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BOUNDEDNESS OF SOME SUBLINEAR OPERATORS IN
WEIGHTED HERZ-TYPE SPACES

SHANZHEN Lu*, K6z0 YaButa! AND DAcHUN Yanc!

Abstract

In this paper, the authors first establish the boundedness of sublinear operators on
the weighted Herz space with general weights. At the extreme case, the authors show
these operators are bounded from the weighted Herz space to the weighted weak Herz
space. Moreover, the authors also discuss the boundedness of the local Calderén-
Zygmund operator of the non-convolution type on the weighted Herz-type Hardy spaces
and show that these operators map the weighted Herz-type Hardy space into the
weighted weak Herz-type Hardy space at the extreme case.

1. Introduction

Let By = B(0,2%) = {xe R" : |x| <2} for any ke Z and Ry = By\Bi_1.
The following weighted Herz space 1s introduced by Lu and Yang in [11].

DerFINITION 1. Let e R, 0 < p, ¢ < o0, w; and w, be any non-negative
weight functions. )
(a) The homogeneous weighted Herz space K°7(wi,w;) is defined by

K;*”(wl,wz):{f : f is a measurable function on R" and ||f||K;.p( ) < oo},

w1, w2

where
1/p

0
111k 20 = § D 1BV 1 xR M ey

k=—0o0

with the usual modifications when p = oo and/or g = co.
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392 SHANZHEN LU, KOZO YABUTA AND DACHUN YANG

(b) The non-homogeneous weighted Herz space K*?(wi,w;) is defined by
K*?(wy,mp)={f: f is a measurable function on R" and | f| =~ < o0},
q Ky P (wr,002)

where

/p
”f“K Py, wp) — {”fXB()”L‘l (R™) + Z [wl(Bk acp/nlleRk“ R")}
with the usual modifications when p = oo and/or q = .

Here and in what follows, for any non-negative weight function w, any
measurable function f on R” and any g € (0, 0], we write

1/q
1N e rmy = {L" |f (x)]e0(x) dx}
and
I/ N wearry = ili[o) Ao({xeR": |f(x)| > 1}V

with the usual modification when ¢ = co. If w(x) =1, we will denote LI (R")
and WLJ(R") simply by LY(R") and WLI(R").

Obviously, if a = 0, then Kg’q(col,coz) K (wr,w2) = (R”) for any g €
(0,00]. In what follows, if w;(x) = wy(x) =1, we will denote K" P(w;,m,) and
K“ "P(ewy, ;) simply by KOC P(R") and Kp P(R”)

Let T be a sublinear operator satlsfymg that for any integrable function f
with a compact support and x ¢ supp f,

M) rrise| 2,

where ¢ is independent of f and x. In [11], [10] and [8], such a sublinear
operator is proved to be bounded on K“ P(R") and K}*?(R") provided T is
bounded on Lq(R”) 1<g<o0,0<p< % and —n/q < %< n(l —1/q). Some
weighted version of this is also considered by Lu and Yang in [11]. The first
target of this paper will extend the result in [11]. In other words, we will much
relax the restriction on the weights; see the following Theorem 1.

Also, a sublinear operator satisfying (1) and being bounded on L?(R") maybe
is not bounded on K°‘ P(R") or KpP(R") for 0< p< oo, 1 <g< oo and a=
—n/q or a =n(l — l/q) see [11], [8 ] and [10]. However, in [6] and [7], Hu, Lu
and Yang introduced the weak Herz space and proved that such an operator is
indeed bounded from K;'~'/9-7(R") to WK'~'/9-?(R") or from KU Vap gy
to WK!"V9-P(gr) 1f0<p< 1 and 1 <q< oo. But, this is not true for o =
—n/q or p > 1; see [7] for some counter-examples. The second purpose of this
paper is to establish the weighted versions of these results in these extreme cases.
First, we introduce the following weighted weak Herz space.
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Let w,; be any non-negative weight function. For k€ Z, ¢ >0 and any
measurable function f on R", we define

D, (0, f) = w2({x € Re : | f(x)| > o});
for ke N, let D~kAw2(a,f) = Dj o,(0, f) and

Do,w,(0, f) = wa({x € By : |f(x)| > o}).

DEerFINITION 2. Let aeR, 0 <g< o0, 0 <p < 0 and w;,w; be any non-
negative weight functions.
(i) A measurable function f on R" is said to belong to the homogeneous

weighted weak Herz space WK;’P (wy, ) if

o 1/p
”f”WK;‘ Py, ) = SUP /1{ Z [001(Bk)]ap/n[Dk,wz(/l,f)]p/q} <
>0 k=—cc
with the usual modification made when p = co.
(i) A measurable function ' on R" is said to belong to the non-homogeneous
weighted weak Herz space WK (wi,w;) if

0 1/p
1A k2 (@) = sup i{z [1(B)] "Dy, (;L,f)]p/q} <%
>

k=0
with the usual modification made when p = 0.

If wi(x) =wy(x)=1, we will denote WK;’p(col,a)z) and WK ?(wi,m)
simply by WK';“" (R") and WK ?(R") which are introduced by Hu, Lu and
Yang in [6] and [7]. Also, WKD%(w),wp) = WK} 9(w1,,) = WLE (R") for
any ¢q € (0, 00).

The third purpose of this paper is to relax the restriction on the weight of the
weighted Herz-type Hardy spaces studied in [12]. That is, we shall establish the
atomic decomposition for the weighted Herz-type Hardy space with more general
weights. Using this atomic decomposition, we shall establish the boundedness of
local Caldrén-Zygmund operators of non-convolutional type from these weighted
Herz-type Hardy sapces into weighted Herz spaces or into weighted weak Herz
spaces at the extreme cases. Moreover, if we further suppose that these operators
satisfy a vanishing moment condition, we then shall show that they are indeed
bounded on the weighted Herz-type Hardy space or, in the extreme case, from the
weighted Herz-type Hardy space into the weighted weak Herz-type Hardy space
whose definition will be given later. Our results of this part extend the cor-
responding results in [7] to both non-convolutional types and weighted versions.

Finally, we recall the definition of the weight as follows. Let 1 <p < 0.
Following [5], a weight @ > 0 is a Muckenhoupt 4,(R") weight if for any ball B

-1

() G o) =
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with ¢ a constant independent of the ball B. The class 4;(R") is defined by
letting p — 1, namely,

é] w(x) dx < cessinfye po(x)
B

with ¢ independent of B. The smallest value of ¢ satisfying the above inequal-
ities is called the A,(R")-constant of w. The following properties for 4,(R")
weights will be repeatedly used in this paper; see [5], [15] for their proofs.

LemMA 1. Let w e Ap(R") for some pe[l,00) and B be any ball. Then
(i) for any measurable function f on B,

1/p
57 | 170l < o) (j ) Peo(x) dx) ,

where c¢ is independent of f and B;
(ii) if E 1s a measurable subset of B, then

where ¢ is independent of B and E,
(iii) there exists a 6 > 0 such that if E is a measurable subset of B, then

where ¢ is independent of B and E.

Throughout this paper, ¢ always denotes a constant which is independent of
the main parameters, but may vary from line to line.

We also remark that there is a similar result on the non-homogeneous Herz-
type space for any of our result on the homogeneous Herz-type space. For
simplicity, we only state our results in the homogeneous Herz-type version.

Acknowledgement. The authors would like to express their deep thanks to
the referee for his/her several valuable comments on this paper.

2. Boundedness on weighted Herz spaces

We begin with the boundedness on the weighted Herz space K 7 7 (w1, 07) for
the sublinear operator satisfying certain “size” conditions.

THEOREM 1. Let w € 44, (R"), 02 € 44, (R"), 0<p <0 and 1< q< 0.

If a sublinear operator T is bounded on LY (R") and satisfies (1), then T is also
bounded on K" (w1, ;) provided that wi and w, satisfy either of the following
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El) o=y, 1 <qu <q and —nqe, [q < 24, < n(1

- qwl/

q9);

i) 1 <qu <0, 1 <qy, <q and 0 < agy <n(l —gu,/q).

Proof. In what follows, let y, = xg, for any k€ Z. We write

o0

“Tf“K;"’(wl,wz) = { Z

k=—00

< c{ i @1 (By)] /"

k=—00

+{§;

k=—o0

=E| + E, + E;.

1/p
[w1 (Bk)]ap/nH(Tf)Xk“Lq ,(R") }

k=3
Z ”Xk(TfXI)”LZ,Z(R"

I=—o0

BigEe

k=—c0

v

(5

I=k+3

395

o

By the L, (R")-boundedness of 7, we are easy to obtain a desirable estimate

for E;.

For E;, when x € R, and / < k — 3, by (1) and Holder’s inequality, we have

Tl <c| 2

SW

C
< Skn “le”LZ,Z(R") (JB

< "2(1_’()"||f)(1||L;g2 (R")

since w; € A¢(R"). Thus, by age,, < n(l

o k-3
Er< C{ > (Z [oo1 (BN /2l g, 27" [ZZ((Z’;))

k=—o \I=—

k=—o0 —0

J £ ()l dy
R,

1

1

)]1/q’

[w2(B;

s 470 )’

—4w,/q), we have

!

@ (By)

I

w(Br)

© k=3 py /P
{Z ( o B 2t z<k-1><«qw.+nqwz/q—n>)}

Nl
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=) k=3
of 3 (X @ 1l o

k=—ow0 Nl=—ow0

/p
« 2k=D)(2q0, +nqw2/q—n)P>} , f0<p<l

© k-3
{ > ( > (1Bl gy 24D +nqwz/q-n)p/z)

k=—w \/=—w

i3 plp'\1/p
% (Z =D (aq., +nqw2/q—n)p’/2> } , ifl<p<oo
I=—o00

{ > BN 18y e
I=—00

IA

" 1/p
% Z (k=) (agu, +nqw2/q—n)P> } , f0<p<l
(k I+3

IA

{ > LBl o

I=—0

© 1/p
X ( Z 2(k_1)(“qw1 +"qw2/q_”)P/2> } , if 1 <p < 00
k=143

1/p
< { S [ B fnlly (R,,)}

l=—0

= c”f“K;"’(wl,wz)’

where, and in what follows, 1/p+1/p’ =1 and we used the fact that o« + n/q;
>0 when w; =w; and a« >0 when w; # w,. So far, we have obtained
a desirable estimate for Ej.

For the estimate of Ex, when xeRk and / > k+ 3, by (1), we have

(/1) )] j
C
<3

|x — yI
j )] dy

1/
< Sl e (L [m(x)rl/@-“dx) ‘

||le”Lq (R™)
[wz(Bl)]‘/q ’

!

Nm
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since w; € A4(R"). Thus, we have

A 4/ w1 (B)] " Ta(B] 1\
s £ (S vatcon [5G )

k=—00 \I=k+3

© © pyU/p
Sc{ > (Z [wl(Bln“/"nfx,ung(Rn)2<""’)"‘5'°‘/"+"2/‘”) }

k=—o0 \I=k+3

c{ i ( i [(Ul(Bl)]ap/nlle/llig2(R")

k=—o0 \ I=k+3

1/p
% 2(k—1)(510!+52n/q)17> } , f0<p<l

IA

c{ > ( > [co,(B,)]“"/"||fx,||’£(.,”2(m)
k=—o0 \ I=k+3

o p/p'\1/p
« 2(k—l)(6|a+62n/q)p/2< Z 2(k—1)(51a+§zn/q)p'/2) } , if 1 <p<®
I=k+3

C{ Z [1(B)))] ap/n“f)(l”’;ig)z (R")

l=—w

1-3 r
« < Z 2(k-1)(5,a+ézn/q)p>} , f0<p<l

k=—o0

IA

o0
c{ > o (Bl)]ap/nllf)a”ﬁiz R

I=—c0

3 1/p
y ( Z 2(k—1)(610¢+52n/q)17/2)} , ifl<p<oo
k=—o0

w 1/p
< { ) [wl<B,>1“P/"||fx/uiw}

I=—0

= c”f“K; P(w],w2)7
where 6; >0, J» >0 depend only on n and the 4y, (R")-constant and the
Aqw2 (R")-constant, and J; =, when w; = w;.

We leave the case p = oo to the reader.

This finishes the proof of Theorem 1. O

We remark that the condition (1) can be replaced by more general conditions;
see [10].
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On the end cases of Theorem 1, we have the following conclusion, which can
be regarded as a weighted version of Theorem 1 in [7].

THEOREM 2. Let w1, € A1(R"),0<p<1,1<g< o0 anda=n(l—-1/gq).
If a sublinear operator T is bounded from L} (R") into WL? (R") and satisfies (1),
then T is also bounded from K“ p(wl,wz) into WK"‘ p(a)l,wz)

Proof. Let feK;"’(wl,wz) and for any k e Z, we write
S(x) = FOx g5 < 2633 (%) + L () x2r-341) < 2002) (%) + F ()2 g x> 2042) (%)
= f1(X) + f3(x) + /5 (x).
Then |Tf(x)| < |T/{(x)| + |Tf3(x)| + |T/3(x)], and

0

1/p
1T i #(on,00) = SUP A{ Y [w1(Bi)] " [Dio (4, Tf)]"/"}
>

k=—

© 1/p
= c sup A{ > [01(B))?" Dy o (/3 le{‘I)]"/q}

A>0 k=—o0

0 1/p
+ ¢ sup l{ Y [01(BO]*"" Dy (4/3, ITfé‘l)]”/"}

>0 k=—o00

e} 1/p
+c sup A{ > [01(BO) " [Di o (4/3,1TS% m”/q}

>0 k=—o00
=F + F + F;.
By the fact that 7 is bounded from L{, (R") into WL (R"), we easily obtain

a desirable estimate for F.
To estimate Fj, for x € Ry, by (1) and Minkowski’s inequality, we have

k
it < | LEON g,
Ifl()l R"Ix_yl
c
n = 1
2 (B) ”L;,z(R)a q
S 1/q’
2 Z /21, R”){J [wa(x )]—l/(q_l)dx} , g>1
J=—
m”ﬂ “L‘{)Z(R")» g=1
= k-3
c 2m
v 2o —— W xllee gy g >1
2k ].__Z_;)O [CUZ(B])]I/q J wz( )
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k-3

T B e 2, B W e

< a
"~ [o1(B)] " [wa(B)]

since wz € A,(R"), p<1 and a =n(l —1/q). Now, for any given 1 >0, let k;
be the greatest integer satisfying

/3

1/q ”f”K;”’(col,a)z)

< a
[1(Bx, )]/ [e02(Br, )]

1/q ”f”K;"’(whwz)‘

Then,

>0 k—— oo

k, 1/p
Fy <csup /1{ Z [wl(Bk)]“p/”[wz(Bk)]"/q}

k, w1(By) ap/n w2 (By) pla )"/
< c”f“K;‘p(wlywz) ilig{k;oc [wl (Bk/):l I:CUZ(Bk;.):l

k, 1/p
E k—k;)(010+02n/q)
< C”f”K:‘p(wh(uz) ili}o){ 2( 1a+02n/q P}

k=—o0
S C”f”K;'p(a)],wz)7
where d; > 0 and J; > 0 depend on n and the 4;(R")-constants of w; and w;; see

Lemma 1. This is a desirable estimate for Fj.
We now estimate F3. For x e Rg, by (1) we have

‘ W)
LHCIE Ry
Q0
<e > 2 gl
J=k+3
- 1
c,:/(ZHm “fXj”L}HZ(R")’ g=1

o 1/q'
c Z z-fn”ij“%(m) (JB [wz(x)]—l/(q—l)dx) , g>1

J=k+3
= 1

<y ———fullee e
1 JULg (R™)
; [c2(B))) :
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0

= [wl(Bk)]a/n[wz(Bk)]l/q ;3{601(Bj)]a/n”fo”Liz(R")
J=k+

2

<
(1 (Bi)] ™" [ (By)]

since wy € A¢(R"), p<1 and o« >0.
Now, similar to the estimate for Fj, we can show that

c

1/q “f”K;“’(wl,wz)’

Fs < |l £k 2 (@, 00):

This finishes the proof of Theorem 2. O

3. Boundedness on weighted Herz-type Hardy spaces

Now we turn to consider the behaviour of local Calderon-Zygmund type
operators on the weighted Herz-type Hardy spaces. We begin with recalling
some definitions.

In what follows, for s € R, let [s] denote the greatest integer < s if s > 0 or 0
if s <0. Define

1B1<1gw a+n(ge, /q-1)]+1

g " (R") = {¢ e S (R"): sup

(1 fx) s 7taen e DI )| < 1},

where & (R") is the space of the Schwartz functions, f = (8,,...,8,) € (NU{0})"
and DF = (8/dx1)P' - (8/0x,)P. Moreover, we define

@Il 201202 (k") = Sup sup 1+ |x|)[qm|a+n(‘]m2/q—1)]+n+l |Dﬂ¢(x)l.
" x€R" |B < [qu, 2+n(qwy /g—D)]+]

Let &'(R") be the space of Schwartz distributions. For f e &#'(R"), we define
Gug " f(x)= sup  sup |(f*4)(¥)],
pes )y 12 (R") Pyl

where ¢,(y) = t"¢(y/t) for any £ > 0. Gy "Zz"q“’z f is usually called to be the grand
maximal function of f; see ([15], p. 90).
Now, we can give the definition of the weighted Herz-type Hardy space.

DeFINITION 3. Let aeR, 0<p, g<o0, w €4y, (R"), wreAd,, (R")
and 1 <¢u 4w, < 0. The homogeneous weighted Herz-type Hardy space
HK}?(w1,w2) on R" is defined by

HK?(01,0,) = {f € S (R") : Goy ™ f € K¥P(wy,02)},
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and
qoy-9
“f“HKI P(wl,a)z) ”G / wzf“Ki‘p (wr1,2)°

The non-homogeneous weighted Herz-type Hardy space HK?(wi, ;) on R" is
defined by

HK}P(w,0) = {f € S'(R") : Gz‘;"qwzfeK;"”(a)l,wz)},

and P
1 ki 2 (eor,n) = 1G22 Sk 2w 00)-

If w; = wy =1, we will denote HK;"P(wl,wz) and HK;’F(CU],(UQ) simply by
HK"‘ 7(R") and HK“' (R") which are studied by [2], [4], [13] and so on when «
and p take some specnal values. If w;,w; € 41(R"), the above Hardy spaces are
studied by Lu and Yang in [12].

Applying Theorem 1, we can obtain the following relation between the
weighted Herz space and the weighted Herz-type Hardy space. We omit the
details.

THeOREM 3. Let 0<p <o, 1<g< 0, wy €Ay, (R"), w€d,, (R")
and 1 < gy <oo. Then HK;? (wl,wz) K“"’(wl,wz) and HK* S (w1, ) =
K3 ?(wy,w2) provided either of the following holds:

(i) w1 =w2, 1 <qo, <q and —nqu,/q < 0qe, < n(l = qu,/q);
(i) 1 <qu, <q and 0 <oqy <n(l—qu,/q).

Thus, the interesting case of the Herz-type Hardy space is o = (1 — ¢w,/q)/
qw,- For these spaces, we can establish their atomic decomposition.

DEFINITION 4. Let wy € 4,4, (R"), w2 € Ag,, (R"), 1 < 4u,,qw, < 0,1 <g<
00, (1l —gw,/q) < 0qe, < oo and the non- negatlve integer s = [xg,, —l—n(qw2 /q—1)).
A function a(x) is said to be a central (a,q;w;,w;z)-atom, if it satisfies

(i) suppa = B(0,r) = {xe R" : |x| <r} for some r >0,

(i) llallzs, rn) < [@1(B(O, )] I
(ili) [pna(x)xPdx =0, |B] <.

When w;(x) = w,(x) = 1, we will denote the central (o, g; w;, w,)-atom simly
by (o, g)-atom.

Then by a similar proof to that of Theorem 1 in [12], we can show the
following atomic decomposition; see also [4] and [13).

THEOREM 4. Let 0 <p < o0, 1 < ¢ < o0, w1 € 4y, (R"), wr € 4y, (R"), 1 <
G, < 0, 1 <qo, <q and n(l — qu,/q) < tqe, < 0. Then feHK“p(col,wz)

(or fe HKZP(wy,,)) if and only if [ = S e kak (or =31 lkak) holds
in &’ (R"), where ai is the central (a,q;wi,wy)-atom supported in By and
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S ol < oo (or i1kl < o0).  Moreover,

© 1/p
IIf“HK;’p(CUI,a)z) ~ lnf ( Z Iik|p>

k=—o0

o 1/p
(or ”f”HK;”’(wl,wz) ~ inf <Z |/1k|p> >,
k=0

where the infimum is taken over all the above decompositions of f.

We remark that by the proof, Theorem 4 is still true if @ > 0. Also, if
0 < p <1, the central atom g appearing in Theorem 1 does not necessarily
support in By and can support in any ball with the center at the origin.

Now, we have the following boundedness theorem on the local Calderdn-
Zygmund operator.

THEOREM 5. Let T : #(R") — &'(R") be a linear and continuous operator.
Suppose that the distribution kernel of T coincides in the complement of the
diagonal with a locally integrable function k(x,y) satisfying

I’

|x|n+(5

when 2|y| < |x| for some 5 € (0,1]. Let w; € Ag, (R"), w2 € 4q, (R"), 1 < g4, <
0, 1<¢p <g<o and n(l—-4qu/q) <4qgy, <n(l —qu,/q)+6. If T is
bounded on LY, (R™), then T is also bounded from HK;”’ (w1,02) into
Ky P(w1,0) for any p e (0, c0].

© |k(x, y) = k(x,0)| < ¢

Proof. Let feHK;’P(wl,wz). By Theorem 4, we have /' =>"7 __ Aax,
where a; is the central («,q;w;,w;)-atom supported in By and

o 1/p
{ > |'1k|p} < ek P (e, )

k=—oc

Write

w 1/p
”TfHKq“”’(w],wz) = { Z [ (Bk)]up/"HXka”ig,z(R")}

k=—00
o k=4 ry1/p
< C{ Z [ (Bk)]ap/n<z 44| ||XkTal”Lg,2(R")) }
k=—00 I=—o0
0 0 py1/p
+c{ Z [col(Bk)]“p/"< Z [44] ||XkTal”L3,2(R")) }
k=—o0 I=k-3

= H, + H,.
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For Hj, by the LY (R")-boundedness of 7 and « >0, we have

© 1/p
H, < C{ Z 601 Bk ap/n(z M[l ||a1||Lq (R" ) }
k= I=k=3
© © pyU/p
{ > () W”(Z Mll[wl(Bz)]_“/”) }
k=—o0 I=k—3
py1/p
A2kDg,
{k———oo (1—;3l ll ) }

“ofgnr)

=< C||f”HK°‘ P(wy, ;)"

where ¢ >0 depends only on n and 4,, (R")-constant of w;, and we have

omitted some similar computational techmques to those used in the estimates for
E] and E3

To estimate H;, for xe R, and / < k —4, we have

3) | Tay(x)| < J lk(x, y) = k(x, 0)l|a:(y)| dy

B
|y’
<c| —ggla)ldy
JB, |x|n+5 l

< cz—k(n+5)+16J lal(y)ldy
B

!

< cz—k(n+6)+16”al”Lq ®") (J
@y

B
< 2= [0, (B)) " [eoa (By)] 4.
Thus, by >0, w; € 45, (R") and w; € 44, (R"), we have

w 1/q pyUp
w1 (Bk) } [CUZ(Bk)] (I=k)(n+5)
H <c 2
1 {k;oo <1_2_‘;| Il[wl By) @2(Bi)
w [ k-4 PV
< c{ } : (E : Ml|2(k—1)(qw,o<+nqw2/q—n—6)) }

k=—0w0 \/=—w

0 1/p
< c{ Z M/'p}
[=—o0

< el N akz 2 ()

[m(x)r‘/@-”dx)”q
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since gy, + Nnqe,/q —n—0 < 0, where we have omitted some similar compu-
tational techniques to the before.
This finishes the proof of Theorem 5. O

If v, = 4w, =1 and agq,, = n(l — q4,/q) +9J, then we have the following
weak boundedness theorem which can be regarded as the weighted version of
Theorem 3 in [7].

THEOREM 6. Let T and k be the same as in Theorem 5. Let 0 <p <1,
o, e A(R"), 1<qg< oo and a=n(l-1/q)+6. If T is bounded from
Ly (R") into WL{ (R"), then T is also bounded from HKJFF(wi,w;) into

WK;"”(a)l y a)z).

Proof. Let f eHK;"" (w1,2) and write f as in the proof of Theorem 3.
We then have

© 1/p
”Tf”WK”’ (wr1,02) — Sup { Z [601 (Bk)]ap/n[Dk,wz(’L Tf)]p/q}

k=—o0

0 k—4 pla )P
< ¢ sup /1{ S (o (B [Dk,wz (/1/2, > /I,Ta,)} }

A>0 k=—o00 l=—0

>0 | k==l I=k-3

o o pla )P
e supl{ Z [a)l(Bk)]“p/n [Dk,wz <i/2, Z l;Ta;)} }

=L+ 5.

A desirable estimate for I, can be deduced from the boundedness of T from
Li (R") into WL{ (R"); we omit the details.
For I, by (3), for x € Ry, we have

k—4 k—4
37 MTa(x)| < ¢ Y (a2 e (B)] 7 o, (By))
l=—0 |=—o0

“me%wﬂM;“'

< C
~ [w1(B)] " [wa(Bi)]

since p e (0,1] and a =n(1 —1/g) +9.

Now, by a similar computation to that for Fj, we can easily obtain a
desirable estimate for 1.

This finishes the proof of Theorem 6. |

1/q ”f“HK:;'P(wl,wz)v
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To investigate the boundedness of the operator T in Theorems 5 and 6 on
the space HK ¥ (w1, ), we need T satisfies the following cancellation property;
see [14].

DErINITION 5. Let T be a linear operator. We say 71 = 0 if [, Ta(x) dx
=0 for all compactly supported bounded measurable functions a such that
Jgna(x)dx =0.

The following theorem is a strong version of Theorem 5 and generalize
Theorem 4 in [7] to both non-convolutional type and the weighted version.

THEOREM 7. Let T : #(R") — %'(R") be a linear and continuous operator.
Assume that the distributional kernel, k(x, y), of T satisfies (2) for some J € (0, 1].
Let wy € Ag,, (R"), w2 € Ag, (R"), 1 < 4o, < 0, 1 < qu, <q and n(l —qu,/q) <
4qew, <n(l —qw,/q) +6. If T is bounded on LY, (R") and T*1 =0, then T is also
bounded on HKJ?(wi,w;) for any p e (0, c0].

Proof. Let f eHK;’P(cul,cuz) and write f as in the proof of Theorem 5.
We then have

”Tf“HKq“'”(whwz)
dop 19wy
= ||Go(ql '(Tf)”[(;"’(w[,wz)

k=—0

. /p
- { > [on (B Gy (TS )|’§12<R">}

0 k-4 py\/p
< { > [wlwk)]“"/"( > Il ||ka2,‘"4”‘°2(Taz)ll%m) }

k=—o0 I=—c0
- ap/n < Goy 9o, "'
o 3 a3 bty s ) |
=J1+ 5.

Applying LY (R")-boundedness of both Gi® and T, we easily deduce a
desirable estimate for J;.

For Ji, we first estimate GZ,”’q"qwz( Ta;)(x) for xe R and / <k —4. In this
case, choosing any ¢ € dif(}’qwz (R") with [|@]| _so1 .90, &y <L for x € Ry, |x —y| <
tand / <k —4, by T*1 =0, we have e

(Taxg)0)| = [, a8 (257

[k () -+
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< e () = 3)

1 1
+ _n + 7 ...
" Jom < |z|<|x|/2 2] =1x]/2

=L+ L+ Ls.

dz

By the mean value theorem and Hélder’s inequality, we have

0z 1/q'
V¢(y ) ||q dz)

/¢’
< Czl‘lallqu (R™) (J [602( ] q/q(t+ 'y Hzl) (n+1)q’ d)
2 |z|<2t+!

! y 1/q'
L ———m [©1V4 —9/4 dZ
|x|"+1[co1 (Bl)]a/n J|z|<21+l[ 2( )]

2ln+1)

= e or (B [wa (B

1
. -q'/q
Li < ol Tallg, ey ( J’zldm [eo2(2)]

where V = (8/0xy,...,0/0x,), ¢ is independent of ¢, x,t and y, and 6 € (0,1).
Here we used the inequalities
Ve <y 492)

_ n+l
(1 N ly tHZI)

and ¢+ |y—0z] > |x — y| + |y—0z] > |x—0z| > |x|/2. Using the same estimates,
we have

< c”¢”d;{?1’qm2 (R™) <c

1

L=

J J a(u) (k(z, u) — k(z,0)) du
2041 <z« x| /2 | Ul <27

« v (y 02)
F)
¢ ||
< a(u du
et le+ls|z|<|x|/z <J|u|<21| ( )||z|"+‘5 )

|z| dz

V;b(y 02) |z| dz
1 y—0z 1
< 215 ny ——— -
< 2llallzri ) gnt] JZ’“S|Z|<|XI/2 V¢< t ) |z!”+‘5'ldz
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2l ge1) 1/q'
< Sl o ] lonto1 V)

1
X ——dz
Jz/ﬂ <lz|<|xl/2 |z|"+6_1
2+ ( Ix' )
In(-—— ]}, if =1

x| oor (B))"won (B)] V4212

C21(n+5)
31" [co1 (B)) " w2 (By)]

by w; e A4(R"). For L3, we have

1
L; < —"J J a(u)(k(z,u) — k(z,0)) du
" Jlz > 1x/2 | <2t

Uy RIOIE

) 1 oz
= (o1 (By))*/" w2 (By)) 4 JIZIZIXI/2 Ela <‘¢< t )

2 1+0)

= " on B wn (BT

if 6€(0,1),

Thus, for x € Ry and [/ < k — 4, we have
2l(n+s)

4 gﬂél L X Ce
) G ) = e (B e B

for any ¢ € (0,1) where d =1 and ¢ =¢ when J € (0,1), where ¢, is independent
of x and /. From this, it follows that

" kd e [@ (Bk) a/n COz(Bk) 1/a\? 1/p
Ji < Cg{ Z ( Z a2 +)[a)11(B[)] 8 [wZ(BI)]

k=—ow \Il=—w

e k—4 pyl/p
< Ca{ Z (Z |,1l|2(l—k)(n+e—ocqwl —qwzn/q)> }

k=—o0 \I=—0

o 1/p
< ce{ Z Mllp}

k=—o0

< Cs”f“HK;”’(wn,wz)’
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where we choose ¢ € (0,1) such that n+ ¢ > ag4, + go,n/g when 6 =1 and e =6
when J € (0,1).
This finishes the proof of Theorem 7. O

To discuss the extreme case, aqw, = n(1 — gw,/q) + 9, of Theorem 7, we
introduce the weighted weak Herz-type Hardy space WHK?(w1, ).

DErFINITION 6. Let e R, 0 <p, g < o0, w; € 4y, (R"), w2 € 45, (R") and
1 < 9w 4o, < ©. The homogeneous weighted weak Herz-type Hardy space

WHK}?(wy,,) on R" is defined by

WHEK? (01,02) = {f € " (R") : Gay"**f € WK (w1, )}
and

”fHWHK;"’(wI,a)Z) = “GZ:UCIl’qwzf“WK;'”(a)l,wz)'

The non-homogeneous weighted weak Herz-type Hardy space WHK (w1, w>)
on R" is defined by

WHK P (01,02) = {f € S'(R") : Gug " f € WK}P (01, 00)}
and

qwy19
”f”WHK;"’(w],wz) = ”Ga’o:[l wzf”WK:'p(whwz)'

If w1 (x) = wy(x) = 1, we will denote WHK (1, ) and WHK (w1, )
simply by WHK*(R") and WHK?(R") which are introduced by Hu, Lu and
Yang in [7]. Obviously, WHKI?*" = WHKI?’P = WHE (R") for any p e (0,0)
which are studied by Quek and Yang in [14]; see also [3], [9], [1] and [16].

The following theorem is the end case of Theorem 7 and generalize Theorem
5 in [7] to both the non-convolutional case and the weighted case.

THEOREM 8. Let T,k,w;,w; and q be the same as in Theorem T with J €
(0,1) and 9o, = g, = 1. If a =n(1 —1/q) + 06 and p € (0,1], then T is bounded
Jrom HKZP(wy,w,) into WHK}? (w1, 02).

Proof. Let f € HK;’P(col,wz) and write f as in the proof of Theorem 5.
We then have

“Tf” WHK ' (wy,02)

qw qu
= ”G“,ql Z(Tf)”Wan’p((ul,wz)

o 1/p
— sup z{ > (1B 7" (Dian (4, Gi (Tf))]”/"}

>0 k=—o00
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pla /P

o]
<csup i Y o (B
>0 k=—o0

k—4
Dk’w2 (A/Z, Z IAIIG;I,O:][’qu(Ta[)>

[=—

1/p

[e¢] o0 P/q
+esup AQ D o (B [Dk.wz (/1/2, > leGZ‘f}’q‘”z(Taz))}

>0 | k=—c I=k=3
=M, + M,.
By the LY (R")-boundedness of Glor92 and T, we easily obtain a desirable

estimate for M.
For M), when x € Ry, by (4) , we have

k—4
> MGy (Tay)(x)

l=—0
§ (1—k)(1+0) 1
< [Ag 21
iy (w1 (B1)] " [w(By))"*
Cs - I=k)(n+0
< Z Mllz( —k)(n+0—0qw, —nqw,/q)

= o1 (B wa(B)] V9

s &2 LIP v
= (o1 (B wa (B (Z g )

I=—o0
Cs

<
(o1 (B1)]*" [w2(By)]
since p <1 and a=n(l —1/q) +9.

Now, similar to the above, we can obtain a desirable estimate for M;.
This finishes the proof of Theorem 8. O

1/q ”f“HK;'P(w;,wz)7

Finally, we remark that if we assume more regularity on the kernel, we could
extend the range of « in Theorems 5 and 6; and moreover, if T satisfies higher
vanishing moment conditions, the range of « in Theorems 7 and 8 can also be
extended. We omit the details.
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