ΓC3 - ?
regular harmonic also in φ « Thus we
conclude -that, for every point Ί> € Tί

*ΓC3 is represented as

valued©

C
Q
 in this expres-

(8) £*lCl = (5φ + regular harmonic form

in a neighbourhood
Now we write

and put

NCΦ) of *J5

4- regular harmonic form

in Mi*}*)
 9
 the harmonic integral

is locally onra-valued
o
 «Cho period

on a 1 »cycle ϊ depends only on the
homology class of ¥

 β
 Hence, by a

theorem of Hodge, there exists a reml
harmonic form

Then, since

it follows from (8) that

is regular (with reβpβct to real coordi-
nates x*, x* x\ x*) ίn M(f)e Thin shows
that ir*§ί is regular everywhere in ΎtL ©

h h d § tifi b
that ir§ί is regula y Ύt
On the other hand* § satisfies *> by
Lemma 3, Λ φ ss 0 in % £ - jD)

 f
 whence w©

get

^φ satisfies Δn^φsO everywhere in
Ύfle -Consequently, by Lemma 2

P
 iΛl ia

a harmonic form of the fir at klnd.
β
 *" To

prove IΪ*4 = O , it is sufficient there-
fore to snow

CIO) ss 0

for every 2-cycle Z Assuming that Z
meets with ID! only in a finite nυmber
of simple points of jDl ? we infor from
the fact that the difference (9) is Fa«*
gular in N(f) the oquality

*φ -ir*φ qr IίZ,D),
where 1(2,1^) means the intersection
number of % and D

 β
 Now

5
 since Dίs.0,

we have' K Z ^ D J — O , proving (10) *
Thus we get v*φ ss o , and consequently^
by Lemma 1, $ s= ĝ Jg** is an exact ana«
lytic form* It is obvious that the ex~
act analytic form 9^^* thus obtained
can be represented as (5)

p
 but the inte-

gral Ή&JpΦ̂ di** is not necessarily one-

of the fir at kind, such that

Cίi) 1&, f ^άz*&
Jγs*v>

for all 1-cycle 3 © On the other hand,
by Theorem 3^ It̂ dlf* Is an everywhere ro«
gular, exact analytic forrru Hence, put«»
ting

we obtain an exact analytic form ψ
having the properties mentioned in
ov&m 4kp whî .-ί the "uniqueness of such
5 * la obvious

6
 q*e d»

Now we shall evaluate the integral

9Z&" °
 F l r s t f r o s n {3)

 Allows

OZ)

To calculate 0J^
the harmonic form'

^ using the identity

we introduce

i

we get

Combined with (14) yields

proving that is .represented

α a scalar harmonic funetion

25



having logarithmic singularities on ID! «
Now, using (1), (13) and (15)j, we get
readily

Ί!hus we concludes
Theorem 5β For an arbitrary 1-cycle

g on Oft 9 we have

(16)

where C! means a 5-chain whose boundary
is D i vC*

8
 D

β

^bvlously X"φ5<l** Is an abelian
integral of the third kind*

|4# Main theorem The existence
of the multiplicative meromorphic func«
tion having the given divisor D follows
now immediately from Theorem 4* Indeed^
putting

we obtain from Theorem 4 the following
Theorem 6 (Main Theorem) Let

Ό = S ^ A Γ * be a cycle s» 0 on 1ff£ consist-
ing of irreducible closed analytic cur-
ves* Πfc with the minimal local equations

Then there exists one and only one mul-
tiplicative meromorphic function F

D
(fe* %

%
)

onHt such that, for every point ̂  £ JΫt ,
F*(9L

έ

i
 A

a
) is represented in a neigh-

bourhood Nί(̂ ) of ip as

( UjC*
1
, **)*<>),

where Uf>(£* £
a
) is a holomorphic function

defined in Nφ> not vanishing at f ..
Again, from Theorem 5 follows the

following
Theorem 7. If one prolongs f^C g" %*

along an arbitrary closed continuous cur~
ve 15 , then F

V
(M) Z*) Ss multiplied by

the factor

Iίί, C) +J e*m so (mod

( 1)

( 8)
( 3)
( 4)
(

Corollary. In order that a cycle
< ϋ a i V * * 0 is the divisor of β'one-
valued meromorphic function ontfl, i t is

1 tiβcessary and sufficient that
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