PHE LIPSCHITZ CONDITION OF A FC{NCTION
AND FEJER MEANS OF FOURIER SERIES

By Tatsuo KAWATA.

. Let #x) bs a continuous function
satiafying the Lipschite condition of
order « , ( 0¢x<1)

(1) Ffex+h)=fmmy= O(ES)
(uniformly for smell 4 ), which we shall
denote as Lip o« 3 f(x) and let its Fourier
geries be

00
(1.2) Sy~ 524 f;}i(a.wmmla..sinnx)

If o.() denotes the Fejér mean of
(1.,2) and 0 <a< 1, then by the well known

S. Bernstein’s theorem (%), it holds
that

(1.3) f—oq=0(n™™)
uniformly. But this does not hold gene-

rally if =1 and we have only to see(?
that

(Led) fx)-cny= 0(,{'1‘,},,,).
This is also well known as Bernstein’s
roasult. HRegerding with this matter,
Prof. A. Zygmuna has recently proved the
following theorem, (3)

I. If #x) satisfies the Lipschite
condition

(1.5)

toxrk)-Far= 0(1hl)

and its Fourler series be of powe:r series
type, then

(1.6) Fx) =B )=0(n)

In § 2 of the present paper we shall
diascuss the condition for the validity of
21.6) and glve = slightly genseral theorem
Theorem 5),

Recently R. Salem and A. 2Z nd has
shown that (% yem

II. If «>0and

(17)  Fo0-s, (0= 0 (m~%)

uniformly, Wher® S(z) denotes the n-th

pertial sum of {1.2), then
(1.8) Fow-35.0=0m"),

Fexy, 3.0 ceing respectively the conju-

gate runction of F#x) gnd the partial
sum of the conjupate geries of +w)

(1.9) é (bocosnx—an sicnnx),

We now ask the following question: under
the assumption that

(1,10) Fx-qx)=0m*) uniformly,

does it hold that
(1611)  Feo)- o= 0*) uniformly,

where % is the Pejér means of (1.9) ?
If O«xc¢ 1, then the question 1s
affirmatively answered. For, by the
well known de 1a Vallée Poussin theorem(®),
$(x) belongs to Lipx , if (1,10) holds,
0<«x<1 1, Then by the Privaloff’s theorem(®)
Fx) also belongs to Lipx , and then
(1.11) hold by ths S. Bernstein’s theorem.
But if «=1, then the above fact
fails to be trus. Thls 1s seen by thse
following simple oxample;

(1.12) F(X)~ ;2::,(5/71 -nx)/nl,

(1.13) Ft0 ~ E (wsnx)/n*
L ¥4

Por denoting pertial sums and stér
meana of (1.12) and (1.13) DY s.cws EINED)
&and a(r) 4 F(x) respectively, we have

"
F - @, ) = ‘,f_“):; (Ft0-5, )
=y

= 20 gin v
trr =2Z
My vz Moy v



=1 < : ©o
w Z 0y Smix
v=3a van# V*
= Z
0L,

Since Zrsinvx/Y  is uniformly bounded,
and on the other hand,

- n
+(x)—o',ta)=;bl_§ (Fi -5 (0)

AR cos VX
T i
Kot valty Vv
= Lé(,,_,)wwl,_é'i cos VX
~ Cos VX
Va2 vE ST v

the second term of the right hand side
being 0(1/n) uniformly, while the first
term is of the order mildegnm , 80 X=
0. We shall now prove that if wwme Lip
1 and {1,10) holdg for &= 1. then
(};11) holds and #ux; e Lip 1. (Theorem
41,
If #me Lipdk, O<e< 1, thenFex) ¢
This is the Privaloff theorem

ahrove used. This doss not holds when
a= i, #e shall give the nocessary and
sufficiont condition for the validity of
this fact 1f «= l. {Theorem 2).

It 43 ¢to be remarked that the above
three questions are very closely connsec-
ted and the condition that

{1.14) J;" 2Bt 0, as g0

uniformly with respect toux, 9(4{}:.’{1-(1,15),;(,_9,
plays che central role, 2 - 2460}

Lip Ao

2. We shall prove the following
theorem thet the proof of which i3 es-
sentially same as ke that of I. But
for completenesa sake, we shall gilve it.

Theorem 1. In order that
{2.1) HFX) = Tpix) = OF70)

uniformly, under the assumption that

$(x) e Lip L » it is necessary and suf-
ficlient that the cm’zcliltzio?f§ (i.hs holds
uniformly in x

W6 have

T (g 2
) ~fe)= L [ Gep p) SRI(Re0E/2
n‘/o?z' ! (nes)sindtfa ¢

= TR T
(2,2) E/ﬁ +#[m~r,+r‘,,

say. Then since Fwellp l. Pt)=0(t)

and
w/n
(2.3) I =L[ ot)%tat=0ct)
Therefore

T
iyt [ g
O ) = f1x) = 2 zsin."t/ld
T/n

cos (e

T
=0(L)~ 41—
- o(n) 21e(nt1) _.!/Za’t) sint/a

{2.4) = 0(,—’;)-1\,/

say. We shall now eatimate the values
of I,, which is done by the precisely
similar arguments in Zygmund theorem T.
Since +#toelip lp, #(x) is absolu-
tely continuous and 1#x) &« M
almost everywhere. And then we have

/ TeosensIt 1T
(2:.8) I Ll ’m [7(&”_4_ mdg/n

w
+ "ty s fin-tryde [ OSnEIU 4,
2 fne) ;{”J } J:- $in2e/a / .

The second mean value theorem shows

T o$ (n+dlU
e Simrusa

©
du! < I;—‘i;;,.,,_,{casmmudk’

= 0(;%),

{t<E<m}, Hence putting this into the
right hand side of (2.5), we get

. T dt V-

(2.8) L=0(£)+0rLf,, Gg)=06%).
Since it is easily verified that the last
term of the left hand side of (2.4) dif-
fors from

T Pz, t)
L Pt
T/n

by the term of order ((//n) , putting
(2.8) into (2.4) we finally get

T
o; - =2
(%) = fex) T INnt1) -[q;‘.

(x, t.
2_12714“0(;'),
Thus the necessary and sufficient
condition for the validity of (2,1) is
that

T
P@t) .
_/7r n " padt= 00)

uniformly in x, which is equivalent to
that (1.14) holds uniformly. Hence our
theorem 1is proved.



3. Theorem 2. Let f(x) eLip 1
Then the necessary and sufficient condi-
tion that the conjugate function Fw
also belongs to i.ip 1 is that (1.14)

iformly in x.
holds mel—conjn}g'ate function of #x)
by definition

— T -—
Fox)=~ '-;L'gj () ’c““)dt'
Zr

is

2l t/2
and hence
T
- Fart)-Farh )
_ L | TO#t)mTarh,
Foxrh = "_[t 2 lantt-h)/2 at.
Since +m) ¢ Lip 1, we have

A Flart)—Fx)
(3.1) —4/.. mdf‘

uf(z, 2 ~ffl#‘) At -

2h
d,{':
24 2 lnt-A)2 .:!fm O(L)‘

1A
=f odt=0rh)
=24
{3.2)
Henco

= - ~af
(3.3) Fouhy-Foo - (], *_ékjiﬂhb-ﬂx)}-
- {cot Lcthr-eatk ] dt

+['f(xf‘-)-ff0)’£fcot5-"lf‘-/~] -t L tbeh)}dt + OCh).

The first term of the right hand side
equals to

..L:{f(l*f)-f(x)}{atf(t_k)_at%}dt
™
- { A { fa-& - fo}{ cot _% —cot Liteh)jdt

- T
—{A P, t)feot Lit-h) -cot%}df

+{Eﬁz-k~ -frojfcotLid-h) + cot £beh) 20t}

= e,

sey. Then we have easily

(3.4) J,- l"z,_t_‘_
2= 0f A Thateh)
For J, . we have

" r
T =-h {‘ i%xi)dt+0{_£klg¥;t){é; - £)fat)
-4 [T n
=k [ 0 )

(3.5) =-4 [ 2at)
i e dt + O (k).

4t) =04y

which tends to 0 as ny»e, myoco,
the series (4.1) is uniformly conver-
gent and we denote its sumgwx).

The second term of the right of (3.3) is
clearly

n
(3.6) O(k) z{k (f-k)((.‘./,,)“t = Oth),

Putting (3.4), (3.5) and (3.6) into (3.3)
woe have finally

- - T
f{fo)—ftx)a—Lj —-ﬁ:_’—’_t—z-df'i- O(k)
24

from which our theorem results.

4. In this section we shall give,
in the case « =1, the sufficlent cordi-
tion for the validity of (1.11) under
the assumption (1.10). Before it we
shall prove the following.

Theorem 3. If
(4.1)  F()-op(0= 0(L)

uhiformly, then
(4.2)  Fa-aGm0=01( —#——"’n")
holds uniformly.

Take an arditrary number o </3 <L,
and consider the series

o0
(4-1) ‘2' 71./3 A’L(I)/
where Aa(x) is the n~-th term of the Fou-

rier series of Ffix) , We denote the
(C.1) mean of (4.1) as T,x) and write

o0
R, (0= 2. Apx) = fex) - 5,0x)

K=nt)

Now we take x and «’ such that o¢Bc,
From {4.1), by de la Vallee Poussin’s
theorem(”, f&x ¢ Lip «/, and hence by the
well known theorem

FOO~ Sy x) = O(n“‘llo; n)=0(""),
Thus

n

2

K=m

"4 ~ B

xlx)=23 K {RA(’”'KA(H“O)

——-»J’R,..(x)—nf"RM,u)r f, {«/{(k-/)"f}R X
, K=mt; “

Ol m) + 00 k5)

+ 2 0P ork)

K=m+/

Thus

Writing



tke partisl sum of (4.1) asa

fux) , we
hews

”
Yix) ~ Talx) = -‘,;“z:; {po—t 0}
4

= f’z f VFA.,(!)

k=1 v ke
- L5 A R
o [{kw) Rer, 0+ {vé(.)-/)")&(x)J
k=4 Ve .
Since
- . K
% .,Zu,&*th ,‘(é {fo-5 00} = For - g ez,

we c¢an write,

n
PO~ T =L g0y o onen)
f(,,“);w h=y

(n n" oo
. {f‘{x}-—d;(x)} ";3'2 ('Z_‘,( v‘{_f(x)—o;(x)}dz‘//e
K=y V3K,
vV F) ~o)) Akﬂj

- L » " oo
w Z, OrakR)» gk 3 Z, ocavh
+ O (akP) 4
by (4.1), which is

= LA
O(’l"le :
Therefore by de la Vallee Poussin s the-
orem & ¢ Lip (/-p) and by Privaloff s
theorem the conjugate tunction Fix) be-
longs to Lip(l-p ), from which it result
thav

(4.2) G- Tuo = @(n™*h)

holds uniformly, %(z) belong the (C,1)
meana of the conjugate Fouriler serles of
P(x) °
Now, denoting n-th term of the con-
Jugate PFourier series of fw»

as Bn(l) )
fa)—&f.m=4—ii B
n p (22
K=/ v=ke)
= v Gv(l)—_._
™ &) vere VA

= V:k#[vﬂ(—n(X)—n*I(l))’ 7;(x)=2:v'33v11)
vaK

”
£ - e, =
n Z’ ! (ke1)B 7;41 x) +V=Zkfld {573) T (‘)j

= ;-:-I (':”)ﬁ(nwlffl'x)— ’7',:”(1)}

b
.t 5 S - F -
n “‘_'(k"){?")" LA (=5 50)

n
/ S
t ;‘L‘é i A(mﬁ)-/ku) (P)-T,, (x)

+ B A L) (goo-Fan)

vait3d
which 1s, by (4.2)

= 0l ) E L0tk L)
* A B0 ) £ 01 o )
= 068+ £ 25 00k)= Ot ogn)

which proves the theorem.
Next we now consider the additional
condition for that

(4.3) Fx-o,0 = o(k)

Then we got

Theorem 4- If #xx) e Lip 1 and
(4.1) holds uniformly, then {(4.3) holds
uniformly and further F(x» € Lip 1.

By theorem 1, (1.14) holds uniform-
ly and chus by thecrem 2 F(x> e Lip l.
This proves the latter part of the theo-
rem., Next since #wx) and #¢x) belongs
tc Lip 1, and the conjugate function of

Fix) 1is #u , again by theorem 2

- — —
4 Llntnf;zzt) lf””‘dt:O{/), 720
uniformly in x
1, (4.3) holds.
Lastly we mention that by using
theorem 2, we have the following gene-
ralization of Zygmnd s Theorem I.
Thecrem 5. If foo and T
to Lip 1, then (1.6) holds.
For 1f +t0 and {w) -belong to Lip
1, then by Theorem 2 (1,14) holds unifo-
rmly, and hence Theorem 1 shows our con=-
clusion.
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and hence by Theorem

belong





