Messers. Ansal and Ito and others proved independently the following fact with help of an integral inequality.

Let within a set Ω whose total measure is 1, there be infinitely many subsets A_{i}, each having a measure greater than α. Then, for a given integer N and a positive number ε thero are N suitable integers $i_{1}<\cdots<i_{N}$ such that $m A_{i, n} \cap \cap A_{i N}>\alpha^{N}-\varepsilon$

The object of this note is to giva a more precise result by an arithmetical approach.

Theorem. Let within a set Ω whose total measure is 1 , there be n sets $A_{l}, A_{1}, \cdots, A_{n}$ whose mean measure equals to α. Then, if n is greater than a certain integer n_{0} which is determined by an integer $N(<n)$ and a positive number ε, we can choose a set of N integers $i_{1}<\cdots<i_{N}$ suitably such that
$m A_{i,} \cap \cdots A_{i_{N}}>\alpha^{N}-\varepsilon$ -
Proof. Let us consider a set B_{0} of points which do not belong to any one of A_{i} 's, and let $m B_{0}=f_{0}$. Let us consider a set B_{k} of points which belong to just k of A_{i} 's and let $m B_{k}=f_{k}(k=1, \cdots, n)$. Then the conditions can be written as follows:
(1)

$$
\left\{\begin{array}{l}
b_{k} \geqq 0 \quad(k=0,1, \cdots, n) \\
f_{0}+b_{1}+\cdots+b_{n}=1 \\
b_{1}+2 b_{2}+\cdots+n b_{n}=n \alpha
\end{array}\right.
$$

And the quantity in question

(2) $\quad\left(\begin{array}{l}N\end{array}\right) a_{N}=\binom{N}{N} f_{N}+\binom{N+1}{N} f_{N+1}+\cdots+\left(\begin{array}{l}n\end{array}\right) f_{n}$.

And conversely when subsets B_{k} are given satisfying these relations (1) and (2) (where $m B_{k}=f_{k}$), we can compose sets A_{i} by dividing B_{k} arbitrarily into ($\left.\begin{array}{l}n \\ k\end{array}\right)$ parta $C_{i_{1}} \cdots i_{k}\left(i_{j} \in 1,2, \cdots, n\right)$ and by collecting sets $C_{L_{1} \cdots i_{t}}$ whose suffices contain i to a set $A_{i}(i=1,2, \cdots, n)$. Now.

$$
\begin{aligned}
-\alpha^{N}+a_{N}+\varepsilon & =\operatorname{Min}_{\lambda=0}\left\{(N-1) \lambda^{N}-\alpha N \lambda^{N-1}+a_{N}+\varepsilon\right\} \\
& =\operatorname{Min}_{\lambda \geq 0}\left\{\sum_{k=0}^{n} f_{k}\left[(N-1) \lambda^{N}-\frac{k}{n} N \lambda^{N-1}+\frac{p_{2}}{n} \frac{h-1}{n-1} \cdots \frac{R-N+1}{n-N+1}+\varepsilon\right\}\right.
\end{aligned}
$$

In order that $-\alpha^{N}+a_{N}+\varepsilon \geqq 0$ it is sufficient that every bracket is positive or zero, as $f_{k} \geq 0$ - But

$$
\begin{aligned}
& \operatorname{Min}_{\lambda \geq 0}\left\{(N-1) \lambda^{N}-\frac{k_{n}}{n} \lambda^{N-1}+\frac{k}{n} \frac{k-1}{n-1} \cdots \frac{k-N+1}{n-N+1}+\varepsilon\right\} \\
& =-\left(\frac{k}{n}\right)^{N}+\frac{k}{n} \frac{k-1}{n-1} \cdots \frac{k-N+1}{n-N+1}+\varepsilon
\end{aligned}
$$

$$
(k=0,1, \cdots, n)
$$

and $\left(\frac{k}{n}\right)^{N}-\frac{k}{n} \frac{k-1}{n-1} \cdots \frac{f-N+1}{n-N+1} \leqq\left(\frac{k}{n}\right)^{N}-\left(\frac{k-N+1}{n-N+i}\right)^{N}$

$$
\leqq \frac{N(N-1)(n-k)}{n(n-N+1)} \leqq \frac{N(N-1)}{n-N+1} \rightarrow 0
$$

when $n \rightarrow \infty$. Hence we surely get $o_{n}>\alpha^{N}$ $-\varepsilon$ when n is greater than a certain value n_{0}. When we estimate the above inequality a ifttie more precisely, we shall see that it is always enough that n_{0} is not.less than $(N-1) \varepsilon$.

A typical example is an ideal mixture. In this case $m A_{i, n} \cdots \cap A_{i_{N}}$ ere all equal to α^{N}.

(*) Received March 7, 1949.
(1) Zenkoku Shijyo Danwakai-shi, 1948.

