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PICARD CONSTANTS OF THREE-SHEETED ALGEBROID
SURFACES WITH p(y) =5

KAZUNARI SAWADA

Abstract

In 1995 Sawada-Tohge proved that every three-sheeted algebroid Riemann surface
with p(y) = 5 1s of Picard constant 5, unless 1ts discrimmant has a form e®# (4e*# + B),
where d =0 or 1. In this paper we shall prove that the result remains valid with no
condition.

1. Introduction

Let M(R) be the family of non-constant meromorphic functions on a
Riemann surface R. Let p(f) be the cardinal number of values which are not
taken by fe IM(R). Then we put

P(R) = sup p(f),
SeM(R)
which is called the Picard constant of R. We can prove that P(R) =2 if R is
open and P(R) = 0 if R is compact. Picard constant plays a very important role
in the theory of analytic mappings of Riemann surfaces. Indeed Ozawa [5] proved
that there exists no non-trivial analytic mapping of R into S if P(R) < P(S).

An n-sheeted algebroid surface is the proper existence domain of an n-valued

algebroid function, which is defined by the following irreducible equation;

So(2)y" = Si1(@)y" " 4+ (1) Sue1(2)y + (=1)"Su(2) =0,

where S;(z) (i=0,1,...,n) are entire functions on C with no common zeros.
An algebroid function f is called transcendental if at least one of Si(z)/Sy(z)
(i=1,2,...,n) is transcendental and f is called entire if all the S;(z)/So(z)
(i=1,2,...,n) are entire. If R is an n-sheeted algebroid surface, then P(R) <
2n by Selberg’s theory of algebroid functions [10]. However it is very difficult in
general to calculate P(R) of a given open Riemann surface R, even an algebroid
surface.

An n-sheeted algebroid surface is called regularly branched if all its branch
points are of order n — 1. Then we have
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THEOREM A (Aogai [1], Ozawa [6] and Hiromi-Niino [3]). 'Let R be an n-
sheeted regularly branched algebroid surface. If P(R) > 3n/2, then P(R) = 2n and
R can be defined by an algebroid function y such that

yr= (MO —a)eD — )" H(0)=0, aB(x—p)#0,

where H(z) is a non-constant entire function and o and f are constants.

We can prove that there exists no three-sheeted regularly branched surface
with P(R) =5 by theorem A.

In this paper we shall consider three-sheeted algebroid surfaces defined
by three-valued entire algebroid functions. Let R be a three-sheeted algebroid
Riemann surface defined by

0] y = S1(2)y* + $2(2)y — S3(2) = 0,
and X be a three-sheeted algebroid Riemann surface defined by
2 =@+ Us(z)f = Us(z) =0,

where S;i(z) (i=1,2,3) and Uj(z) (j =1,2,3) are entire functions. Ozawa and
the author proved the following

THEOREM B (Ozawa-Sawada [7]). Let X be a three-sheeted algebroid Riemann
surface defined by (2). If p(f) =6, then we have

U, (Z) = erL(Z) + X1,
(3) Us(z) = bixoe™® + x3,
U3(Z) = X3,

where by (#0), xo (#0), x1,X2,x3 (#0) are constants and L(z) is an entiwre
Sunction with L(0) =0. And its discriminant Dy is

Dy = _blzxgeu + ’73x8‘—’3L + ’72"392L + 1. x0e" + 79,
where
Ny = 4[)13 - bexl — 2b1x; + 4x3,
@) 1, = 12x1x3 — 18b1x3 — xf —4b1x1x2 + 12b12x2 - bllez,

n = 12x7x3 — 18byx1x3 — 18x203 — 2x1x3 + 12b1x5 — 2b1x3x3,

o = 4x3x3 — x2x3 + 27x3 — 18x1x2x3 + 4x3 (#0).

And we have

!Ozawa [6] and Hiromi-Niino [3] proved above result in the case n =2 and n = 3 respectively.
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THeEOREM C (Ozawa-Sawada [7]). Let R be a three-sheeted algebroid surface
defined by (1). If p(y) =5, then we have

Sl(z) =)
(5) $1(z) = yoe™) + y,,
S3(Z) =3,

where y, (#0), y1, 2, y3 (#0) are constants and H(z) is a non-constant entire
Sfunction with H(0) =0. We denote this surface by R4. Furthermore its dis-
criminant D, is

Dg, = 4y3e™™ + L y5e*" + Liyge™ + Go,

where
lo=4yiys— ¥y — 18y, 3,035 +4y; +27p3 (#0),

(6) G = 12}’% — 18y, 3 — 2Y12J’2,
L =12y, — yi.

Remark. Ozawa-Sawada [7] proved that there exist the following three
surfaces R4, Rp and Rg with p(y) =>5:

Ry:y’ = y1y* + (30 + )y — y3 =0,

Rp: y3 — (zoeH(Z) +21)y2 4z —23 =0,
and

—H(z)

R: : y* — (woe ™ 1+ a) y? + wiwpe y — wawge ) =0,

where H(z) is a non-constant entire function and y, (#0), yi,¥,,y3 (#0),
2o (#0), z1,22,23 (#0), a (#0), wo (#0), w; and wy (#0) are constants.
Furthermore
X =y yx—y; =0
has 3 distinct solutions.
However we may consider ‘only one’ surface R4. In fact we can investigate
that R4, Rp and R are conformally equivalent. Putting y =1/Y, then we can

deduce Rg from R4. And putting y = A(1 —a/Y), where 4 is a solution of
A% - y,A* + y,A — y; =0, then we can deduce R from Ry,.

Furthermore we have

THeorReM D (Ozawa-Sawada [7], Sawada-Tohge [9]). 2Let R be the surface
defined by (1) with p(y)=5. If ((1,(,) # (0,0), then P(R) = 5.

2(Qzawa-Sawada [7] proved the above result under the condition that R 1s of finite order and
Sawada-Tohge [9] proved that the result remains valid without the order condition.
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In this paper we shall prove that the above result remains valid without the
condition ({y,{;) # (0,0). In fact we shall prove the following

THEOREM. The surface R4 is of Picard constant 5 with no condition.

2. Preparations

In this paper we shall consider the surfaces, defined by theorem C, satisfy-
ing the additional condition {; = {, = 0 and the surfaces, defined by theorem B,
satisfying the additional condition #; =#, =#; =0. First of all we list up all
the surfaces X defined by (2) and (3) with the condition #; =#, =#; =0. By (4)
we have

N3 = 4bf — Zb%)q —2by1x; +4x3 =0,
n, = 12x1x3 — 18b1x3 — X3 — dbyx1 x5 + 12b%x; — b3x? = 0,

= 12x%x; — 18b1x1x3 — 18x3x3 — 2x1x§ + 12b|xéZ — 2b1x12x2 =0.

To eliminate x3 from #; =0 and #; = 0, let us calculate the resultant of #; =0
and 73 =0, then we have

(3b; — 2x1)(6b% — 3b1x1 + x2)(b1x1 + x2) = 0.
Similarly eliminating x3 from #, =0 and #; =0, we have
(7 1857 — 21b3x) + 5b3x? + 3bixy 4 2b1x1x2 — x5 = 0.

First of all we assume that 3b; — 2x; = 0. Let us put B = b;, then x; = 3B/2.
And from x; = 3B/2 and (7), we have x, = dB?, where d is a constant such that
4d*? —24d +9 =0. Furthermore we have x; = (2d — 1)B*/4 from 7; = 0.

Next we assume that 6b? —3b;x; +x, = 0. Eliminating x, from 6b? —
3b1x; +x, =0 and (7), we have

b?(18b% — 6b1x; — x3) = 0.
Similarly we put B = b;, then x; = dB, where d is a constant such that d?+
6d — 18 = 0. Furthermore we have x; = 3(d — 2)B? and x3 = 2(d — 2)B> from
6b? — 3b1x1 + x2 =0 and 73 = 0, respectively.
Last we assume that b;x; + x, = 0. Eliminating x, from b;x; + x, = 0 and
(7), we have

b3(9b} — 12b1x; + x}) = 0.

Therefore, putting B = b;, we have x; = dB and x, = —dB?, where d is a con-
stant such that d?—12d +9 =0. Furthermore we have x3 = —B> from
n3; = 0. Therefore there exist only three surfaces X satisfying the condition

m=mn=n=0:
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3
U(z) = xoe® + EB’

X-(i) { Ua(z) = Bxoe!? + dB?,

2d — 1
Us(z) =—4—B3,

where B (#0) is a constant and d is a solution of 4d*> —24d +9 =0, and its
discriminant is

1
DX-(j) = —B2X3€4L +E(4d — 3)386,

U; (Z) X()EL(Z) + dB,
X-(ii) { Us(z) = Bxoe™® + 3(d — 2)B?,
Us(z) = 2(d — 2) B,

where B (#0) is a constant and d is a solution of d?+6d — 18 =0, and its
discriminant is

Dx-iiy = —B*xje* — (d - 2)(d — 6)’ B,
and
Ui (2) = x0e*® + dB,
X-(iii) { Us(z) = Bxpe*® — dB?,
Us(z) = -B3,

where B (#0) is a constant and d is a solution of d?> —12d +9 =0, and its
discriminant is

Dy = —B’xge*t — (d — 1)(d +3)° B,

Next we list up all the surfaces R, defined by (1) and (5) with the condition
{i=¢(=0. By (6) we have

{C1 =125 — 18y, 73 = 2177, = 0,
L=12y,—yi =0.

If y, =0, we have y, =0 and y; = A, where 4 is a non-zero constant. If
y; # 0, putting y, = 64 (#0), we have y, =34% from {, =0 and y; = —4°

from {; = 0. Therefore there exist only two surfaces R, satisfying the condition
h=6L=0:
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Sl (Z) = 0,
R4-(i) § Sy(z) = eHe)
S3(Z) = A,

where 4 (#0) is a constant. Its discriminant is
Dg,-i) = 4yge’ + 2742,
and
Si(z) = 64,
Ry~(ii) § S2(2) = ype™? +34%,
S3(z) = —A°,
where A4 (#0) is a constant. Its discriminant is
Dp iy = 4yge>™ — 7294°.

Now we suppose that R, defined by theorem C, is of Picard constant 6.
There exists a meromorphic function f on R such that p(f) = 6. Without loss
of generality we may assume that the function f is entire, which does not take 5
finite values. The function f can be represented by

(8) f=fo+ fiv+ iy

where f,, f; and f, are “‘single-valued”’ meromorphic functions, which have poles
at most on {z|H'(z) = 0} (see Ozawa-Sawada [7]). Eliminating y from (1) and
(8), we have

fP-Uf 4+ Uyf - U =0,
where
9 Ur=3f+fi5+ fo(S] - 25)),
Uz = 35+ 2/o{ /iS1 + f2(ST = 252)} + /282 + f1/2(8152 = 383)
+ £7(8% - 25,53),

Us = f3 + folfiS1 + f(ST — 252)}
(11) + [l 282 + £1/5(S182 — 383) + £2(S7 — 285183)}

+ 285+ £218185 + £1/75:83 + £S5,

Because of p(f) = 6, the function f defines the surface X described by theorem B.
And we have the following relation between the discriminants of R and X (see
Ozawa-Sawada [7]):

(12) Dx = Dg - G?,

(10)
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where
(13) G = f3 42218+ (SE+ )i+ (518 — $3) 5.

Now we may assume that the surface R satisfies the condition {; = {, =0,
then we have that the surface X satisfies the condition #; =7, =#; =0 and G =
Ke™  where K is a non-zero constant and M is an entire function with M(0) =0
(see Sawada-Tohge [9]).

Eliminating f; from (9) and (10), we have

—3£2(S? — 38,) — 3, /(253 — 75182 + 9S3)
— 3£2(S} — 4528, + 87+ 65183) + 3UE - 9U, = 0.
Similarly eliminating f; from (9) and (11) we have
12283 — 95,8, +27S5)
+3£2{2£,(S} — 5528, + 382 4+ 981S3) — Ui (S? - 35,)}
+ 3, 6{H2S] — 11835, + 155283 + 118152 — 95,53)
— U1 (28} — 7815, +9S3)}
+ 12288 — 12815, + 185353 4 155282 — 3655255 + 253 + 2753)
— 312U (S — 4828, + 2 + 81S3) + Uf —27U3 = 0.

We can construct the following liner equation with respect to f; from (13)
and (14):

(14)

(15)

1
57 asy Y USIS = SIS 18515:85 48] +278))
1~ 2

(16) — (S{ = 382)(Uf - 3Un)}
— 2£51(45}38; — S2S% — 185185,S; + 4S5 +2757)
— /(818 = 983)(U = 3U3) + G(S7 — 385,)*] = 0.
Similarly we can construct the following linear equation with respect to f; from
(13) and (15):
1
(S - 3%:)°{2/5(S} - 38;) — 3Un}
x [[1{4£}(S? —35,)(4S}S; — S2S? — 18515,83 + 4S5 +27S3)
— 91U (4S}S; — S2S7 — 18515,8; + 4S5 + 27S2)
— (8% = 38,) (U = 27U3) — G(S? — 35,)(2S — 9515, + 2783)}
(17) +2£5(283 —7815,+953) (48383 — S252 — 1851 5,83 4+4S5 +2752)
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— 681U (4S} S5 — S2S? — 18515,8; + 4S5 + 2782)

+ £,{G(=25¢ + 16S}S, + 185783 — 455257 — 10851 5,53
+ 5453 + 24382) — (818, — 983) (U} —27U3)}

+3GU,(S? - 354 =0.

Therefore eliminating f; from (16) and (17) we have the following equation, which
plays an important role:

E\ - E,
(18) 2 4 2 =9
(52 —35,)*{2£,(S? - 38,) — 3U;}
where
(19) E| = £, (4S}Ss — S2S? — 18515,8; + 453 + 2752)
X (28} — 9815, +2783) — G(S? — 3S,)°
and

E; = 2(4S}S; — S282 — 18815,83 4 4S5 +2782) £}
+2(U? = 3U2)(St - 382) />
+ (28] — 9815 + 2785)G — (U} - 9U U, + 27U5).

It is easy to verify that there exists no single-valued meromorphic function f,
satisfying E; = 0. In fact, in the case R = R4-(i), we have

2741} (4y3e* 4 274%) +27Gy3e’ =0,
from (19). In this case the function f, mast have an algebraic branch point of

order 2 at every zero of 4yje3 + 2742, because that the function G = Ke™ has
no zero. This is a contradiction. And, in the case R = R4-(ii), we have

2741} 2ygetl —94%)(4y3e’t —7294%) — 27G(ype™ — 94%)° =0,

from (19). In this case the function f, mast have an algebraic branch point
of order 2 at every zero of 4yje” — 72945 and 2yje” —94%. This is also a
contradiction.

In the following section we shall consider the equation E; =0. And we
shall prove that there exists no single-valued meromorphic function f, satisfying
the equation E; = 0.

3. Proof of theorem
In this section we shall consider the following equation
E; = 2(4S}S; — S2S2 — 18515,8; + 453 +2782) 1,
(20) +2(UE = 3U1)(S} - 35) 5,
+ (28} — 9818, +2783)G — U} - 9U U, 4 27U3) = 0,
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where S; (i =1,2,3) are entire functions, the pair of which defines either R4-(i)

or Ry-(ii), U; (j=1,2,3) are entire functions, the pair of which defines one of

the surfaces X-(i), X-(ii) and X-(iii) and G = KeM™. We shall prove that there

exists no single-valued meromorphic function f, satisfying the equation (20).
Let us consider the case R = R4-(i) and X = X-(i). Then we have

—B%xje*l + % (4d — 3)°B® = (43’ +274%) - KM,

from (12) and their discriminants of R4-(i) and X-(i). In this case there exist
only two possibilities:

M=0,
AL = 35 2M =4L = —3H,
= 2.4 _ g g2p2
(I) _Bzxg _ 4y8K2 (II) — B XO =274 K 5
, 1 3 b6 3p2
11_6(4d_3)3B6 :27A2K2’ Tg(4d—3) B =4y0K .

First of all we consider the case (I). Let us put J=L/3=H/4, X =¢’ and
w=f,. Then we have the following algebraic equation:

3
2(4p3X 12 + 2747w — = o/ (4x3 X% —3(4d — 3)B* ) X*w
o (433 =3 y0/ (453X - 3(4d - 3)8?)
—2x3X° +9dB*x0 X3 + 274K = 0,
from (20). Next we consider the case (II) and let us put J=—-L/3=H/4=
—-M/6, X =e¢’ and w= f,. Then, from (20), we have

3(4d — 3)BX® —dx}

2(4y3x12 4274w +%yo

X2
9dB*x0X 6 + 2TAKX? — 2x}
+ =0,
X9
and
22) 2(4y3 X" +274%)X°w* + % Yo (3(4d —-3)B°X° - 4x§)x7w

+9dB%xo X + 27TAKX? — 2x} = 0.

In the case R = R,4-(i) and X = X-(ii), by the similar way of above, we have
the following two algebraic equations:

2(4y3X12 4274w
o) — 6, (ng6 +(2d — 3)BxoX? + (d — 3)(d — 6)32)X4w
—2x3X° —3(2d — 3)Bx2 X® — 6(d — 3)*B*xo X3

—(d —6)*(2d — 3)B> + 274K = 0,



PICARD CONSTANTS OF THREE-SHEETED ALGEBROID SURFACES 251
where M =0, J=L/3=H/4, X =¢’ and w= f,, and
243X 12 + 2742 x°w?
—630((d = 3)(d — 6)BX® + (2d - 3)BxoX* + x3 ) X "w
—(d-6)*(2d = 3)B*X° — 6(d — 3)*B*xo X°
—3((2d = 3)Bx§ — 94K) X* - 23 =0,

where J = —-L/3=H/4=-M/6, X =¢’ and w = f,, from (20).
Similarly, in the case R = R4-(i) and X = X-(iii), we have

2(4y3X 12 +274%)w?

25 — 6 (xg)(6 +(2d — 3)BxoX® +d(d + 3)32) Xtw
—2x3X° —3(2d — 3)Bx}X® — 6d°B*xo X
—(d +3)*(2d — 3)B* + 274K = 0,

where M =0, J=L/3=H/4, X =¢’ and w= f,, and

243X 12 + 2742 x°w?

— 67, (d(d +3)B2XS + (2d — 3)BxoX> + xg) XTw
—(d+3)*(2d - 3)B’X° — 6d*B*x) X ®
~3((2d = 3)Bx - 94K) X* = 2} = 0,

where J =—L/3=H/4=—-M/6, X =¢’ and w = f,.
Similarly, in the case R = R4-(ii) and X = X-(i), we have

o 2(493X12 — 729 4%)w® — ; (yoX* —942) (4x§X6 —3(4d — 3)32) w
—2x3X° — 544K yo X* + 9dB*xo X* 4 2434°K = 0,
where M =0, J=L/3=H/4, X =¢’ and w= f,, and
2(4y3X12 —7294%) X°w?
(28) + % (roX* = 94%)(3(4d - 3)B2X° — 4x3 ) Xw
— 544Ky, X7 +9dB?xo X ¢ + 2434°KX3? — 2x3 =0,

where J = —L/3=H/4=-M/6, X =¢’ and w = f,.
Similarly, in the case R = R4-(ii) and X = X-(ii), we have
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2(4y3x12 — 7294%w?
" — 6(pX* — 942) (xgxﬁ + (2d — 3)BxoX3 + (d - 3)(d — 6)32)w
> —2x3X° = 3(2d — 3)Bx2X® — 544K yoX* — 6(d — 3)> B2 xo X
—(d —6)*(2d — 3)B> + 2434°K = 0,

where M =0, J=L/3=H/4, X =¢’ and w= f,, and

2(4y3Xx12 - 72945 Xx°w?

— 6(ye Xt —942) ((d —3)(d — 6)B*XS + (2d — 3)Bxo X3 + xg) X3w

(30) —(d—6)2(2d = 3)B’X° — 544K y, X" — 6(d — 3)*B*xo X ¢
- 3((2d —3)Bx - 81A3K)X3 —2x3 =0,

where J = ~L/3=H/4=-M/6, X =¢’ and w = f,.
Similarly, in the case R = R4-(ii) and X = X-(iii), we have

2(4y3X12 — 7294%w?
an — 6(yoX* —942) (ng6 +(2d = 3)BxoX* +d(d + 3)B )w
—2x3X° —3(2d — 3)Bx3 X% — 544Ky, X* — 6d°B*x) X
—(d+3)%(2d - 3)B®> + 2434°K = 0,
where M =0, J=L/3=H/4, X =€’ and w= f,, and
2(4y3X 12 — 72948 X°w?
— 6(yoX* —942) (d(d +3)B2XS 4+ (2d — 3)BxoX3 + x§>X3w
(2 —(d+3)*(2d —3)B’X° — 544K y, X — 6d*B*xp X ®
~3((2d - 3)Bx} — 81L4°K ) X* - 2x} = 0,

where J = —-L/3=H/4=-M/6, X =¢’ and w= f,.
Now we need the following

LemMa 1 (Picard [8]). If the curve p(X,w) =0 is of genus g > 1, then there
exists no pair of meromorphic functions X (z) and w(z) such that (X (z),w(z)) = 0.

Proof of Theorem. Let R be the surface R4-(1). And let us assume that R
is of Picard constant 6. Then there exists an entire function f = f, + f1y + f5?
on R, which does not take 5 finite values. Furthermore we assume that the
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function f defines the surface X = X-(i). In this case the single-valued mero-
morphic function w = f, satisfies either (21) or (22).

First of all we assume that (21) is not irreducible. Then there exists a single-
valued meromorphic function w = w;(X) satisfying (21). It is easy to verify that
there exists no common zero of 4y3X'2 42742 and 4x3X% —3(4d — 3)B>. We
assume that there is a finite pole of w = w;(X), say Xp, which is of order p,
then Xo is a zero of 4y3X'?+274% By (21) we have p=1/2, which is
absurd. Hence w = w(X) has no pole on C. Next let us put X = 1/¢, then we
have

2(4y3 + 2742423 — % o (4x3 —3(4d — 3)B2t6)t2w

+ (=2x3 + 9dB*xot® + 274K1°)1* = 0,

from (21). Therefore w = w;(X) has a simple zero over X = co. Therefore
we have w = w;(X) = 0 by Liouville’s theorem. This is a contradiction. Hence
the equation (21) is irreducible. So we can consider the 3-valued algebraic
function defined by (21). The function w=w(X) has 12 poles on {X|
4y3X12 +274%* =0}, all of which are algebraic branch points of order 1.
Therefore the compact Riemann surface, defined by w = w(X), is of genus g = 4.
By lemma 1, there exist no pair of meromorphic functions X =e¢’ and w = f,
satisfying the equation (21). This is absurd.

Next let us consider (22). And let us assume that (22) is not irreducible.
Then there exists a single-valued meromorphic function w=w,(X) satisfying (22).
It is easy to verify that there exists no common zero of 4y3X'2+2742 and
3(4d — 3)B*X® — 4x}. We assume that there is a finite non-zero pole of w =
wa(X), say Xo, which is of order p, then X is a zero of 4y3X'2 +274%. And
by (22) we have p = 1/2, which is absurd. Hence w = w,(X) has only one pole
at X =0, which is of order 3. Putting X = 1/¢, we have

2433+ 224% 7 13 3, (34 — 3B — 453t
+ (9dB*x 4 27T4K?* — 2x3t%)1"5 = 0,

from (22). Therefore w = wo(X) has a zero of order at least 4 at X = co. This
is a contradiction. Hence the equation (22) is irreducible. So we can consider
the 3-valued algebraic function w = w(X) defined by (22). The function w =
w(X) has 12 branch points of order 1 on {X|4y3X'? + 2742 = 0}, therefore the
compact Riemann surface, defined by w = w(X), is of genus g = 4. By lemma 1,
there exist no pair of meromorphic functions X = e’ and w = f, satisfying the
equation (22). This is absurd. Therefore there exists no entire function f on
R,-(i), which defines the surface X-(i).

By the similar way of above, we can verify that there exists no single-valued
meromorphic function w = f, satisfying each of the equations (23), (24), (25) and
(26). Therefore there exists no entire function f on R4-(i), which does not take 5
finite values. Hence R4-(i) is of Picard constant 5.
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The similar way of above remains valid in the case of Ry4-(ii). QE.D
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