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A HYPERBOLIC HYPERSURFACE OF DEGREE 10
MANABU SHIROSAKI

§1. Introduction

In [K], Kobayashi posed a problem whether all ‘generic’ hypersurfaces in
P"(C) of degree enough large with respect to n are hyperbolic. For n=2
this conjecture is true. In fact, a non-singular curve of degree not less than 4 is
hyperbolic. However, for n >3 it is open. On the other hand, Masuda and
Noguchi [MN] defined the number d(n) by the minimum number such that there
exists a hyperbolic hypersurface of P"(C) of each integer not less than it. By
Demailly [D], d(3) < 11.

In this paper, we give a hyperbolic hypersurface of degree 10 in P*(C), and
hence, d(3) < 10.

§2. Lemmas

We use the terminology in [S]. Let fo,...,f, be entire functions on C
such that f; # 0 for at least one j (0 <j<n). Then f:=(f,...,f,) becomes
a representation of a holomorphic mapping f of C into P"(C). If f(z) =
(co:---:cy) for all ze C — f~1(o0), where cy,...,c, are constants at least one of
which are not 0, then we say that f or (f,:---: f,) is constant.

We will need the following:

LemMma 1 ([S, p. 291)). Let f be a nonconstant meromorphic function on C and
a; (1 <j < q) distinct points in C := CU{c0}. If all the zeros of f — a; have the
multiplicities at least m; for each j, where m; are arbitrarily fixed positive integers
(1<j<gq) and f — o0 means 1/f, then

q
Z(l - i) <2.
J=1 m

Remark. If f — a; has no zero, then we may consider 1 —1/m; as 1.

LemMmA 2. Let a,b,c be nonzero constants and d >3 an integer. Then,
P(z) = az¥ 4+ bz%"' + ¢ has at least d — 2 simple zeros.
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Proof. Let z; be a multiple zero of P(z). Then, P'(z) =daz§™'+
(d —1)bz§=2 = 0. Trivially zo # 0 because of P(0) = c # 0. Hence we have z,
= —(d—1)b/da and P"(z9) = d(d—1)az{? + (d—1)(d — 2)bz{3 = —(d—1)bz{~3
# 0. Therefore, P(z) has at most one multiple zero, and its multiplicity is 2.
This implies Lemma. Q.E.D.

§3. A hyperbolic hypersurface of degree 10

Now, we prove the following theorem:

THEOREM 3. Let ay,ay, a3 be nonzero constants and d > 5 an integer. Define
the hypersurface X in P*(C) by

- 2
wa? +wi — (awi'wy + aywd + aswg)’ = 0.

Then there exists no nonconstant holomorphic mapping f of C into P*(C) such that
f(C) <= X, ie, X is hyperbolic.

Proof. Assume that a holomorphic mapping f of C into P*(C) with re-
deuced representation (f, f1, f2, f3) satisfies f(C) = X, e,

(1) M — (it aff e fi) =0

(I) The case of fo =0. From (1), we have efld —I—a1f]d_1f2 +azf2d +a3f3d
=0, where e =+1. (i) If f; =0, then arff +asf{ =0. Trivially (f,: f3) is
constant, and hence, f'is constant. (ii) If /, = 0, then ¢ fld + a3 f3d =0. Trivially
(f) : f5) is constant, and hence, f is constant. (iii) If f; # 0, f> # 0, then

(2) eg? + g + @ = —as(f3/f2),

where g = f1/f>. By Lemma 2, ez¢ + a1z%"! 4+ a, = 0 has at least d — 2 simple
roots w;(j=1,...,d —2). For each j=1,...,d— 2, multiplicities of zeros of
g — w; are multiples of 4 by (2). The inequality (1 —1/d)(d—-2)=d—-3+
2/d >2 and Lemma 1 imply that g is constant. Hence f is constant.

(IT) The case of fy #0, f1 =0. From (1), we have sfod +arff+aff =0,
where ¢ = +1. In this case, it is obvious that f is constant.

(II) The case of fo#0, f1#0. From (1), we have f2+ =
(a1 f{7Vfo + arff + asfs)®. As in (1)(iii), we can conclude by (1 —1/2)-(2d) =
d > 2 that (f,: f]) is constant. Hence it is possible to write fo =cf; by a
nonzero constant ¢. By substituting this to (1), we get

b+ aif a+arff +asfi =0,

where b is a constant such that 52 = ¢ + 1. (i) If f, = 0, then bf} + a3f3d =0.
In this case, if b =0, then f3 =0 and f is constant. If b # 0, then (f;: f3) is
constant and so is f. (ii) Assume that f, # 0. If b # 0, then we can conclude

as in (I)(iii) that f is constant. If b =0, then fy(aiff ' +aff™") = —asfy.
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From the inequality (1 — 1/d)d =d — 1 > 2 and Lemma 1 it follows that (f : f3)
is constant, and so is f. Q.E.D.

For each d > 11, Demailly [D] gave a hyperbolic hypersurface of P*(C) of
degree d. Therefore, d(3) < 10 is obtained.

§4. Complements in P>(C)

In this section we give (reducible) hypersurfaces with hyperbolic comple-
ments.

THEOREM 4. Let ay,ay, ar be nonzero constants and d > 4 an integer. Define
a hypersurface X in P*(C) by

d-1 d d\2
wg'd — (aowy w1 + arw] + aw5)” =0.

Then there exists no nonconstant holomorphic mapping f of C into P*(C) such that
f(C) = P(C)\X.

Proof Assume that a holomorphic mapping f of C into P*(C) with re-
deuced representation (fy, £, f,) satisfies f(C) = P*(C)\X, ie.,

(3) o 1 fH —(aofd f aff + aff)? =0,

where o is an entire function without zeros.

In the case of d > 5, it follows from Theorem 3 that f is constant. Hence, it
is enough to consider the case of d =4, and from now on take d = 4.

(I) The case of fo =0. From (3), we have ex* = aif} + ayf;, where ¢ =
+1. By the Little Picard Theorem, (f;: f,) is constant, and hence, so is f.

() The case of fy #0. From (3), we have of + f& = (a1 f3f; + arfi +
arf)?. By the inequality (1 —1/2)-8 =4 >2 and Lemma 1, we have (f, : a)
is constant, and we can write a = ¢fy by a nonzero constant ¢. By substituting
this into (3),
(4) bfy +aofsfi+afi +afy =0
is obtained, where b is a constant such that b> = ¢® + 1. (i) If f; = 0, then bf; +
af 24 =0. In this case, if b =0, then f, =0; otherwise, (f,: f,) is constant.
In any case, f is constant. (ii) The case of f1 #0. If b =0, then from (4)
f (agfo3 +a1f13) = —a2f24. By the inequality (1 —1/4)-4=3>2 and Lemma
1, it is obtained that (f;: f7) is constant. Hence f is constant. Consider the
case of b#0. We rewrite (4) as

bfy +aofs fi +arf) = —arf;.

If bz* + apz® +a; = 0 has no multiple roots, then we conclude that (f,: f;)
is constant by Lemma 1 and the inequality (1 —1/4)-4=3>2. Hence [ is
constant. Otherwise, we can factorize
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4 3 2
bz 4+ apz” + a; = b(z — wy)(z — w2)(z — w3)

by Lemma 2, where w;,w;,ws are distinct nonzero constants. Put g = fy/f].
Then

blg — w1)(g — 02)(g — @3)* = —ax(fr/f1)*.

Therefore, multiplicities of zeros of g —w;, g — w, and g — w3 are multiples
of 4,4 and 2, respectively. Moreover, g has no zeros. The inequality 1+
(1-1/4)+(1-1/4)+(1-1/2) =3 > 2 and Lemma 1 imply that g is constant,
and hence f is constant. Q.E.D.

COROLLARY 5. Let X be as in Theorem 4. (i) If d =5, then P*(C)\X 1s
completely hyperbolic and hyperbolically imbeded in P*(C). (i) If d=4 and

+33%a¢ + 4% #0, then P*(C)\X is completely hyperbolic and hyperbolically
imbeded in P*(C).

Proof. (i) In this case the result is obvious by the above two theorems and
Brody-Green’s theorem.

(ii) The hypersurface X has two irreducible components of degree 4. By
the condition +3%ag + 4%a; # 0, they are non-singular, and hence, Riemann sur-
faces of genus 3. Therefore, all holomorphic mappings of C into X are constant.
From Theorem 4 and Brody-Green’s theorem, the conclusion follows. Q.E.D.
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