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DEGREE FORMULAS FOR A TOPOLOGICAL INVARIANT OF
BIFURCATIONS OF FUNCTION-GERMS

NicoLAs DUTERTRE

1. Introduction

Let F = (f},..., /) : (K",0) — (K*,0), with 1 <k <nand K=C or K =
R, be an analytic map-germ with an isolated singularity at the origin. Let g:
(K",0) — (K,0) be an analytic function-germ. We are interested in computing
topological invariants associated to the mappings F and (F,g).

Let B, = K" be a small ball centered at the origin and let 6 € K k be a small
regular value of F. The Milnor fiber of Fis F~!(6)NB,. If k = 1, Milnor [Mi2]
proved that F~1(8) N B, has the homotopy type of a bouquet of x (n — 1)-spheres

where
. oF oF
u= dlmc@cn,o/<a—-x1,. ,a—xn)

These results were extended to the case 1 < kK < n by Hamm [Ha], who proved
that the Milnor fiber has the homotopy type of a bouquet of u (n — k)-spheres,
and by L& [Le] and Greuel [Gr] who obtained the formula

H(F") + u(F) = dime Ocr o/1,

where F' = (f},..., fyr_;) and I is the ideal generated by fi,..., f;_; and all the
k x k minors 0(fy,..., fi)/0(xy,. ., Xx,).

For the real case, it is difficult to give such precise informations about the
topology of the Milnor fiber. Nevertheless it is possible to compute some Euler
characteristics. For instance, if k = 1, the Khimshiasvili’s formula ([Ar], [Fu],
[Kh], [Wa]) states that

2(F7Y(0) N B,) = 1 — sign(—6)" deg, VF,
where y(—) denotes the Euler-Poincaré characteristic and deg, VF is the topo-

logical degree of the gradient of F at the origin.
It is also possible to compute the following difference

Dsu=x(F'(0)N{g =0} NB,) — x(F'(6)N{g <a} N B,),

for (,«) a suitable regular value of (F,g).
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In [Dut2], we proved that
D(;ﬁd = dlmR @R",O/Ig mod2,

where I, is the ideal generated by f,,...,f; and all (k+ 1) x (k+ 1) minors
g, fi,-- - fi)]0(xy, ..., x,,,), which generalized the case g = x? +---+x? al-
ready shown by Duzinski et al. [DLNS]. This is a general and effective formula,
but it is only a mod 2 relation and one may ask when it is possible to get a more
precise relation.

When k=n—1 and g = x? +--- + x2, according to Aoki et al. ((AFNI],
[AFS]), Dso = yx(F~'(0)NB,) =degy H and 2degy H is the number of half-
branches of F~1(0), where

H:(M

a(xl,...,x,,)

7fl"'>f;1—l>'

They generalized this result to the case g = x, in [AFN2] and Szafraniec gene-
ralized it to any g is [Szl]. For other results concerning the numbers of half-
branches of a real curve, the reader may refer to [Dal], [Da2], [Da3], [MvS].

When k=1 and g = x;, Fukui [Ful] stated that D;so = —sign(—5)" deg, H
where H = (F,0F /0xa,...,0F [0x,). We gave independently a similar result for
any g such that Vg(0) # 0 in [Dutl].

Fukui [Fu2] generalizes this formula when F is a 2-parameter bifurcation of
an n-dimensional function-germ, g depends only on the two parameters and (J,0)
is a regular value of (F,g). In this paper, following Fukui’s method, we will
give a degree formula for Dso in a more general setting.

First we introduce the situation and some notations. For an analytic map
F : X — R? on an analytic space X, we denote by X(F) the singular locus of F
and by Z(F) its zero locus.

Let x = (x1,...,x,) be a system of coordinates of R” at the origin, y =
(¥15-++,¥,) a system of coordinates of R? at the origin, and z = (z,...,2,) a
system of coordinates of R” at the origin. Let f : (R’ 0) — (R,0) be a
(p + q)-parameter bifurcation of an n-dimensional function-germ, g : (R?*7*"0)
— (R,0) an analytic function and h= (hy,...,h,): (RPT4" 0) — (R?,0) an
analytic map. We write g, = (dg/0z1,...,09/0z,) and

0z 0z,
h, =
0z1 0z,

We also use the similar notation, that is, f,, gx, hx, f}, 9y, hy, f.,... which mean
the corresponding submatrices of the Jacobian matrices.
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We will use the following notations:
Fs=f'©)Nh"'(0)N B,
Fs(g = 0) = FsN{g = 0},
Fs(g <0) = FyN{g < 0}.

where B, is a small ball centered at the origin and ¢ is close to 0.
Now we consider the map

H=H(g, f,h): (RFY7T" 0) — (RPTI*" 0)
(x,y,2) = (f,h,m, 1),
where m is a map (RP™7™",0) — (R7°!,0) defined by

(1) m=my q=2,
m = (myy + m3q, myz — Mg, Mg + mp3) q=4,

m = (my + m3a + msg + mqg, my3 — myq — ms7 + Mg,

mi4 + M3 + msg + Me7, Mis — Mye + M37 — Mag,

Mmie + Mas — M3g — My7, My — Mg — M35 + Mag,
myg + ma7 + mag + Mys) q=28,

where my; = a(gahaf)/a(x1 Yis yj)
We assume that ¢ = 2,4, 8 and that g and 4 do not depend on z. The latter
condition implies that g, and A, are identically zero. We also assume that
(A): H is a finite map germ at 0,
(B): (4,0,0) is a regular value of (f,g,h) when 0 < || « 1, and
(C): Z(m, f,,h)NZ; = {0} near 0,
where X, = {se B,||hy] =0 at s}. When p =0, we understand X, = 0.
We prove (see Theorem 4.3):

deg H = (—1)"" sign(—0)"{x(Fs(g > 0)) — x(F3(9 < 0))}.
Then we describe the case p=n=0. We obtain the following formula (see
Theorem 5.2):
—2degH = x(f~'(0)N{g = 0}NS,) — x(f~'(0)N{g <0}NSS)),

where S; is the sphere centered at the origin with radius &, £~!(0)N S, is the link
of f:(R%,0)— (R,0) and H : (R?,0) — (R?,0), x — (f,m) with m defined by
(1) and mij = 6(gaf)/a(ynyj)

It is proper to mention that recently Szafraniec [Sz3] has found a new
effective method for computing topological invariants of real analytic singular-
ities. He expresses

X(F'(»)NB;) and Dy

as the signature of a matrix whose entries are analytic functions in y.



DEGREE FORMULAS FOR A TOPOLOGICAL INVARIANT 445

The paper is organized as follows: in Section 2, we recall some facts about
Morse theory for manifolds with boundary; in Section 3 and Section 4 are
devoted to the proof of our main result; in Section 5, we study the case p=n=10
and in Section 6, we give some examples.

The author thanks Karim Bekka and Zbigniew Szafraniec for their advices
and for their interest in this paper. He is also very grateful to the referee for his
helpful remarks and suggestions of improvement.

2. Morse theory for manifolds with boundary

We recall the results ‘'of Morse theory for manifolds with boundary. Our
reference is [HL] where the results are given for a C* manifold M with boundary
0M. For simplicity we will present the results for manifolds with boundary of
type MN{g*0}, xe{>, <}, where M is a C* manifold and g: M — R a C*®
function such that M Ng~1(0) is smooth. In fact this is the case we need in the
following sections.

Let M be a C* manifold of dimension n. Let g: M — R be a C*®
function such that Vg(x) # 0 for all x e g~'(0). This implies that M Ng~'(0) is
a smooth manifold of dimension n — 1 and that M N{g >0} and MN{g <0}
are smooth manifolds with boundary. Let f: M — R be a smooth function. A
critical point of fiyniy=0p (T€SP. fimngg<oy) is @ critical point of fiyns-0p (resp.
Simnig<oy) or a critical point of fjyns-1(0)-

DerINITION 2.1. Let ge MNg~!(0). We say that g is a correct critical
point of fiyng=0y (resp. flangg<oy) if ¢ is a critical point of fyn,-1(0) and g is not
a critical point of f),,.

We say that g is a correct non-degenerate critical point of fyn-0) (resp.
Simngg<oy) if g is a correct critical point of flyngg>0p (T€SP. flangg<oy) and ¢ is a
non-degenerate critical point of fjyn,-1(0)-

If ¢ is a correct critical point of fjyn(y>0; (r€SP. fiungg<oy) then VS (q) # 0,
Vf(q) and Vg(q) are colinear and there is 7(q) € R* with Vf(q) = t(q) - Vg(q).

DerFiNiTION 2.2, If ¢ is a correct critical point of fjuny>0y then
« Vf(g) points inwards if and only if 7(q) > 0,
« Vf(g) points outwards if and only if 7(g) < 0.
If ¢ is a correct critical point of fjyn,<0; then
« Vf(q) points inwards if and only if 7(q) <0,
« Vf(g) points outwards if and only if 7(g) > 0.

DerFINITION 2.3. A C® function f: MN{g=>0} — R (resp. MN{g <0}
— R) is a correct function if all critical points of fjun,1() are correct. A
C® function f: MN{g=>=0} — R (resp. MN{g <0} — R) is a Morse correct
function if fjyn(g>0y (r€SP. fimnig<0;) admits only non-degenerate critical points
and if f admits only non-degenerate correct critical points.



446 NICOLAS DUTERTRE

ProposITION 2.4. For all C® manifold M and for all function g: M — R
such that Vg(x) # 0 for all x € g~'(0), the set of C* functions f: M — R such
that fiunggsoy and fiunig<oy are Morse correct functions is dense in C*(M,R).

We will denote y(M N{g+0}N{f?0}), where x,7 € {<,=, >}, by x, -, and
we will use the following result:

THEOREM 2.5. Let M be a C* compact manifold of dimension n and let g :
M — R be a C* function such that Vg(x) # 0 for all xe g7'(0). Let f: M — R
be a C* function such that fiynig»o0y and fiyngg<oy are Morse correct. Let {p;}
be the set of critical points of f|), and {4} be the set of their respective indices.
Let {q;} be the set of critical points of fiyng-10) and {p;} be the set of their
respective indices. Then we have
AXz> " Xz== Z (_1)21 + Z (=17,

2,2

1/f(p)>0 7/f(g)>0
9(pi)>0 (g,)>0
A -1 :
Az,< _Xz,=:("1)n Z (_1) +(_1)n Z (_1)”’7
i/f(pi)<0 1/f(g,)<0
g(p,)>0 7(g,)<0
and
<> " X<=— (—1)11 + Z ("l)ﬂja
1/f(p)>0 1/f(g)>0
9(p:i)<0 7(g))<0
Xex—A<==(D" D> (=D +(=D"" > (-1~ O
1/f(p:)<0 1/f(g)<0
9(p)<0 7(g,)>0

3. Preliminaries

Before starting our work, we recall a lemma in linear algebra (for a proof,
see [Mu]).

LemMMA (LAwW OF EXTENSIBLE MINORS). Let A = (ay); ., , be a square
matrix of order n. We denote by Ay the corresponding minors |a; ;. c; of 4
for I,J = {1,...,n} with {I =4J. We fix an integer k,1 < k < n, and consider
the submatrix B = (ay); ,_, , of order n—k+1 of A. Assume that we have
an identity between minors of B which is a homogeneous polynomial in a; for
i,j=k,...,n. Then the homogeneous formula obtained by replacing all the
minors Ajy of B in the identity by Ajj is also true, where I ={1,...,k—1}UI,
and J ={1,...,k—1}UJ. We remark that the Oth minor 1 of B in the identity
is replaced by Ak g, K={1,...,k—1}, so that the new formula becomes
homogeneous. O
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First we characterize X(g|r)\z(y)). For subsets X,Y and Z of B;, we say
X =7 except Z if X\Z=Y\Z. We set

gx 9y

Y=< seB|rank| hx h, | <p+2ats
Lo fy

LemMA 3.1, Z(gip\zg) = FsNZNZ(f,) except Z(g), when 0 < |0] « & «< 1.

Proof. Let X denote the set Z(h) NZ(g,h)\(Z(h)UZ(g)). Letse Z(gp\z()-
This means that s € Fs\Z(g) and

gx Gy 0
rank| A A, O | <p+2 ats.
L S L

If there exits ke {l,...,n} such that f, (s)#0, then rank(} gy) <p+1 at
s and s e X, since (0,0) is a regular value of (f,4) by condition (B). So it is
enough to show that X < {0} for sufficiently small B,. If X contains points
nearby 0, there exists an analytic curve y: [0,v[— X, y(0) = 0. Since y(¢) is in
Z(h) for t+#0, we have that {Vh;(y()),y'(t)> =0 for j=1,...,p. Because
y(t) € Z(g9,h)\Z(h) for ¢t #0, Vg, Vhy,...,Vh, are linearly dependent along y(¢).
Thus there exists o, j=1,...,p, so that V, = Z,p:1 o,Vh; along y(f). Then we
obtain

2 (90(0) = <Valr(), 70> = Zcx, DTRG0), 7 (1) =0,

and thus y(f) € Z(g), which is a contradiction. This implies that Z(gs,\z,,) is
included in F;NENZ(f,). The inverse inclusion is obvious. O

Lemma 3.2. X = Z(m) except Ty where i = (my);., .,

Proof. Tt is clear that £ < Z(fn). Now let se Z(n)\X,. Then rank(/,)

A
=p at s. If there exists ie{l,...,q} such that rank(hr hﬁ) =p+1 at s,

x Jy

v gy

>=p+1 at s and
L b

then since for all j#i, m;=0 at s, rank(
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9< 9y, ..
seX. If for all ie{l,...,q}, rank(hx hi) =p at s, then it is clear that

x Jy

9x gy
rank (h, hi) =p at s and seX. Hence Z(/n) =X except Z,. O
JA S

Lemma 3.3. FsNZ(m, f,) = FsNZ(m, f,) except Z.

Proof. The case ¢ =2 is trivial. It is clear that Z(m) = Z(m). Now let
se (FsNZ(m, f,))\Zx. Condition (B) implies that (6,0) is a regular value of

. he by 0\ _ he by _
(f,h), that is rank<ﬁfiﬂ)-p+1 at s and so, rank<fx fi)—p+1
hx

at s for f, vanish at s. Since s¢Z,, rank( ): p at s and there exists

f
ie{l,...,q} with rank(hf* ’}’) =p+1 at s. We can assume that i=1. If
x Jy;
we write f, = he by | we obtain that:
5§,
(2) my = (f;my, — fimy)/fy at's, 1<i<j<gq.
When p=0, this comes from the expansion along the first row of
fy! ff;'l ff“’j . . . .
9y 9 9y |- Applying the Law of Extensible Minors, we obtain the formula
S S Ay

(2) for general p.
We first consider the case ¢ =4. Because of (2), we have

myy + mp3 mi2 1 fl _f4 f3
mi3—my | =A| mj3 | ats, where 4= 7 fo h A
miq + my3 mi4 ‘\-f h A

Since |4| = (f12+f§ +f§ +f§)/f12 >0 at s, my; =my3 =myy =0 at s and, by
(2), mj =0 at s for 1 <i< j<gq, which means that se Z(m).
When ¢ = 8, similar computations shows

h —fh s —fs 5 K N
fo K —Hh fr K S5 S
AN T (R (R R PR
A==\ Jfo ~fr s Hh —fr /i —h
-5 K h L A fi S
fs s —fs /s S S S
~h ~f s L fs fi N
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and we have to show that 4| >0 at s. Actually, we will prove that |4| =
(2,8=1 flz)3 /f 16. Let us consider the following matrices

h fau firu —fou fsou —fyou freu
Joow  h —hHheuw frru —fyeu —fsou foou
~fiu fru fi fyu —fru foouo fsou
AWy == foru —fr-u fyou /i —frru firu —fau
—fs-u  fyeu  frou fyeu £ —fau —fy-u
foou  fsouo —foru —firu foeuwo fy —fru
—foou —foou —fsou foou  firu  fyu fi
and let P: R — R be defined by P(u) = |A(u)| for ue R. 1t is clear that P is

a polynomial function in # and that P(1) =]|A4| and P(0) =1. Now let us
compute P(u) for any u. Setting

- (2 12)

L f u/f1>
'‘B(u)B(u) = ( ! ,
B = f i oan
where ¢(u) =1+ (E,szz( f-w)f ? and I; is the unit matrix of order 7. This
equality comes from the fact that ‘B(u)B(u) = ({(Li(u),L;())) where L;(u)
denotes the i” column of B(u) and ¢, ) is the usual scalar product in R®. Then
we have

we obtain

L fiu/fy
Alu 2 - ‘ 1
A= fws g
and, expanding this determinant along the first row and the first column, we

obtain P(u)* = ¢(u)6, which implies that P has no real root and so keeps a con-
stant sign. Since P(0) = 1, we can conclude that |4] = ¢(1)* = (28, £2)°/ 78
O

P(u)* =

y

LeMMA 3.4, Z(9ir\z,) = (FsNZ(m, £,))\Z(9)-

Proof. By the three previous lemmas, we have
2(9[5\2@) = FsNZ(m, f,) except £,UZ(g).

But condition (C) implies that Z(m, f,, k) N, N f~'(d) = § when 0 < |§] < 1.
a

Keeping the notations introduced in the proof of Lemma 3.3, we write
he by,
9y,

gj_grg

for 1 <j<gq.
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Lemma 3.5. Let seX(gip\z,). Then fi(s) # 0 implies that gi(s) # 0.

Proof. By condition (B), se Z(h)\X(h) and then s¢ Z(g,h) otherwise g
would vanish at s, as proved in Lemma 3.1. This implies that there exists i €
{1,...,q} with g;(s) # 0. Now we see the following

g1 gi
= (=1)?|hyjmy, at s.
h

This is obvious when p=0. The case p > 0 is obtain by applying the Law
of Extensible Minors to the case p =0. Since seZ(g|FJ\Z(g)), we have that
my(s) =0. If gi(s) =0 then f(s) x gi(s) =0 and fi(s) = 0. O

From now on, we assume that s € X(g|z\z,) and fi(s) #0. We set y' =
(¥25---,¥,)- By the Implicit Function Theorem, there exists a map

®: Rp+n—1 — RP x R? (ylvz) = (¢x(y,’z)7 (ﬂl(y/,Z)),

defined by some domain so that the image of the map (y',z) — (p,.()',2),
o,(y',z),y',2) covers a neighborhood of s in F5s. We denote by J the Jacobian
of H, and set

G(ylaz) = g(¢x(ylyz)a¢l(ylvz)a yl7z)'

LemMA 3.6.  The function g, has a Morse critical point at s if and only if
H(s) =(0,0,0) and J(s) #0. In that case

sign Hess(G) = (—1)”"'sign(J) x sign(_Tgl> at s.
1
Proof. Let m = (mi,...,my), H=(h,f,m,f,) and J be its Jacobian.
9x 9y 0
For ke{l,...,n}, let y, = |k hy: 0| Letpu=(p,...,u, and
Loy g
he hy
s | £ 5 S
my m, m,
B By M

As Szafraniec does in [Sz2], we obtain

(_1)(p+1)(p+q+n—p—1)

Hess(G) = e |B| at s,
1
hence
(_1)(P+1)(4+n—1)
Hess(G) = R |B| at s.

1
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For ke{l,...,n}, wm="r1|
equality and using the fact that f_ k( s) =0, we obtain that

|B| = (=1)P" x g} x J at s,

g 0 ( = (-1)’f, -g1. By differentiating this

which gives

“1(=g1)" ;
Hess(G) = (—1)? o J ats.

1

Since ¢ is even, it remains to prove that sign(J) = sign(J) at s. When g =2,
this is trivial. For the other cases, we consider the matrix 4 so that ‘m = A'm.

Then we have
1 0 0
H= (0 A 0>i_1.
0 0 1

Differentiating this equality and using the fact (s) = 0, we obtain J = |4|J. As
we mentionned in the proof of Lemma 3.3, |4]| is strictly positive at s which
concludes the proof.

LemMma 3.7. If fi #0 at s then sign(g/f) = sign(g1/f;) at s.

Proof. We assume that there exists an analytic curve y:[0,1] — Z(h, f,)
NZ, t— p(t) with p(0) =0 and y(1) =s. Since fi(s) # 0 and g;(s) # 0, we can

assume that f; and g; do not vanish along y(f), t #0. Since A,(y(¢)) =0, j=
l,...,p we obtain that

1. oh .
(3) Z j fl ;Ejjj;”k along y([)? J= 17"'7])’

where / denotes the derivative by ¢, & = (x,09), i=1,...,p, e = (307,
k=1,...,q. We also have

.9
4) J= Zax, 1"‘;5—;("7;( along (1)

Then, solving (3) and (4) by Cramer’s rule, we obtain
1 -
7 Ihx|f _ka'”k )
1 k=2

p+i—1
6= (Jhx,hw S

fx, fyl Ty
where X, = (X1,...,X-1,X41,...,Xp). Then we obtain that

”k) ’



452 NICOLAS DUTERTRE

q

2 1
Zax Z SIS e,
=1 1 k=2

SO

=7 Ly along (1).

This implies the lemma. O

LEMMA 3.8. Assume that s is a non-degenerate critical point of g|g, such that
g(s) #0. Then

1. if g(s) > O then the function gr, has even (resp odd) index at s if and only
if H has local degree (—1)7"'sign(—0)" (resp. (—1)”sign(—9)") at s,

2. if g(s) < O then the functzon gir; has even (resp. odd) index at s if and only
if H has local degree (—1)""'signd™ (resp. (—1)?signd”) at s.

Proof. The proof is just a combination of the two previous lemmas. []

4. Main result

We will use Morse theory for manifolds with boundary. We need the two
following lemmas.

LemMa 4.1. Assume that (6,0) is a regular value of (f,h) for 0 < |d| <
ex 1. Then

- All correct critical points of gr, with g > 0 point outwards.

« All correct critical points of gr, with g <0 point inwards.

+ There are no correct critical points of g, with g = 0.

Proof. We prove the first point, the second will follow considering the
function —g. Recall that Fy = Z(f,h)NB,. Let w be the Euclidian distance
function and let

X = {xeFO\{O}ﬂ{g(x) > 0} | there exist 4,41,...,4, and u

p
with Vg = AVf + Z/lth,- +uVo and u < O}.
=1

It is a subanalytic set. If 0 € X, we apply the curve selection lemma (cf [Mi2]).
There exists y : [0,&]— X analytic such that y(0) = 0. Then we have (goy) =

{Vg(y),y'> and

(goy) = XKV/(y) y>+Zz<Vh ),7"> + Ve (y),y".
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We have (Vf(y),y’> =0 for foy=0. Similarly for ie{l,...,p}, <Vhi(y),7">
=0. Since {(Vw(y),y’> =0 for t€[0,&[, we will have

goy <0 for tel0,é&]

The function g oy is decreasing and so, for all e [0,&)], goy(f) <goy(0)=0.
But g > 0 along y(f) so 0¢ X. We can choose ¢ sufficiently small such that
correct critical points of g\ (0} point outwards. Choosing ¢ sufficiently close to
0, correct critical points of g will also point outwards.

We prove the third point with the same ideas considering the sets

Y. = {xng\{O}ﬂZ(gchere exist A,41,...,4, and p

)4
with Vg = AV/ + > LVhi + Vo and u> o},

=1

and
Y. = {x e Fp\{0} N Z(g) | there exist A,41,...,4, and u
p
with Vg = AVf + > 4Vhi+ Ve and u < o},
=1
and proving that 0 ¢ Y~ and that 0 ¢ Y_. O

LeMMA 4.2.  If there exists 0 such that (0,0) 1s a regular value of (f,h) then
we can choose 0 small enough and we can perturbe f into S in such a way that 95,
has only Morse critical points in F5\g~'(0), where F5 denotes f~1(5) N Z(h) N B,.

Proof. We give the proof for p =0 and g =2. The proof of the general
case is just an adaptation. Let

(Y1, Y2215+ s Zm i, U sy b)) = (032515 )
be a coordinate system of R**" x R**" and let
F(y,z,u,t) = f(y,2) +wmy; +wy, + izi + -+ + tuZn,
G(y,z,u,t) = g(y,2).
We have for ie{l,...,n), F,, = f, +t. We also have

(G, F
a—((yl—ayz)_) = Gy, (fy, +w2) = G, (fy, + ).

Write M, :6(G,F)/6(y1,y2) and X=Z(M12,Fz[,...,FZ"). Let
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My, M,
ley lez
=
any anz
It is the Jacobian matrix of (M, Fy,,...,F,): R*™" x R*™ - R™!. Tt is a
(n+2) x 2(n+ 2) matrix which has the following form
‘% - % G, G, 0 - 0
- % 0 0O 1 --- 0
I'(y,z,u,t) = . . . .
* * 0 0 0 1

Now let
e R2+n x R2+n N R3+n

(y,z,u,t) = (F(y,z,u,1),u,t),

and let us call 7 its restriction to X.

If X is included in G~!(0) then for all (d,u,t) € R""3, #7'(6,u,t) = G-1(0)
and this means that for all (J,u,7) € R™, g5, where £, (y,2) = F(»,z,u,1),
has no critical point in {g # 0} so g, 716) is'a Morse function in {g # 0}.

If X is not included in G~!(0) then X\G~'(0) is a manifold of dimension
2(2+n) — (n+ 1) = n+ 3 because for all (y,z,u,1) € X\G1(0), Gy, (y,z,u,t) #0
or G,,(y,z,u,t) #0 and then rank I'(p,z,u,t) =n+1, so X\G~'(0) is included
in the set of regular points of X. By Bertini-Sard theorem we can choose (J,u, ¢)
near 0 in R"" such that 7 is regular at each point in 7~'(d,u,7) N (X\G~'(0)).
This means that 915:4) is a Morse function in {g # 0}. O

THEOREM 4.3.  Suppose that f,h,g satisfy conditions (A), (B) and (C). Then
deg H = (=1)""" sign(~0)" {x(Fs(g = 0)) — x(Fs(g < 0))}-

Proof. Thanks to condition (A), gr\{0; has no critical point and then
choosing ¢ sufficiently small, we can suppose that 917-16) N Z(h) 0 {wr<e) admits its
critical points in F5N B4 because transversality is an open property. Thus the
critical points of 9116z n{w=g Aare correct critical points. By the two
previous lemmas, we can assume that gz is a correct Morse function, that its
critical points are lying within B,,, that the correct critical points of gz where
g > 0 (resp. g < 0) point outwards (resp. inwards) and that there are no correct
critical points of g,z where g = 0. We apply Theorem 2.5 to the manifold with
boundary Fs(g > 0) and we get

x(Fs(g =2 0), F5(g = 0)) = ny(g+) —n-(g+),
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where n,(g.) (resp. n_(g+)) is the number of non-degenerate critical points with
even (resp. odd) index of gry>0). In the same way, we have

2(F3(g < 0),Fs(g = 0)) = (=)' (ny(9-) — n_(g-)),

where n,(g_) (resp. n_(g-)) is the number of non-degenerate critical points with
even (resp. odd) index of gjz(4<0)-
We have

deg H = Z sign J(s)
seH (e

where ¢ is a regular value of H.

By Lemma 3.6, s is a critical point of gjs if and only if H(s) = (0,9,0).
Hence H~'{(0,6,0)} is the set of critical points of gr. Since g, is a Morse
function, its critical points are non-degenerate and by Lemma 3.6, J(s) # 0 for
se H™'{(0,6,0)}. We conclude that (0,6,0) is a regular value of H and

degH = Z sign J(s).
se H-1(0,6,0)
Conbining this with the above equalities and Lemma 3.7, we obtain the formula.

O

Now, if we replace condition (B) by the weaker following condition:
(B): (4,0) = (6,0) is a regular value of (f,h) when 0 < |J| < 1, we obtain

THEOREM 4.4. Suppose that f,h,g satisfy conditions (A), (B') and (C).
Then
deg H = (—1)""" sign(—6)"{x(F5(g = 0)) — x(Fs(g < 0))} + (5,0,

with s o) = >, deg, H(g, f,h) where § is a suitable perturbation of g such that
dir, is a Morse function and where the q; are the non-degenerate critical points of

dig, lying near Fs(g =0).
Proof. Choose o > 0 close to 0 such that 0 is the only critical value of gz
in [-o,«]. Then
x(Fs(g = o), F5(g = a)) = x(Fs5(9 = 0), Fs5(9 = 0)),
and
x(Fs(g < —a), Fs(g = —a)) = x(F5(g9 < 0), F5(9 = 0)).
Replacing f by a suitable perturbation if necessary we obtain
x(F5(g > 0),F5(g = 0)) = n.(ga) — n-(4),

where n, (g,) (resp. n_(g,)) is the number of non-degenerate critical points with
even (resp. odd) index of gjg(y>4. Similarly, we have

2(Fs(g < 0), Fs(g = 0)) = (1) (n(9-2) — n_(9-4)),
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where n,(g_,) (resp. n_(g—,)) is the number of non-degenerate critical points with
even (resp. odd) index of gjpy<-.. Now we perturbe g into § in a neigh-
borhood of F5(g =0)N B, in such a way that gz is a Morse function near
Fs(g=0). Then we will have

deg H = Yo I+ deg,H(G S h),
se H-1(0,8,0)/|g(s)|>a !

where the points g; are the critical points of §s, lying near {g = 0}. We conclude
as in the previous theorem. O

Remark 4.5. « When p =0, condition (C) is trivially satisfied.
« When ¢ =2, X = Z(m) and condition (C) is clearly useless.

5. A formula for the link in dimension 2, 4 and 8

In this section, we study the case p =n=0. We consider a coordinate
system (yy,...,¥,), ¢=2,4,8, of R?. and we define

H:R?— R,y (f,m),

where m is defined by formula (1), with my; =d(g,f)/0(y;,¥,), 1<i,j<q.
Keeping the previous notations, we get

THEOREM 5.1. Let 6 be a small regular value of f and let o such that |o| < |0|
and (8,%) is a regular value of (f,g). If O is isolated in H~'(0) then

—deg H = x(F5(g = o)) — x(Fs(g <))

Proof. In Lemma 3.6 the relation between Hess(G) and J at a Morse
critical point s of g becomes

Hess(G) = <— %f) :

Hence sign Hess(G) = —sign(J) at s. It is enough to use this relation and the
proof of Theorem 4.4. O

As a consequence, we get

TueorReM 5.2. If O is isolated in H™'(0) then
270N {g = 0}NS,) —x(f(0)N{g <0}NS,) = —2deg H,

where S, is the sphere of radius e.

Proof. Consider the manifold with corners M = f~'(6)N{g > a} N B,
where 6 and o are chosen as in the previous theorem. Let
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oM = (f'O)N{g=a}NS,)U(f @) Ng~ () NB,).

Smoothing the corners, there exists a compact manifold with boundary M such
that dim M = dim M and (M, dM) is diffeomorphic to (M,0M). Hence y(M) =
x(M) and x(0M) = y(0M). But M is odd-dimensional so y(dM) = 2x(M) and
then y(0M) = 2y(M).
Now, by Mayer-Vietoris Sequence,
2(OM) = x(f7'0)N{g 2 e} NS,) +x(f' ) Ng™ () N B,)

~x(f71 @) Ng (@) N Sy).

The latter Euler characteristic vanishes since f~!(6) Ng~'(«) N S, is compact, odd-
dimensional and smooth for sufficiently small 6 and «. So we get that

(/O {g=a}NB) = x(f'O)N{g =2} NS) + (/') Ng~" (%) N B.).
Similarly, we see that
2(f7'O)N{g < a}NB) = x(f7' @) N{g <} NS) +x(f 7' (@) Ng ™' () N By),
so, by Theorem 5.1,
~2deg H = 1(f ™ (0)N{g = 0} NS,) = x(f ' 0) N{g <} NS,).

Now Lemma 4.1 tells us that f~'(0), g~!(0) and S, intersect transversally so,
since 0 and o are sufficiently close to 0, we obtain that

2(7H0)N{g = 0}NS,) —x(f7(0)N{g <0}NS,) = ~2deg H. O

6. Examples

Here are some examples.
6.1. Example 1.

Let f,h,g: R® — R be defined in the following way
SOy v2,21,22,23) = 21 + 25 + 23 + X0+ pi22 + paz,
h(x, y1, Y2, 21,22, 23) = Y132,
9(x, y1, 2,21, 22,23) = y1 + »a-

Let § > 0 be such that —J is a regular value of . We show that (—4,0) is a
regular value of (f,h). The Jacobian matrix of (f,h) is

2x zp z3 2z1 2z+y; 2234,
0 y» » O 0 0 '

Let p be a point in f~'(=0)NA1(0). If p;zy— y,z3=0 at p then, since
117, =0 at p, f(p) =22 +z}+z3+ x> >0, which is impossible. Thus if p
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belongs to f~(=3) NA~1(0) then y,z; — y,z3 # 0 and (—d,0) is a regular value of

(f,h).
Now f~1(=0)Nh~'(0)Ng~'(0) is empty because if p belongs to this in-
tersection then y; = —y, =0 and f(p) >0, which is impossible.

Let H = (f7h>a(gafah)/a(x’yhyl);levf;zvfz;)' We have
H(x, y17,Vz,ZI,22,Z3) = (212 +222 +Z§ +x2 +y122 + yZZ37yly2’2x(y2 - yl)a
221,227 + y1,223 + »5).

It is easy to see that 0 is isolated in H~!(0) and we can apply Theorem 4.3 and
get
deg H = —{x(F_s(y1 + 2 2 0)) = x(Fs(»1 + y2 < 0))}.

Let us compute deg H. We have

2x Z2 z3 221 22+ 1 2z3 + B2
0 y». »n 0 0 0
2= ») “2x 2x O 0 0
J(H) = 0 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

An easy computation gives
J(H) = 32x*(y, + y1) +8(y2 — »1) (=¥ + »3)-
Let ¢ = (0,0,7#,0,0,0) with # > 0. Then pe H!(¢) if and only if
Az + X+ iz + yyz =0,
1y, =0,
2x(y, —y1) =m,
2z1 =0,
2z, + y; =0,
2z3+ y, = 0.

If y, =0 then z, =0 and 2xy, =75 Moreover z3 = —,/2 and z} + y,z3 =
—y3/4. Hence x?— y3/4=0 which implies that x = +y,/2. Since 5 >0,
we have x = y,/2 and y? =7#. Finally we have found that

H'(e)N{y, =0} = {(%ﬁ,o,ﬁ,o,o,o); (-4,0,—\/;7,0,0,0)}.

Similarly we find

Hl'(e)N{y, =0} = {(—4,#,0,0,0,0); (‘/7’7,—\/;7,0,0,0,0)}.
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It is easy to see that ¢ is a regular value of H and that deg H = 0. Hence
X(F-s(y1+ 3, 2 0)) = x(F-s(y; + ¥, <0)) = 0.

6.2. Example 2.

Keep f and 4 as in the first example. Let g = x2. It is clear that when

g=0, Vg=0 and (—6,0,0) is not a regular value of (f,h,g).
Let H = (f,h,0(g, /,h) /0%, 1. 92): s fops fo)- We have
H(X, y17J’2,Zl,227Z3) = (212 +222 + Z?? +X2 + Y122 +3}2231 y1y272x(y122 - y223)’
221,222 + yy, 223 + p5).

It is easy to see that O is isolated in H~!(0) and we can apply Theorem 4.4 and
get
deg H = —{1(F_5(x* = 0)) — x(F-5(x* < 0))} + 1(_s,0)-

Let us compute deg H. We have

2x Z z3 221 2z3+y; 2z3+ ),
0 y2 yl 0 0 0
2(y1z2 — yaz3) 2xzp —2xz3 0 2xy1 —2xy,
H) =
J(H) 0 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

An easy computation gives
J(H) = 16x*(y3 = 2p2z3 + ¥ — 2122) +8(3122 = 1223) (= ¥1 + 33)-
Let ¢ = («,5,0,0,0,0) with «,f>0. Then pe H '(¢) if and only if
zf—i—z§+z§+x2+y122+y223 =a,
1y =P,
2x(y122 — yo73) = 0,
2z =0,
2z, 4+ y, =0,
2z3+ y, =0.

If x = 0 then, since z; = —y,/2 and z3 = —y,/2, we get —y? — y3 = 4o, which is
impossible because « > 0. So if pe H !(¢) then x #0 and y;z; — y,z3 =0.
Since z; = —y,/2 and z3 = —y,/2, we obtain y? = y3. But >0 and y, and y,
have the same sign. Finally we find that y, = y, = ++/f, x> = a + /2, which
we write x2 =y, and
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it ={ (vpo - -YP): (—vrvavaa - Y - F)

(v7-- B B0 L) (v~ vB0 L YF) |

Now it is easy to see that ¢ is a regular value of H and that deg H =4. Thus we
find

—x(F_s) + x(F-s(x = 0)) + p_s,0) = 4.

6.3. Example 3.

Let f(y1, ¥2, Y3, ¥a) = ¥i + ¥3 + 3 — vi and g(y1, ¥3, 3, ¥4) = Y132 + ¥3¥s-
Let H be defined as in Section 5. We have

H(p1, v2 v3, ¥a) = (W3 + p2+ ¥2 = y2, =293 + 22 — 293 — 292,49, 13, — 41, 74).-

Clearly H~'(0) = 0. Furthermore deg H = 0 because H~'(0,$,0,0) =0 if 8> 0
and Theorem 5.2 gives

270N {g = 0}NS)) —x(f(0)N{g <0}NS;) =0
where S? is the 3-dimensional sphere with radius e.
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