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BOUNDEDNESS OF SOME SUBLINEAR OPERATORS IN

WEIGHTED HERZ-TYPE SPACES

SHANZHEN L U * , Kόzό YABUTA^ AND DACHUN YANG*

Abstract

In this paper, the authors first establish the boundedness of sublinear operators on

the weighted Herz space with general weights. At the extreme case, the authors show

these operators are bounded from the weighted Herz space to the weighted weak Herz

space. Moreover, the authors also discuss the boundedness of the local Calderόn-

Zygmund operator of the non-convolution type on the weighted Herz-type Hardy spaces

and show that these operators map the weighted Herz-type Hardy space into the

weighted weak Herz-type Hardy space at the extreme case.

1. Introduction

L e t B k = B ( 0 , 2 k ) = {x e R n : |* | < 2k} f o r a n y k e Z a n d R k = B k \ B k _ x .
The following weighted Herz space is introduced by Lu and Yang in [11].

DEFINITION 1. Let oceR, 0 < p, q < oo, ω\ and <x>2 be any non-negative
weight functions.

(a) The homogeneous weighted Herz space k*>p(ω\,ω2) is defined by

kq'p(co\,co2) — {/ : / is a measurable function on Rn and H/H^*/>(ωi ω 2) < oo},

where

Γ oo ^ ^ V/p

Wf\\κ;p{ωuω2) = S Σ lω^B^)} \\fXRk\\PLl2(Rη ϊ

with the usual modifications when p — oo and/or q = oo.

1991 Mathematics Subject Classification: Primary 42B20, Secondary 42B30

Key words and phrases: Herz space, Hardy space, weak Herz space, weak Hardy space,

Calderόn-Zygmund operator, weight

* Shanzhen Lu is partially supported by the NNSF and the SEDF of China.

^ ό z ό Yabuta is supported by the Grant-in-Aid for Basic Scientific Research (10440046),

Ministry of Education, Science and Culture, Japan.

* Dachun Yang is partially supported by the NNSF and the SEDF of China and the Grant-in-Aid

for Basic Scientific Research (10440046), Ministry of Education, Science and Culture, Japan.

Received September 3, 1999; revised October 29, 1999.

391



392 SHANZHEN LU, KOZO YABUTA AND DACHUN YANG

(b) The non-homogeneous weighted Herz space K*'p(co\1co2) is defined by

K*'p(co\,cQ2) = {f : f is a measurable function on Rn and \\f\\κ* p(ωuω2)<oo},

where

with the usual modifications when p = oo and/or q = oo.

Here and in what follows, for any non-negative weight function ω, any
measurable function / on Rn and any q e (0, oo], we write

l/<7

and

with the usual modification when q = oo. If ω(x) = 1, we will denote Lq

ω(Rn)
and WL%{Rn) simply by Lq{Rn) and WLq(Rn).

Obviously, if α = 0, then AΓ°'*(ωi,ω2) = K^q(ωuω2) = Lq

ωi(Rn) for any q e
(0, oo]. In what follows, if ω\(x) = ω2(x) = 1, we will denote K^p(ωuω2) and
K^(ωuω2) simply by ^ ( i T ) and ^ ' ^ ( / ? w ) .

Let T be a sublinear operator satisfying that for any integrable function /
with a compact support and x ^ s u p p / ,

(1) \Tf{x)\<c\ fίfy,
x ~ >Ί

where c is independent o f / and x. In [11], [10] and [8], such a sublinear
operator is proved to be bounded on K^p(Rn) and K^p(Rn) provided T is
bounded on Lq(Rn), l<q<oo,0<p<oo and — n/q < α < n{\ — 1/q). Some

weighted version of this is also considered by Lu and Yang in [11]. The first
target of this paper will extend the result in [11]. In other words, we will much
relax the restriction on the weights; see the following Theorem 1.

Also, a sublinear operator satisfying (1) and being bounded on Lq(Rn) maybe
is not bounded on K^p(Rn) or K«>p(Rn) for 0 < p < oo, 1 < q < oo and α =
-n/q or α = n{\ - 1/q); see [11], [8] and [10]. However, in [6] and [7], Hu, Lu
and Yang introduced the weak Herz space and proved that such an operator is

indeed bounded from κ^ι~ι^p(Rn) to WKn

q

{χ-ι/q^p(Rn) or from Kq{x~ιlq)'p(Rn)
to WKg{ι'ι/q)iP(Rn) if 0 <p < 1 and 1 < q < oo. But, this is not true for α =
—n/q or p > 1; see [7] for some counter-examples. The second purpose of this
paper is to establish the weighted versions of these results in these extreme cases.
First, we introduce the following weighted weak Herz space.
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Let ω2 be any non-negative weight function. For k e Z, σ > 0 and any
measurable function / o n Rn, we define

Dki(θ2(σ,f) = ω2({x e Rk : \f(x)\ > σ});

for keN, let DLω2(σ,f) =DkjCϋ2(σ,f) and

D0iω2(σJ) = ω2({x E Bo : | /(x) | > σ}).

DEFINITION 2. Let OCE R, 0 < q < cc, 0 <p < co and ωi,ω2 be any non-

negative weight functions.

(i) A measurable function / o n Rn is said to belong to the homogeneous

weighted weak Herz space WK^p(ω\,ω2) if

ί °° V 7 '
II/IK* 'to.α*) = SUP Λ Σ [ ω ! ^ ) ] ^ ^ ^ ^ , / ) ] ^ < OO

Λ>0 U=-oo J
with the usual modification made when p = oo.

(ii) A measurable function/on Rn is said to belong to the non-homogeneous
weighted weak Herz space WK^p(ω\,ω2) if

WfWwKϊ'to an) = S UP A1 Σ [ωι(Bk)r/n[Dk,ω2(λJ)]p^ \ < oo

^>o U=o J
with the usual modification made when p = oo.

If ωi(x) =ω2(Λ:) ΞΞ 1, we will denote WK^p{ωuω2) and ^

simply by WK^p{Rn) and WK^p{Rn) which are introduced by Hu, Lu and

Yang in [6] and [7]. Also, Wk*>q{ωuω2) = WK^(ωuω2) = WVωi{Rn) for

any # e (0, oo).
The third purpose of this paper is to relax the restriction on the weight of the

weighted Herz-type Hardy spaces studied in [12]. That is, we shall establish the
atomic decomposition for the weighted Herz-type Hardy space with more general
weights. Using this atomic decomposition, we shall establish the boundedness of
local Caldrόn-Zygmund operators of non-convolutional type from these weighted
Herz-type Hardy sapces into weighted Herz spaces or into weighted weak Herz
spaces at the extreme cases. Moreover, if we further suppose that these operators
satisfy a vanishing moment condition, we then shall show that they are indeed
bounded on the weighted Herz-type Hardy space or, in the extreme case, from the
weighted Herz-type Hardy space into the weighted weak Herz-type Hardy space
whose definition will be given later. Our results of this part extend the cor-
responding results in [7] to both non-convolutional types and weighted versions.

Finally, we recall the definition of the weight as follows. Let 1 <p < oo.
Following [5], a weight ω > 0 is a Muckenhoupt Ap(Rn) weight if for any ball B



394 SHANZHEN LU, KOZO YABUTA AND DACHUN YANG

with c a constant independent of the ball B. The class A\(Rn) is defined by
letting p —> I, namely,

:—Γ ω(x) dx <
\B\h

with c independent of B. The smallest value of c satisfying the above inequal-
ities is called the Ap(Rn)-constant of ω. The following properties for Ap{Rn)
weights will be repeatedly used in this paper; see [5], [15] for their proofs.

LEMMA 1. Let ω ε Ap(Rn) for some p e [1, oo) and B be any ball. Then
(i) for any measurable function f on B,

\B\~ι £ \f(x)\dx < c[ω{B)]-ιl"(j^ \f{x)\pω{x)^ "

where c is independent off and B;
(ii) if E is a measurable subset of B, then

where c is independent of B and E;
(iii) there exists a δ > 0 such that if E is a measurable subset of B, then

where c is independent of B and E.

Throughout this paper, c always denotes a constant which is independent of
the main parameters, but may vary from line to line.

We also remark that there is a similar result on the non-homogeneous Herz-
type space for any of our result on the homogeneous Herz-type space. For
simplicity, we only state our results in the homogeneous Herz-type version.

Acknowledgement. The authors would like to express their deep thanks to
the referee for his/her several valuable comments on this paper.

2. Boundedness on weighted Herz spaces

We begin with the boundedness on the weighted Herz space Kq

χ'p(ω\,ω2) for
the sublinear operator satisfying certain "size" conditions.

THEOREM 1. Let ω\ ε Aqωχ (Rn), a>2 ε Aqωi (Rn), 0 < p < oo and 1 < q < oo.

If a sublinear operator T is bounded on Lq

ωi(Rn) and satisfies (1), then T is also

bounded on K*'p(ω\, C02) provided that a>\ and a>2 satisfy either of the following
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(i) ωi = ω 2 , 1 < qωι < q and -nqωjq < ccqωι < n{\ - qωjq)\
(ii) 1 < qωι < oo, 1 < qω2 < q and 0 < ocqωι < n{\ - qω2/q).

Proof. In what follows, let χk — χRk for any k e Z. We write

ί °° Ϋ/P

r oo / *-3 γγ/p

Σ l
\/=-oo

/ A:+2

Σ
\/=λ:-2

By the L^2(/?")-boundedness of T, we are easy to obtain a desirable estimate
for E2.

For E\, when xe Rk and I < k — 3, by (1) and Holder's inequality, we have

G
\/q'

since ω 2 e Λq(Rn). Thus, by α^ω i < n(\ - qW2/q), we have

Σ ( Σ [
t=-oo \/=-cx)



396 SHANZHEN LU, KOZO YABUTA AND DACHUN YANG

(
k=-oo M=-oo

\ Ί /

ωι +nqω2/q-n)p \\ ? if 0 <

oo / k-3

k=—oo \/=—oc

x V 2(i-/)(α9'»i+"^/?-")/''/2 > , if 1 < p < oo

Ί Σ
I /=-00

Γ °°

Z ^ - / ) ( α , ω i + « , ω 2 / , - ^ I ? i f O < ^ < l

U=/+3 / J

/ o λ)
x V 2ik-l){aq<°ι+nqω2/q~n)p/2 ]} , if 1 </? < oo

\A:=/+3 / J

° Ϋ/P

U=-oo

where, and in what follows, \/p+ \/pf = 1 and we used the fact that aι. + n/q\
> 0 when ω\ = C02 and α > 0 when ωi φ ωi. So far, we have obtained
a desirable estimate for E\.

For the estimate of £3, when xe R^ and / > A; + 3, by (1), we have

\Πfχ,)(χ)\<c\ }^\-n
JRI \χ — y\

1/^

5/

II/ΛILL (Rn

\/q '
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since ω2e Aq(Rn). Thus, we have

397

<c<
oc / oo

o o / o o

:-00 \l=k + 3

oo / oo

Σ Σ
£=-oo \l=k+3

ίΣ
A:=-oo \/=A:+3

/=-00

. /=-oo

1-3

Y/P

; if 0 < p <

; i f 0 < p <

I

P\\/P

, if

, if K/7 < oo

0 0

L/=-oo

where Ji > 0, δ2 > 0 depend only on « and the
yl^ω (Rn)-constant, and <5i = δ2 when ωi = α>2.

We leave the case p = oo to the reader.
This finishes the proof of Theorem 1.

(Rn)-constant and the

•
We remark that the condition (1) can be replaced by more general conditions;

see [10].



398 SHANZHEN LU, KOZO YABUTA AND DACHUN YANG

On the end cases of Theorem 1, we have the following conclusion, which can
be regarded as a weighted version of Theorem 1 in [7],

THEOREM 2. Let ω\,cύ2 eAι(Rn), 0 </? < 1, I < q < co and oc = n(l - l/q).
If a sublinear operator T is bounded from L^ύ2(Rn) into WL^2(Rn) and satisfies (1),
then T is also bounded from K*'p (co\, C02) into WK*'p(ω\,cθ2).

Proof Let / e K*'p(co\,co2) and for any keZ, we write

f{x) = f{x)X{\A < 2*-3}(X) + f(x)X{2k-*<\x\ < 2*+2} W + f(x)X{\x\>2"+*}(x)

Then \Tf(x)\ < \Tfk(x)\ + \Tfk(x)\ + \Tfk(x)\, and

( 00

||7y|| _. . . . . — cur, i) V ^ \m.(R,M°!P/"rn, a TSVPII

00 }
c sup λ<

λ>0 I

c sup λ<
λ>0 k = _ 0 0

Y/p

|l//»

By the fact that Γis bounded from Ll2(Rn) into WUωi{Rn), we easily obtain
a desirable estimate for F2.

To estimate F\, for x e % by (1) and Minkowski's inequality, we have

<

ll/f

Λ-3

j=-co

ω2(Bk)'

fe-3

, ? >1

1/9
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^ 3

399

c\
K*>p(ωuω2)

since ω2 e Aq(Rn), p < 1 and α = n{\ - 1/q). Now, for any given λ > 0, let
be the greatest integer satisfying

λ/3< c\

[ωι(Bk/)fn[ω2(Bkλ)}]

Then,

Ϋ/P

< c sup λ{ V {ωx{Bk)]apln[ω2{Bk)γl'> )
Ί>0 {k=-oo J

< C Σ
Ϋ/P

<
where ^i > 0 and J2 > 0 depend on « and the A\{Rn)-constants of ω\ and ω2; see
Lemma 1. This is a desirable estimate for F\.

We now estimate F^. For xeRk, by (1) we have

IIΛ;»I1,«»-,(I,[
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<

C2

since ω2 e Aq(Rn), p < 1 and α > 0.
Now, similar to the estimate for F\, we can show that

This finishes the proof of Theorem 2. •

3. Boundedness on weighted Herz-type Hardy spaces

Now we turn to consider the behaviour of local Calderόn-Zygmund type
operators on the weighted Herz-type Hardy spaces. We begin with recalling
some definitions.

In what follows, for s e R, let [s] denote the greatest integer < s if s > 0 or 0
if s < 0. Define

t q ) \ : sup
[ \β\<[gωιCί+n{qω2/q-\)} + \

(1 + \x\)[q^<q^lq-ι)]+n+ι\DPφ{x)\ < 1 1,

where Sf{Rn) is the space of the Schwartz functions, β = (βu...,βn) e {NΌ{0})n

and DP — (d/dx\γx (d/dxnγ
n. Moreover, we define

\\φ\\^^2{Rn) = sup sup (1 + \x\)

Let Sf'(Rn) be the space of Schwartz distributions. For / e <f\Rn), we define

Gq«:rqω2f(x)= sup sup \{f*φt){y)\,

φe^ly qω2(R") \*-y\<t

where φt(y) = t"nφ{y/t) for any t > 0. G^qqωi f is usually called to be the grand
maximal function of/; see ([15], p. 90).

Now, we can give the definition of the weighted Herz-type Hardy space.

DEFINITION 3. Let α e R, 0 < p, q< oo, ωx e Λqωχ (Rn), ω2 e Λqωi (Rn)
and 1 < qωχ,qω2 < oo. The homogeneous weighted Herz-type Hardy space
HK^p(ωuω2) on Rn is defined by

<7'(R") : G l ^ f e K^(ωuω2)},
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and

\\HK'1

q

p{ωuω1) — II ̂ α,? / \\κ*' p(ωι,ω2)'

The non-homogeneous weighted Herz-type Hardy space HK^p(ω\,ω2) on Rn is
defined by

HK^p(ωuω2) = {fe<?'(Rn) : G I ^ f e K^(ωuω2)},

and
|| r\ I || ^r<7wj ,<7ω2 / M I

\\J \\HK* p{ωuω2) — 1 1 ° ^ J \\κ*p(ωuω2)'

If ω\ = ω2 = 1, we will denote HK^p(ω\,ω2) and HK^p(ω\,ω2) simply by
HK^p(Rn) and HK^p(Rn) which are studied by [2], [4], [13] and so on when α
and /> take some special values. If ω\,ω2 e A\(Rn), the above Hardy spaces are
studied by Lu and Yang in [12].

Applying Theorem 1, we can obtain the following relation between the
weighted Herz space and the weighted Herz-type Hardy space. We omit the
details.

THEOREM 3. Let 0 < p < oo, 1 < q < oo, ω\ e Aqωχ (Rn), ω2 e Aqωi (Rn)

and \<qωι<oo. Then HK^p{ωuω2) = K^p(ωuω2) and HK«>p(ωuω2) =

K^p(co\,ω2) provided either of the following holds:

(i) ω\ =ω2, 1 < qωι < q and -nqωjq < ccqωι < n(\ - qωjq)\

(ii) 1 < qω2 < q and 0 < ccqm < n{\ - qω2/q)-

Thus, the interesting case of the Herz-type Hardy space is α > (1 — qω2/q)/
qωι. For these spaces, we can establish their atomic decomposition.

DEFINITION 4. Let ωx e Aqωχ (Rn), ω2 e Aqωi (Rn), 1 < qωι, qω2 < oo, 1 < q <
oo, n(\-qωjq) < ocqωι < oo and the non-negative integer s = [ α # ω i + « ( # ω 2 / # - l ) ] .
A function a(x) is said to be a central (α,^r;ωi,ω2)-atom, if it satisfies

(i) suppα cz 5(0, r) = {x e Rn : |x| < r} for some r > 0,

(ii) \\a\\Ll2{Rn)<[ωx{B^r))}^\

(iii) SRHa(x)χPdx = 0, \β\<s.

When ω\(x) = ω2(x) = 1, we will denote the central (α,#;ωi,ω2)-atom simly
by (α, ^)-atom.

Then by a similar proof to that of Theorem 1 in [12], we can show the
following atomic decomposition; see also [4] and [13].

THEOREM 4. Let 0 < p < oo, 1 < q < oo, ω\ e Aqωχ (Rn), ω2 e Aqωi (Rn), 1 <

qωι < oo, 1 < qω2 < q and n{\ - qω2/q) < ^ωλ < oo. Then f e HK^p(ωuω2)

(or feHK^p(ωuω2)) if and only if f = Σk=-oo hak (or f = ΣZo λ^k) holds

in ^'(Rn), where a^ is the central (a,q]ω\,ω2)-atom supported in B^ and
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Σ t - o o 141' < oo {or ΣΓ=o \λk\
p < TO). Moreover,

where the ίnfimum is taken over all the above decompositions off

We remark that by the proof, Theorem 4 is still true if α > 0. Also, if
0 < p < 1, the central atom ak appearing in Theorem 1 does not necessarily
support in Bk and can support in any ball with the center at the origin.

Now, we have the following boundedness theorem on the local Calderόn-
Zygmund operator.

THEOREM 5. Let T : ^(Rn) —> £f'{Rn) be a linear and continuous operator.
Suppose that the distribution kernel of T coincides in the complement of the
diagonal with a locally integrable function k(x, y) satisfying

(2) \k(x,y) — k(x,0)\ < c — = •

when 2\y\ < \x\ for some δ e (0,1]. Let ω\ e Aqωχ (Rn), ωi e Aqω2(Rn), 1 < qωχ <

oo, \<qm<q<co and n(\ - qωjq) < <xqωι < n{\ - qωjq) +δ. If T is

bounded on L^2(Rn), then T is also bounded from HK^p{ω1,002) into

k^p(ωuω2) for1 any p e (0, 00].

Proof Let / e Hk^p(ωuω2). By Theorem 4, we have / = E £ - o

where a^ is the central (α,^;ωi,ω2)-atom supported in B^ and

Ϋ/p

Write

Pγ/P
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For H2, by the L^(Rn)-boundedness of T and α > 0, we have

r oo

H2<c\ Σ
U=-oo

f oo / oo

U—oo \/=*-3

=-α> \l=k-3

oo Ϋ/P

U=oo

where δ > 0 depends only on n and Aqω (Rn)-constant of co\, and we have
omitted some similar computational techniques to those used in the estimates for
E\ and E3.

To estimate H\, for xe R^ and I <k — 4, we have

(3) \Ta,{x)\ < I |Λ(x, j ) - ^ , 0 ) | | β / ( 7 ) | rfv

bl'

< c2-k(n+δ)+iδ [ \aι(y)\dy
JBi

<r rΊ~k{n+δ)+lδ\\ ιι

Thus, by α > 0, ωi e Aqω (Rn) and ω2 e Aqω2(Rn), we have

00 / k-4 N

r){k-l){qωχu.+nqω Jq-n-δ)<cly\y

4Σ
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since ocqωι +nqω2/q — n —δ < 0, where we have omitted some similar compu-
tational techniques to the before.

This finishes the proof of Theorem 5. •

If qωι = qωi = 1 and <xqωι = n(\ - qω2/q) +δ, then we have the following
weak boundedness theorem which can be regarded as the weighted version of
Theorem 3 in [7].

THEOREM 6. Let T and k be the same as in Theorem 5. Let 0 <p < 1,
ωi,α>2 G A\(Rn), 1 < q < oo and α = n{\ — \/q) +δ. If T is bounded from
Ll2{Rn) into WLl2(Rn), then T is also bounded from HK^p(ωuω2) into

Proof. Let / e HK^p(ω\,ω2) and write / as in the proof of Theorem 5.
We then have

\\Tf\\wκ^{ωuω2) = sup λ{ Σ [ωι(Bk)Γ/n[Dk,ω2(λ, Tf)f*
λ>0 1 ^ . 0 0 I

: c sup A

^>0 I fcίToo

k-4

DKωi λ/2,
/=-00

l=k-3

ΐ

A desirable estimate for h can be deduced from the boundedness of T from
Ll2(Rn) into WL%2{Rn)\ we omit the details.

For I\, by (3), for x e 4 we have

A:-4

> ΛiiaiyX)

/=-00

fc-4

/=-oo

k-4

[ω!(^)]α / w[ω2(^) /=-oo

since p e (0,1] and α = n(\ — \/q) +δ.
Now, by a similar computation to that for F\, we can easily obtain a

desirable estimate for I\.
This finishes the proof of Theorem 6. •
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To investigate the boundedness of the operator T in Theorems 5 and 6 on
the space HK^p(ω\,ω2), we need T satisfies the following cancellation property;
see [14].

DEFINITION 5. Let T be a linear operator. We say Γ*l = 0 if j R H Ta(x) dx
— 0 for all compactly supported bounded measurable functions a such that

The following theorem is a strong version of Theorem 5 and generalize
Theorem 4 in [7] to both non-convolutional type and the weighted version.

THEOREM 7. Let T : 6f(Rn) —> <?\Rn) be a linear and continuous operator.

Assume that the distributional kernel, k(x, y), of T satisfies (2) for some δ e (0,1].

Let ω\ e Aqωχ (Rn), ω2 e Aqω2(Rn), 1 < qωχ < oo, 1 < qωi < q and n(\ - qωjq) <

ocqωχ <n(l- qωi/q) +δ. If T is bounded on Lq

ωi(Rn) and Γ* 1 = 0, then T is also

bounded on HK^p{ω\,ω>ι) for any p e (0, oo].

Proof Let / e HK^p{ω\,ω2) and write / as in the proof of Theorem 5.
We then have

117/11HK"q

p(ωuω2)

= J\

and T, we easily deduce aApplying Lq

ωi{Rn)-boundedness of both G^q

desirable estimate for J2.
For J\, we first estimate Gq^qqω2 (Taι)(x) for x e Rk and / < k — 4. In this

case, choosing any φ e s/l"q'qω2(Rn) with WΦW^v^ir^ < 1, for x e Rk, \x-y\ <
t and / < k - 4, by Γ*l = 0, we have α>ί

\(Ta*φ,)(y)\ =

dz
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?L I .J r < " ( z ) l K ί τ i

+ I j ^ ^ Γ . + ij^
x\/2

By the mean value theorem and Holder's inequality, we have

I I r M Λ I I /I

J|z|<2'-
[ω2(z)Y

+\y-

y~UZ^ 'z\"'dz

dz

Mi'

c2'
Mi'

[ω2{z)}-q'lqdz

where V = (d/dx\,... ,δ/dxn), c is independent of φ,x, t and y, and θe (0,1).
Here we used the inequalities

and ί + \y—θz\ >\x — y\ + \y—θz\ > \x—θz\ > \x\/2. Using the same estimates,
we have

t h M <|z<|z|<W/2
ί a(u)(k(z,u)-k(z,0))du

J|«|<2'

— ί
?"+ 1 J2I+1

IzlJz

'y - θz
,\n+δ-

-dz
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c2lδ

L
J τ i Y if δ=\
2/+V

l/ί'
(0,1),

by a>2 e Aq(R"). For L3, we have

N>W/2
[ a(u)(k(z,u)-k(z,O))du

J\u\<21

«'Ί

y- - dz

Thus, for xe Rk and I <k — 4, we have

(4)

for any ε e (0,1) where <5 = 1 and £ = δ when 5 e (0,1), where cε is independent
of x and /. From this, it follows that

oo / k-4

Σ
k=—co \ /=—oo

oo /k-4

Σ
U=-oo V=-oo

U=-00
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where we choose ε e (0,1) such that n + ε > otqωι + qωi

n/a when δ = 1 and ε = δ
when <Se(0,1).

This finishes the proof of Theorem 7. •

To discuss the extreme case, ocqωι = n{\ — qω2/q) +δ, of Theorem 7, we
introduce the weighted weak Herz-type Hardy space WHK^p(ω\,ω2).

DEFINITION 6. Let α e R, 0 < p, q < oo, ωi e Aqωχ (Rn), ω2 e Aqωi (Rn) and

1 < qωχ, qω2 < co- The homogeneous weighted weak Herz-type Hardy space

WHk^p(ωuω2) on /?" is denned by

WHK^(ωuω2) = {f e <?'{Rn) : Gl^f e WK^(ωuω2)}

and

The non-homogeneous weighted weak Herz-type Hardy space
on Rn is defined by

^ ( u 2 ) = {/ e ^ '(/T) : G

and

^ p ) = W^ 2

If ωi(jc) = ω2(x) = 1, we will denote WHk^p(ωuω2) and WHK^p(ωuω2)

simply by WHK%p{Rn) and WHK^p(Rn) which are introduced by Hu, Lu and

Yang in [7]. Obviously, Ϊ K f f ^ = WHK** = WHp

ωi(Rn) for any p e (0, oo)

which are studied by Quek and Yang in [14]; see also [3], [9], [1] and [16].
The following theorem is the end case of Theorem 7 and generalize Theorem

5 in [7] to both the non-convolutional case and the weighted case.

THEOREM 8. Let T,k,ω\,ω2 and q be the same as in Theorem 1 with δe
(0,1) and qωχ — qω2 = 1. If oc = n(\ — l/q) +δ and p e (0,1], then T is bounded

from HK^p(ωuω2) into WHK^p(ωuω2).

Proof Let / e HK^p(ω\,ω2) and write / as in the proof of Theorem 5.
We then have

= supA
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= MX + M2.

By the L^2(i?")-boundedness of Gl^qωi and T, we easily obtain a desirable
estimate for M2.

For Mi, when xeRk, by (4) , we have

k-4

l=- oo

£-4

/=-oo

/ £-4

\λ
A

~ /

since p < 1 and α = n{\ — \/q) +δ.
Now, similar to the above, we can obtain a desirable estimate for M\.
This finishes the proof of Theorem 8. •

Finally, we remark that if we assume more regularity on the kernel, we could
extend the range of α in Theorems 5 and 6; and moreover, if T satisfies higher
vanishing moment conditions, the range of α in Theorems 7 and 8 can also be
extended. We omit the details.
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