LOCALIZATION OF THE COEFFICIENT THEOREM

Shinji Yamashita

Abstract

Let f be holomorphic and univalent in $D=\{|z|<1\}$ and set $K(z)=z /(1-z)^{2}$. We prove $\left|f^{(n)}(z) / f^{\prime}(z)\right| \leq K^{(n)}(|z|) / K^{\prime}(|z|)$ at each $z \in D$ and for each $n \geq 2$. This inequality at $z=0$ is just the coefficient theorem of de Branges, the very solution of the Bieberbach conjecture. The equality condition is given in detail. In the specified case where $f(D)$ is convex we have again a sımilar and sharp result. We also consider $\left|f^{(n)}(z) / f^{\prime}(z)\right|$ for f univalent in a hyperbolic domain Ω with the Poincaré density $P_{\Omega}(z)$ and the radius of univalency $\rho_{\Omega}(z)$ at $z \in \Omega$. We obtain the estimate $\left(\rho_{\Omega}(z) / P_{\Omega}(z)\right)^{n-1}\left|f^{(n)}(z) / f^{\prime}(z)\right| \leq n!4^{n-1}$ at $z \in \Omega$ for $n \geq 2$, together with the detailed equality condition on f, Ω, and z.

1. Introduction

Let \mathscr{U} be the family of functions holomorphic and univalent in $D=$ $\{z ;|z|<1\}$. Writing $f_{\gamma}(z)=\bar{\gamma} f(\gamma z)$ for $f \in \mathscr{U}$ and for $\gamma \in \partial D \equiv\{z ;|z|=1\}$, we know that important members of \mathscr{U} are K_{γ}, the γ-rotations of the Koebe function $K(z)=z /(1-z)^{2}$. The coefficient theorem proved by L. de Branges $[\mathrm{B}]$ then reads as follows. For each $f \in \mathscr{U}$ and for each $n \geq 2$, the inequality

$$
\begin{equation*}
\left|\frac{f^{(n)}(0)}{f^{\prime}(0)}\right| \leq n!n \tag{1.1}
\end{equation*}
$$

holds. If the equality holds in (1.1) for an $n \geq 2$, then $f=f^{\prime}(0) K_{\gamma}+f(0)$ for some $\gamma \in \partial D$. Conversely the equality holds in (1.1) for all $n \geq 2$ and for all $f=A K_{\gamma}+B$, where $A \neq 0, B$, and $\gamma \in \partial D$ are complex constants.
$B y$ induction we have

$$
\begin{equation*}
K_{\gamma}^{(n)}(z) \equiv\left(K_{\gamma}\right)^{(n)}(z)=\frac{\gamma^{n-1} n!(n+\gamma z)}{(1-\gamma z)^{n+2}} \quad(n \geq 1, \gamma \in \partial D) \tag{1.2}
\end{equation*}
$$

[^0]so that (1.1) is precisely
\[

$$
\begin{equation*}
\left|\frac{f^{(n)}(0)}{f^{\prime}(0)}\right| \leq \frac{K^{(n)}(0)}{K^{\prime}(0)} \tag{1.3}
\end{equation*}
$$

\]

We may therefore call the following a localization of the coefficient theorem.
Theorem A. For $f \in \mathscr{U}$ the estimate

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq \frac{K^{(n)}(|z|)}{K^{\prime}(|z|)}=\frac{n!(n+|z|)}{(1-|z|)^{n-1}(1+|z|)} \tag{1.4}
\end{equation*}
$$

holds for each $n \geq 2$ and at each $z \in D$. If the equality holds in (1.4) at a point z and for an $n \geq 2$, then

$$
\begin{equation*}
f(w) \equiv A K_{\beta}(w)+B \tag{1.5}
\end{equation*}
$$

where $A \neq 0, B$, and $\beta \in \partial D$ are all complex constants. Conversely for f of (1.5) the equality holds in (1.4) for all $n \geq 2$ and at all points of the radius

$$
\Lambda(\beta) \equiv\{\bar{\beta} t ; 0 \leq t<1\}
$$

Furthermore, the inequality (1.4) is strict for all $n \geq 2$ and at all points of $D \backslash \Lambda(\beta)$.
Let \mathscr{S} be the family of $f \in \mathscr{U}$ with $f(0)=f^{\prime}(0)-1=0$. Supposing (1.1) the proof of which was unknown at that time, Z. J. Jakubowski [J, p. 67] proved that

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq \frac{n!(n+|z|)}{(1-|z|)^{n-1}(1+|z|)} \tag{1.4J}
\end{equation*}
$$

for $f \in \mathscr{S}, z \in D$, and $n \geq 2$, so that (1.4) is essentially due to him. However, Jakubowski never gave any equality condition for (1.4J) even for $f \in \mathscr{S}$. Under the condition that $f \in \mathscr{S}$, the equality condition for (1.4J) is the same as in Theorem A except for the restriction that $A=1$ and $B=0$ in (1.5). Actually, in Section 2 we shall propose Theorem 1 which may be called the first generalization of the coefficient theorem and which is a generalized form of Theorem A, in terms of the radius of univalency. In particular, the proof of (1.4) is different from Jakubowski's.

For each function

$$
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

of \mathscr{S} we know that

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq K^{\prime}(|z|)=\frac{1+|z|}{(1-|z|)^{3}} \tag{1.6}
\end{equation*}
$$

for all $z \in D[G, p .65]$. Applying (1.4) and (1.6) to h we now have

$$
\begin{equation*}
\left|h^{(n)}(z)\right| \leq K^{(n)}(|z|)=\frac{n!(n+|z|)}{(1-|z|)^{n+2}} \tag{1.7}
\end{equation*}
$$

for all $n \geq 2$ and all $z \in D$, a known result in [L, Satz] and [M, (12)], where (1.1) is again supposed; see also [G, pp. 74 and 103], This is also an immediate consequence of $\left|a_{k}\right| \leq k, k \geq 2$ for h because

$$
\left|h^{(n)}(z)\right| \leq \sum_{k=n}^{\infty} k(k-1) \cdots(k-n+1) k|z|^{k-n}=K^{(n)}(|z|)
$$

However, the proofs in [L] and [M] are not short. The equality condition is incompletely given in the cited three literatures, so that the following might be noteworthy. If the equality holds in (1.7) for an $n \geq 2$ and at a point $z \in D$, then $h=K_{\beta}$ for a $\beta \in \partial D$. Conversely, for $h=K_{\beta}, \beta \in \partial D$, the equality holds in (1.7) for all $n \geq 2$ and at all points of $\Lambda(\beta)$, whereas the inequality (1.7) is strict for all $n \geq 2$ and at all points of $D \backslash \Lambda(\beta)$.

To consider a convex version of Theorem A we recall the function $L(z)=$ $z /(1-z)$ of \mathscr{S} for which

$$
\frac{L^{(n)}(z)}{L^{\prime}(z)}=\frac{n!}{(1-z)^{n-1}} \quad(n \geq 2)
$$

note that $L(D)$ is a half-plane, so that this is convex.
Theorem B. Suppose that the image $f(D)$ of D by $f \in \mathscr{U}$ is convex. Then

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq \frac{L^{(n)}(|z|)}{L^{\prime}(|z|)}=\frac{n!}{(1-|z|)^{n-1}} \tag{1.8}
\end{equation*}
$$

for each $n \geq 2$ and at each $z \in D$. If the equality holds in (1.8) at a point z and for an $n \geq 2$, then

$$
\begin{equation*}
f(w) \equiv A L_{\beta}(w)+B \tag{1.9}
\end{equation*}
$$

where $A \neq 0, B$, and $\beta \in \partial D$ are all complex constants. Conversely for f of (1.9) the equality holds in (1.8) for all $n \geq 2$ and at all points of $\Lambda(\beta)$. Furthermore, the inequality (1.8) is strict for all $n \geq 2$ and at all points of $D \backslash \Lambda(\beta)$.

The inequality (1.8) at $z=0$ is familiar [G, p. 117].
Jakubowski [J, p. 68] proved that

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq \frac{n!}{(1-|z|)^{n-1}} \tag{1.8~J}
\end{equation*}
$$

for $f \in \mathscr{S}$ with convex $f(D)$ again without detailed equality condition as ours. Actually, in Section 3 we shall prove Theorem 2, a generalized form of Theorem

B , in terms of the radius of convexity. In particular, the proof of (1.8) is different from Jakubowski's.

Suppose that $h(D)$ is convex for $h \in \mathscr{S}$. Then

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq L^{\prime}(|z|) \tag{1.10}
\end{equation*}
$$

for all $n \geq 2$ and all $z \in D$ [G, p. 118]. Applying (1.8) and (1.10) to $h \in \mathscr{S}$ with convex $h(D)$, we have

$$
\begin{equation*}
\left|h^{(n)}(z)\right| \leq L^{(n)}(|z|) \tag{1.11}
\end{equation*}
$$

for all $n \geq 2$ and all $z \in D$; this is a known result [G, p. 118] and also is a trivial consequence of the coefficient theorem [G, p. 117] in the convex case. The equality conditions like for (1.7) can easily be obtained.

In Section 4 we shall consider the inequalities containing $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$, $n \geq 2$, at the same time; the equality conditions in Theorems 3 and 4 there are different from those in Theorems 1 and 2. One can regard Theorem 3 as the second localization of the coefficient theorem.

In Section 5 we shall prove Theorem 5, a version of Theorem A in a hyperbolic domain with the Poincaré density. Theorem 5 is sharp yet is not an extension of Theorem A.

2. Radius of univalency

Suppose that $f^{\prime}(z) \neq 0$ at a point $z \in D$ for f holomorphic in D. Then there exists $\rho(z, f)>0$, the greatest r such that $0<r \leq 1$ and f is univalent in

$$
\begin{equation*}
\left\{w ;\left|\frac{w-z}{1-\bar{z} w}\right|<r\right\} \tag{2.1}
\end{equation*}
$$

which is the non-Euclidean disk of center z and the non-Euclidean radius arctanh r, and also is the disk of
center $\mathscr{Z}(z, r) \equiv \frac{z\left(1-r^{2}\right)}{1-r^{2}|z|^{2}} \in D$ and radius $\mathscr{R}(z, r) \equiv \frac{r\left(1-|z|^{2}\right)}{1-r^{2}|z|^{2}} \leq 1-|\mathscr{Z}(z, r)|$.
We call $\rho(z, f)$ the radius of univalency of f at z.
A generalization of Theorem A is the following.
Theorem 1. Let f be holomorphic in D and suppose that $f^{\prime}(z) \neq 0$ at a point $z \in D$, so that $\rho=\rho(z, f)>0$. Then

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq \mathscr{R}(z, \rho)^{1-n} \frac{K^{(n)}(\rho|z|)}{K^{\prime}(\rho|z|)}=\frac{n!(\rho|z|+1)^{n-2}(\rho|z|+n)}{\rho^{n-1}\left(1-|z|^{2}\right)^{n-1}} \tag{2.2}
\end{equation*}
$$

for each $n \geq 2$. If the equality holds in (2.2) for an $n \geq 2$, then $\rho(z, f)=1$, so that $f \in \mathscr{U}$. Furthermore, f is of the form (1.5). Conversely for f of (1.5) the equality holds (in (2.2), i.e.,) in (1.4) for all $n \geq 2$ and at all points of $\Lambda(\beta)$, whereas the inequality (1.4) is strict for all $n \geq 2$ and at all points of $D \backslash \Lambda(\beta)$.

We shall make use of the identity

$$
\begin{equation*}
\sum_{k=0}^{m}(k+1)\binom{m}{k} P^{m-k} Q^{k}=(P+Q)^{m-1}(P+(m+1) Q) \tag{2.3}
\end{equation*}
$$

for complex numbers P, Q and for a natural number m. Actually, it follows from

$$
k\binom{m}{k}=m\binom{m-1}{k-1}
$$

for $1 \leq k \leq m$ that

$$
\sum_{k=1}^{m} k\binom{m}{k} P^{m-k} Q^{k}=m Q(P+Q)^{m-1}
$$

Proof of Theorem 1. Since the function

$$
\begin{equation*}
g(w)=\frac{f\left(\frac{\rho w+z}{1+\bar{\rho} w}\right)-f(z)}{\rho\left(1-|z|^{2}\right) f^{\prime}(z)}=\sum_{k=1}^{\infty} b_{k} w^{k} \tag{2.4}
\end{equation*}
$$

of $w \in D$ is in \mathscr{S}, since

$$
f(\zeta)=\rho\left(1-|z|^{2}\right) f^{\prime}(z) g(w)+f(z)
$$

for

$$
\zeta=\frac{\rho w+z}{1+\bar{z} \rho w} \quad \text { with } d \zeta=\frac{\rho\left(1-|z|^{2}\right)}{(1+\bar{z} \rho w)^{2}} d w, \quad w \in D
$$

and since

$$
\frac{(1+\bar{z} \rho w)^{n-1}}{w^{n+1}}=\sum_{k=0}^{n-1}\binom{n-1}{k}(\bar{z} \rho)^{n-1-k} w^{-k-2}, \quad w \neq 0
$$

for $n \geq 1$, it follows, after short computation, that

$$
\begin{align*}
\frac{f^{(n)}(z)}{n!} & =\frac{1}{2 \pi i} \int_{|(\zeta-z) /(1-\bar{\zeta} \zeta)|=\rho / 2} \tag{2.5}\\
& \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \\
& \frac{f^{\prime}(z)}{\rho^{n-1}\left(1-|z|^{2}\right)^{n-1}} \sum_{k=0}^{n-1}\binom{n-1}{k}(\bar{\rho} \rho)^{n-1-k} \frac{1}{2 \pi i} \int_{|w|=1 / 2} \frac{g(w)}{w^{k+2}} d w \\
& =\frac{f^{\prime}(z)}{\rho^{n-1}\left(1-|z|^{2}\right)^{n-1}} \sum_{k=0}^{n-1}\binom{n-1}{k}(\bar{z} \rho)^{n-1-k} b_{k+1} .
\end{align*}
$$

Since $\left|b_{k+1}\right| \leq k+1$ for all $k \geq 1$ (with $b_{1}=1$), and since (2.3) for $m=$
$n-1, P=\rho|z|$, and $Q=1$ holds, it finally follows from (2.5) that

$$
\begin{equation*}
\frac{\left|f^{(n)}(z)\right|}{n!} \leq \frac{\left|f^{\prime}(z)\right|(\rho|z|+1)^{n-2}(\rho|z|+n)}{\rho^{n-1}\left(1-|z|^{2}\right)^{n-1}} \tag{2.6}
\end{equation*}
$$

or (2.2).
If the equality holds in (2.2) for an $n \geq 2$, then there exists a $\beta \in \partial D$ with $g=$ K_{β}. If $\rho<1$, then f has $(\rho \bar{\beta}+z) /(1+\bar{z} \rho \bar{\beta}) \in D$ as a pole. This contradiction shows that $\rho=1$, so that $f \in \mathscr{U}$. We thus have

$$
\frac{f\left(\frac{w+z}{1+z w}\right)-f(z)}{\left(1-|z|^{2}\right) f^{\prime}(z)}=K_{\beta}(w)=\sum_{k=1}^{\infty} k \beta^{k-1} w^{k}
$$

Furthermore, with the aid of (2.3) for $m=n-1, P=\bar{z}$ and $Q=\beta$, (2.5) for $b_{k+1}=(k+1) \beta^{k}, k=1,2, \ldots$, is now reduced to

$$
\begin{equation*}
\frac{f^{(n)}(z)}{n!}=\frac{f^{\prime}(z)}{\left(1-|z|^{2}\right)^{n-1}}(\bar{z}+\beta)^{n-2}(\bar{z}+n \beta) . \tag{2.7}
\end{equation*}
$$

Since

$$
|\bar{z}+\beta|=|z|+1 \quad \text { and } \quad|\bar{z}+n \beta|=|z|+n,
$$

if and only if $z \in \Lambda(\beta)$, we can conclude that $z \in \Lambda(\beta)$. Furthermore, for the present $z \in \Lambda(\beta)$, the equality holds in (2.2) for all $n \geq 2$.

Consequently, if the equality holds in (2.2) for an $n \geq 2$, then it holds for all $n \geq 2$, and, furthermore,

$$
f(w) \equiv\left(1-|z|^{2}\right) f^{\prime}(z) K_{\beta}\left(\frac{w-z}{1-\bar{z} w}\right)+f(z)
$$

for a $\beta \in \partial D$ with $z \in \Lambda(\beta)$.
On the other hand, setting

$$
A^{\prime}(c)=\frac{(1+\beta c)^{3}}{\left(1-|c|^{2}\right)(1-\beta c)} \quad \text { and } \quad B^{\prime}(c)=\frac{c(1+\beta c)}{\left(1-|c|^{2}\right)(1-\beta c)}
$$

for c on the diameter

$$
\begin{equation*}
\Xi(\beta)=\{\bar{\beta} t ;-1<t<1\}, \quad \beta \in \partial D \tag{2.8}
\end{equation*}
$$

one can prove that

$$
\begin{equation*}
K_{\beta}(w) \equiv A^{\prime}(c) K_{\beta}\left(\frac{w-c}{1-\bar{c} w}\right)+B^{\prime}(c) . \tag{2.9}
\end{equation*}
$$

Since $z \in \Lambda(\beta) \subset \Xi(\beta)$, we have (1.5) with

$$
A=\frac{\left(1-|z|^{2}\right) f^{\prime}(z)}{A^{\prime}(z)}=\frac{(1-\beta z)\left(1-|z|^{2}\right)^{2} f^{\prime}(z)}{(1+\beta z)^{3}}=\frac{(1-|z|)^{3} f^{\prime}(z)}{1+|z|}
$$

and

$$
B=f(z)-\frac{B^{\prime}(z)}{A^{\prime}(z)}\left(1-|z|^{2}\right) f^{\prime}(z)=f(z)-\frac{z\left(1-|z|^{2}\right) f^{\prime}(z)}{(1+\beta z)^{2}}=f(z)-\frac{z(1-|z|) f^{\prime}(z)}{1+|z|}
$$

Given f of (1.5) and $n \geq 2$ we have

$$
\frac{n!|n+\beta z|}{|1-\beta z|^{n-1}|1+\beta z|}=\left|\frac{K_{\beta}^{(n)}(z)}{K_{\beta}^{\prime}(z)}\right|=\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right|=\frac{K^{(n)}(|z|)}{K^{\prime}(|z|)}
$$

if and only if

$$
1-|z|=|1-\beta z|, \quad 1+|z|=|1+\beta z|, \quad \text { and } \quad n+|z|=|n+\beta z|,
$$

if and only if $\operatorname{Re}(\beta z)=|z|$, hence, if and only if $z \in \Lambda(\beta)$. The remaining part of the proof of Theorem 1 is now obvious.

3. Radius of convexity

Suppose that $f^{\prime}(z) \neq 0$ at a point $z \in D$ for f holomorphic in D. Then there exists $\rho_{c}(z, f)>0$, the greatest r such that $0<r \leq 1$ and f is univalent in the disk of (2.1) the image of which by f is convex. We call $\rho_{c}(z, f)$ the radius of convexity of f at z. With the aid of the known theorem [G, p. 119] one can prove that

$$
(2-\sqrt{3}) \rho(z, f) \leq \rho_{c}(z, f) \leq \rho(z, f)
$$

As a generalized form of Theorem B we shall prove
Theorem 2. Let f be holomorphic in D and suppose that $f^{\prime}(z) \neq 0$ at a point $z \in D$, so that $\rho_{c}=\rho_{c}(z, f)>0$. Then

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq \mathscr{R}\left(z, \rho_{c}\right)^{1-n} \frac{L^{(n)}\left(\rho_{c}|z|\right)}{L^{\prime}\left(\rho_{c}|z|\right)}=\frac{n!\left(\rho_{c}|z|+1\right)^{n-1}}{\rho_{c}^{n-1}\left(1-|z|^{2}\right)^{n-1}} \tag{3.1}
\end{equation*}
$$

for each $n \geq 2$. If the equality holds in (3.1) for an $n \geq 2$, then $\rho_{c}(z, f)=1$, so that $f \in \mathscr{U}$ and $f(D)$ is convex. Furthermore, f is of the form (1.9). Conversely for f of (1.9) the equality holds (in (3.1), i.e.,) in (1.8) for all $n \geq 2$ and at all points of $\Lambda(\beta)$, whereas the inequality (1.8) is strict for all $n \geq 2$ and at all points of $D \backslash \Lambda(\beta)$.

Proof. We have, this time,

$$
\begin{equation*}
\frac{f^{(n)}(z)}{n!}=\frac{f^{\prime}(z)}{\rho_{c}^{n-1}\left(1-|z|^{2}\right)^{n-1}} \sum_{k=0}^{n-1}\binom{n-1}{k}\left(\bar{z} \rho_{c}\right)^{n-1-k} b_{k+1} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
g(w)=\frac{f\left(\frac{\rho_{c} w+z}{1+\bar{z} \rho_{c} w}\right)-f(z)}{\rho_{c}\left(1-|z|^{2}\right) f^{\prime}(z)}=\sum_{k=1}^{\infty} b_{k} w^{k} \tag{3.3}
\end{equation*}
$$

is in \mathscr{S} with convex $g(D)$. The well known coefficient theorem for g then reads that $\left|b_{k}\right| \leq 1$ for all $k \geq 2$; furthermore, if $\left|b_{k}\right|=1$ for a $k \geq 2$, then

$$
\begin{equation*}
g(w) \equiv L_{\beta}(w)=\sum_{k=1}^{\infty} \beta^{k-1} w^{k} \tag{3.4}
\end{equation*}
$$

for a $\beta \in \partial D$, so that $\left|b_{k}\right|=1$ for all $k \geq 2$. Hence, (3.2) shows that

$$
\frac{\left|f^{(n)}(z)\right|}{n!} \leq \frac{\left|f^{\prime}(z)\right|}{\rho_{c}^{n-1}\left(1-|z|^{2}\right)^{n-1}}\left(\rho_{c}|z|+1\right)^{n-1}
$$

from which follows (3.1).
If the equality holds in (3.1) for an $n \geq 2$, then g is of the form (3.4). Hence $\rho_{c}=1$; otherwise, f has $\left(\rho_{c} \bar{\beta}+z\right) /\left(1+\bar{z} \rho_{c} \bar{\beta}\right) \in D$ as a pole. We thus obtain

$$
\frac{f^{(n)}(z)}{n!}=\frac{f^{\prime}(z)}{\left(1-|z|^{2}\right)^{n-1}}(\bar{z}+\beta)^{n-1}
$$

because $b_{k+1}=\beta^{k}$. Note that $|\bar{z}+\beta|=1+|z|$ if and only if $z \in \Lambda(\beta)$.
Consequently, if the equality holds in (3.1) for an $n \geq 2$, then it holds for all $n \geq 2$, and furthermore

$$
f(w) \equiv\left(1-|z|^{2}\right) f^{\prime}(z) L_{\beta}\left(\frac{w-z}{1-\bar{z} w}\right)+f(z)
$$

for a $\beta \in \partial D$ with $z \in \Lambda(\beta)$. By the similar reasoning as in the proof of Theorem 2 we have

$$
A=\frac{\left(1-|z|^{2}\right)^{2} f^{\prime}(z)}{(1+\beta z)^{2}}=(1-|z|)^{2} f^{\prime}(z)
$$

and

$$
B=f(z)-\frac{z\left(1-|z|^{2}\right) f^{\prime}(z)}{1+\beta z}=f(z)-z(1-|z|) f^{\prime}(z)
$$

for $z \in \Lambda(\beta) \subset \Xi(\beta)$ in (1.9) because

$$
\frac{(1+\beta c)^{2}}{1-|c|^{2}} L_{\beta}\left(\frac{w-c}{1-\bar{c} w}\right)+\frac{c(1+\beta c)}{1-|c|^{2}} \equiv L_{\beta}(w)
$$

for $c \in \Xi(\beta)$. The rest of the proof is the same as that of Theorem 1 with K replaced by L.
4. Estimates containing $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}, n \geq 2$

Two sharp inequalities containing $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$, at the same time will be proved.

For $z \in D$ and for $\beta \in \partial D$ we set

$$
\Xi(z, \beta)=\left\{\frac{\bar{\beta} t+z}{1+\bar{z} \bar{\beta} t} ;-1<t<1\right\} .
$$

The set $\Xi(z, \beta)$ is the non-Euclidean (geodesic) line in D ending at points $(z-\bar{\beta}) /$ $(1-\bar{z} \bar{\beta})$ and $(z+\bar{\beta}) /(1+\bar{z} \bar{\beta})$ of ∂D, or, a circular arc in (possibly, a diameter of) D orthogonal to ∂D at the two points. Note that $\Xi(z, \beta)=\Xi(\beta)$ if and only if $z \in \Xi(\beta)$. In particular, $\Xi(\beta)=\Xi(0, \beta)$.

Theorem 3. Let f be holomorphic in D and suppose that $f^{\prime}(z) \neq 0$ at a point $z \in D$. Then

$$
\begin{equation*}
\rho(z, f)^{n-1}\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1}(-\bar{z})^{n-k}\left(1-|z|^{2}\right)^{k-1} \frac{f^{(k)}(z)}{f^{\prime}(z)}\right| \leq n \tag{4.1}
\end{equation*}
$$

for each $n \geq 2$. If the equality holds in (4.1) for an $n \geq 2$, then f is of the form

$$
\begin{equation*}
f(w) \equiv A K_{\beta}\left(\frac{w-z}{1-\bar{z} w}\right)+B \tag{4.2}
\end{equation*}
$$

where $A \neq 0, B$ and $\beta \in \partial D$ are constants. Conversely for f of (4.2) the equality holds in (4.1) (with $\rho(z, f)=1$) for all $n \geq 2$ and at all points of $\Xi(z, \beta)$. The inequality (4.1) is, furthermore, strict for all $n \geq 2$ and at all points of $D \backslash \Xi(z, \beta)$.

Theorem 4. Let f be holomorphic in D and suppose that $f^{\prime}(z) \neq 0$ at a point $z \in D$. Then

$$
\begin{equation*}
\rho_{c}(z, f)^{n-1}\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1}(-\bar{z})^{n-k}\left(1-|z|^{2}\right)^{k-1} \frac{f^{(k)}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{4.3}
\end{equation*}
$$

for each $n \geq 2$. If the equality holds in (4.3) for an $n \geq 2$, then f is of the form

$$
\begin{equation*}
f(w) \equiv A L_{\beta}\left(\frac{w-z}{1-\bar{z} w}\right)+B, \tag{4.4}
\end{equation*}
$$

where $A \neq 0, B$ and $\beta \in \partial D$ are constants. Conversely for f of (4.4) the equality holds in (4.3) (with $\rho_{c}(z, f)=1$) for all $n \geq 2$ and at all points of $\Xi(z, \beta)$. The inequality (4.3) is, furthermore, strict for all $n \geq 2$ and at all points of $D \backslash \Xi(z, \beta)$.

The proof of Theorem 4 is similar to that of Theorem 3, and hence is omitted.

Proof of Theorem 3. First of all we claim that, for a complex λ and $1 \leq$ $k \leq n$, the expansion

$$
\begin{equation*}
\left(\frac{w}{1+\lambda w}\right)^{k}=\sum_{n=k}^{\infty}(-\lambda)^{n-k}\binom{n-1}{k-1} w^{n} \tag{4.5}
\end{equation*}
$$

holds provided that $|\lambda w|<1$. This identity follows immediately from

$$
\frac{1}{(1-\zeta)^{k}}=\sum_{n=0}^{\infty}\binom{n+k-1}{k-1} \zeta^{n}
$$

for $|\zeta|<1$ and $1 \leq k \leq n$.
Set $\rho=\rho(z, f)$ and consider g of (2.4). Set

$$
\phi(w)=\frac{w}{1+\rho \bar{z} w}
$$

for $w \in D$ and

$$
\begin{aligned}
F(\zeta) & =\frac{f\left(\rho\left(1-|z|^{2}\right) \zeta+z\right)-f(z)}{\rho\left(1-|z|^{2}\right) f^{\prime}(z)} \\
& =\sum_{k=1}^{\infty} \frac{f^{(k)}(z)}{k!} \frac{\left[\rho\left(1-|z|^{2}\right) \zeta\right]^{k}}{\rho\left(1-|z|^{2}\right) f^{\prime}(z)}
\end{aligned}
$$

Then

$$
g(w)=F \circ \phi(w)=\frac{1}{f^{\prime}(z)} \sum_{k=1}^{\infty} \frac{f^{(k)}(z)}{k!}\left[\rho\left(1-|z|^{2}\right)\right]^{k-1} \phi(w)^{k},
$$

so that, with the aid of (4.5) for $\lambda=\rho \bar{z}$, we have

$$
g(w)=\sum_{n=1}^{\infty} b_{n} w^{n}
$$

with

$$
b_{n}=\rho^{n-1} \sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1}(-\bar{z})^{n-k}\left(1-|z|^{2}\right)^{k-1} \frac{f^{(k)}(z)}{f^{\prime}(z)}
$$

Applying the coefficient theorem $\left|b_{n}\right| \leq n, n \geq 2$, to $g \in \mathscr{S}$ we immediately have (4.1).

If the equality holds in (4.1) for an $n \geq 2$, then it holds for all $n \geq 2, \rho(z, f)$
$=1$, and f is of the form (4.2) with $A=\left(1-|z|^{2}\right) f^{\prime}(z)$ and $B=f(z)$.
Conversely, given f of (4.2) we suppose that the equality holds in (4.1) at $c \in D$ and for an (hence, all) $n \geq 2$. In particular, for $n=2$ we have $|Q(c)|=2$ for

$$
Q(c)=-\bar{c}+\frac{1}{2}\left(1-|c|^{2}\right) \frac{f^{\prime \prime}(c)}{f^{\prime}(c)}
$$

Setting $\psi(w)=\beta(w-z) /(1-\bar{z} w), w \in D$, and recalling

$$
1-|\psi(c)|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|c|^{2}\right)}{(1-\bar{z} c)(1-z \bar{c})}
$$

we have that

$$
Q(c)=\frac{\beta(1-z \bar{c})}{1-\bar{z} c}\left(-\overline{\psi(c)}+\frac{1}{2}\left(1-|\psi(c)|^{2}\right) \frac{K^{\prime \prime}(\psi(c))}{K^{\prime}(\psi(c))}\right) .
$$

Hence

$$
\begin{equation*}
\left|-\overline{\psi(c)}+\frac{1}{2}\left(1-|\psi(c)|^{2}\right) \frac{K^{\prime \prime}(\psi(c))}{K^{\prime}(\psi(c))}\right|=2 . \tag{4.6}
\end{equation*}
$$

On the other hand,

$$
\left|-\bar{\zeta}+\frac{1}{2}\left(1-|\zeta|^{2}\right) \frac{K^{\prime \prime}(\zeta)}{K^{\prime}(\zeta)}\right|=2
$$

for $\zeta \in D$ if and only if $1-|\zeta|^{2}=\left|1-\zeta^{2}\right|$ or if and only if $\zeta \in \Xi(1)=(-1,1)$. It then follows from (4.6) that $\psi(c) \in \Xi(1)$, so that $c \in \Xi(z, \beta)$. Given $c^{\prime} \in \Xi(z, \beta)$ for f of (4.2) we may trace back the above argument on replacing c with c^{\prime} to observing that the equality holds in (4.1) at c^{\prime} for all $n \geq 2$. The remaining part of the proof is now obvious.

For $f \in \mathscr{U}$ at $z=0$, the inequality (4.1) is just (1.1). One can call Theorem 3 , therefore, the second localization of the coefficient theorem; similarly for Theorem 4.

The case $n=2$ in (4.1) reads

$$
\rho(z, f)\left|-\bar{z}+\frac{1}{2}\left(1-|z|^{2}\right) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 2
$$

which is familiar in case $\rho(z, f)=1$ or $f \in \mathscr{U}$; see [G, (5), p. 63].

5. Hyperbolic domain

A domain Ω in the plane $\boldsymbol{C}=\{|z|<+\infty\}$ is called hyperbolic if $\boldsymbol{C} \backslash \boldsymbol{\Omega}$ contains at least two points. Let ϕ be a universal covering projection from D onto a hyperbolic domain Ω in $\boldsymbol{C} ; \phi$ is holomorphic and ϕ^{\prime} is zero-free in D. The Poincaré density P_{Ω} is then the function in Ω defined by

$$
P_{\Omega}(z)=\frac{1}{\left(1-|w|^{2}\right)\left|\phi^{\prime}(w)\right|}, \quad z \in \Omega,
$$

where $z=\phi(w)$; the choice of ϕ and w is immaterial as far as $z=\phi(w)$ is satisfied.
We next set $\rho_{\Omega}(z)=\rho(w, \phi)$ for $z=\phi(w) \in \Omega$. Again, $\rho_{\Omega}(z)$ is independent of the particular choice of ϕ and w as far as $z=\phi(w)$ is satisfied. We call $\rho_{\Omega}(z)$ the radius of univalency of Ω at z.

Let $\mathscr{U}(\Omega)$ be the family of all the functions holomorphic and univalent in Ω; in particular, $\mathscr{U}=\mathscr{U}(D)$.

As another application of the coefficient theorem we propose
Theorem 5. For $f \in \mathscr{U}(\Omega)$ of a hyperbolic domain $\Omega \subset C$ the inequality

$$
\begin{equation*}
\left(\frac{\rho_{\Omega}(z)}{P_{\Omega}(z)}\right)^{n-1}\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq n!4^{n-1} \tag{5.1}
\end{equation*}
$$

holds for each $n \geq 2$ and at each $z \in \Omega$. If the equality holds in (5.1) at a point $z \in \Omega$ and for an $n \geq 2$, then the following items (I) and (II) hold.
(I) There exist complex constants $Q \neq 0$ and R such that Ω is the slit domain

$$
\begin{equation*}
\Omega=C \backslash\left\{Q t+R ; t \leq-\frac{1}{4}\right\} \tag{5.2}
\end{equation*}
$$

in particular, $\rho_{\Omega}(z) \equiv 1$.
(II) The function f is of the form

$$
\begin{equation*}
f(w)=\frac{S(R-w)}{4 w+Q-4 R}+T \tag{5.3}
\end{equation*}
$$

where $S \neq 0$ and T are complex constants.
Conversely, suppose that f of (5.3) is given in Ω of (5.2). Then the equality holds in (5.1) at each point of the half-line

$$
\mathscr{L}=\left\{Q t+R ; t>-\frac{1}{4}\right\}
$$

and for each $n \geq 2$, whereas the inequality (5.1) is strict at each point of $\Omega \backslash \mathscr{L}$ and for each $n \geq 2$.

The extremal function f of (5.3) maps Ω of (5.2) univalently onto the slit domain

$$
C \backslash\left\{S t+T ; t \leq-\frac{1}{4}\right\} .
$$

K. S. Chua [C, Theorem 1] proved (5.1) in case $\rho_{\Omega}(z) \equiv 1$, namely, in case Ω is a simply connected, proper subdomain of C; his equality condition is not complete enough. Chua actually proved that the equality holds in (5.1) at 0 for f of (5.3) with $Q=1, R=0, S=(-1)^{n}$, and $T=0$ in Ω of (5.2) [C, p. 69]. In case $\Omega=D$ and $f \in \mathscr{U}$, the inequality (5.1) at $z=0$ reads

$$
\begin{equation*}
\left|\frac{f^{(n)}(0)}{f^{\prime}(0)}\right| \leq n!4^{n-1} \tag{5.4}
\end{equation*}
$$

a worse result than (1.1) for $n \geq 2$. Theorem 5 is, in this sense, never an extension of Theorem A.

Theorem 5 for the fixed $n=2$ is known; see [Y2, Théorème et seq.].
The inverse function of $h \in \mathscr{S}$ in $h(D)$ is always denoted by h^{*}. The function $h^{* k} \equiv\left(h^{*}\right)^{k}$, the k-th power of $h^{*}, k=1,2, \ldots$, in $h(D)$, then has the expansion

$$
h^{* k}(\zeta)=\sum_{n=k}^{\infty} B_{n k}(h) \zeta^{n}
$$

in a neighborhood of $0 \in h(D)$ and $B_{k k}(h)=1$. An important case is that $h=K$,

$$
B_{n k}(K)=(-1)^{n-k} \frac{k}{n}\binom{2 n}{n-k}, \quad 1 \leq k \leq n
$$

for which

$$
\sum_{k=1}^{n} k\left|B_{n k}(K)\right|=\sum_{k=1}^{n} \frac{k^{2}}{n}\binom{2 n}{n-k}=4^{n-1}
$$

see [C, (8) and (14)]. Moreover, for $\gamma \in \partial D$ one has

$$
B_{n k}\left(K_{\gamma}\right)=B_{n k}(K) \gamma^{n-k}, \quad 1 \leq k \leq n .
$$

Notice that

$$
\left(K_{\gamma}\right)^{*}(\zeta)=\bar{\gamma} K^{*}(\gamma \zeta), \quad \zeta \in K_{\gamma}(D) .
$$

Proof of Theorem 5. We first suppose that $0 \in \Omega$ and $\phi(0)=\phi^{\prime}(0)-1=0$ for a projection $\phi: D \rightarrow \Omega$. Then $P_{\Omega}(0)=1$. Supposing further that $f(0)=$ $f^{\prime}(0)-1=0$ we shall prove that

$$
\begin{equation*}
\rho^{n-1}\left|f^{(n)}(0)\right| \leq n!4^{n-1} \tag{5.5}
\end{equation*}
$$

where $\rho=\rho_{\Omega}(0)$. The functions

$$
\Phi(z)=\rho^{-1} \phi(\rho z) \quad \text { and } \quad F(z)=\rho^{-1} f(\phi(\rho z))=\rho^{-1} f(\rho \Phi(z)) \quad \text { for } z \in D
$$

both are in \mathscr{S}. Since

$$
\rho^{-1} f(\rho \zeta)=F \circ \Phi^{*}(\zeta), \quad \zeta=\Phi(z) \in \Phi(D)
$$

it follows from [T, Theorem 1, p. 220] for $F \circ \Phi^{*}$ defined in $\Phi(D)$ that

$$
\rho^{-1} \frac{d^{n}}{d \zeta^{n}} f(\rho \zeta)=\sum_{k=1}^{n} A_{n k}(\zeta) F^{(k)}\left(\Phi^{*}(\zeta)\right)
$$

where

$$
A_{n k}(\zeta)=\frac{1}{k!} \sum_{j=1}^{k}(-1)^{k-\jmath}\binom{k}{j}\left(\Phi^{*}\right)^{k-\jmath}(\zeta)\left(\Phi^{* J}\right)^{(n)}(\zeta), \quad n=1,2, \ldots .
$$

Since $\Phi^{*}(0)=0$ it then follows that

$$
\begin{equation*}
\rho^{n-1} f^{(n)}(0)=\sum_{k=1}^{n} n!B_{n k}(\Phi) \frac{F^{(k)}(0)}{k!} \tag{5.6}
\end{equation*}
$$

On the other hand, it follows from Chua's theorem [C, Theorem 2], applied to $\Phi \in \mathscr{S}$, that

$$
\begin{equation*}
\left|B_{n k}(\Phi)\right| \leq\left|B_{n k}(K)\right|, \quad 1 \leq k \leq n \tag{5.7}
\end{equation*}
$$

Recalling the coefficient theorem for $F \in \mathscr{S}$, one finally has (5.5) from (5.6). Observe that if $n \geq 2$ and if the equality holds in (5.7) for a pair, n, k with $k<n$, then $\Phi=K_{\beta}$ for a $\beta \in \partial D$, so that the equality holds in (5.7) for all pairs of n, k with $1 \leq k \leq n$.

Suppose that the equality holds in (5.5) for an $n \geq 2$. Then

$$
F=K_{\alpha} \quad \text { and } \quad \Phi=K_{\beta}
$$

for $\alpha, \beta \in \partial D$. If $\rho<1$, then f has a pole $\phi(\rho \bar{\alpha}) \in \Omega$. This contradiction shows that $\rho=1$, so that $\phi=\Phi=K_{\beta}$. Hence

$$
\Omega=C \backslash\left\{\bar{\beta} t ; t \leq-\frac{1}{4}\right\}
$$

so that $Q=\bar{\beta}$ and $R=0$ in (5.2). On the other hand, it follows from (5.6) that

$$
f^{(n)}(0)=n!\sum_{k=1}^{n} B_{n k}(K) \beta^{n-k} k \alpha^{k-1}
$$

with $\left|f^{(n)}(0)\right|=n!4^{n-1}$. Setting $\gamma=-\alpha \bar{\beta}$ and $C_{n k}=k\left|B_{n k}(K)\right|, 1 \leq k \leq n$, we now have

$$
\left|\sum_{k=1}^{n} C_{n k} \gamma^{k}\right|=\frac{\left|f^{(n)}(0)\right|}{n!}=4^{n-1}=\sum_{k=1}^{n} C_{n k}
$$

so that, on squaring the left- and the right-most sides, we have

$$
\sum C_{n k} C_{n l}\left(1-\gamma^{k-l}\right)=0 \quad\left(\sum \quad \text { for } k \neq l, 1 \leq k \leq n, 1 \leq l \leq n\right) .
$$

Since $\operatorname{Re}\left(1-\gamma^{k-l}\right) \geq 0$ and $C_{n k} C_{n l}>0$, it follows that $\operatorname{Re} \gamma^{k-l}=1$ for $k \neq l$, $1 \leq k \leq n, 1 \leq l \leq n$. We may choose $k=2$, and $l=1$, so that

$$
\begin{equation*}
1=\gamma=-\alpha \bar{\beta} \tag{5.8}
\end{equation*}
$$

Since

$$
K^{*}(\zeta)=\frac{2 \zeta+1-\sqrt{4 \zeta+1}}{2 \zeta}
$$

it follows that

$$
-K\left(-K^{*}(\zeta)\right)=\frac{\zeta}{4 \zeta+1}, \quad \zeta \in K(D)
$$

Consequently, for $w \in \Omega$, we have

$$
f(w)=K_{\alpha} \circ\left(K_{\beta}\right)^{*}(w)=K_{\alpha}\left(\bar{\beta} K^{*}(\beta w)\right)=\bar{\alpha} K\left(-K^{*}(\beta w)\right)=\frac{\bar{\beta} w}{4 w+\bar{\beta}}
$$

by (5.8). Hence we have $S=-\bar{\beta}$ and $T=0$ with $R=0$ in (5.3).
To complete the proof of (5.1) at $z=a \in \Omega$ in the general case, we choose a projection ϕ with $\phi(0)=a$, and set

$$
\begin{equation*}
g(w)=\frac{f\left(a+\phi^{\prime}(0) w\right)-f(a)}{\phi^{\prime}(0) f^{\prime}(a)} \tag{5.9}
\end{equation*}
$$

for the variable w in the domain

$$
\Sigma=\left\{\frac{z-a}{\phi^{\prime}(0)} ; z \in \Omega\right\}
$$

onto which $\psi=(\phi-a) / \phi^{\prime}(0)$ is a projection with $\psi(0)=\psi^{\prime}(0)-1=0$. Since

$$
g^{(n)}(0)=\frac{f^{(n)}(a) \phi^{\prime}(0)^{n-1}}{f^{\prime}(a)}, \quad \rho_{\Sigma}(0)=\rho_{\Omega}(a) \quad \text { and } \quad\left|\phi^{\prime}(0)\right|=1 / P_{\Omega}(a)
$$

it follows from (5.5) applied to g at 0 with $\rho=\rho_{\Sigma}(0)$ that

$$
\left(\frac{\rho_{\Omega}(a)}{P_{\Omega}(a)}\right)^{n-1}\left|\frac{f^{(n)}(a)}{f^{\prime}(a)}\right|=\rho_{\Sigma}(0)^{n-1}\left|g^{(n)}(0)\right| \leq n!4^{n-1}
$$

This is (5.1) for $z=a$.
Suppose that the equality holds at $z=a$ in (5.1). Then, in (I) and (II), we can set, with the aid of g of (5.9),

$$
Q=\bar{\beta} \phi^{\prime}(0), \quad R=a, \quad S=-\bar{\beta} \phi^{\prime}(0) f^{\prime}(a), \quad \text { and } \quad T=f(a)
$$

for a $\beta \in \partial D$.
Conversely, given f of (5.3) in Ω of (5.2) and $n \geq 2$ we have

$$
f^{(n)}(z)=\frac{n!(-4)^{n-1}(-S Q)}{(4 z+Q-4 R)^{n+1}}
$$

so that

$$
\frac{f^{(n)}(z)}{f^{\prime}(z)}=\frac{n!(-4)^{n-1}}{(4 z+Q-4 R)^{n-1}}, \quad z \in \Omega .
$$

Since $z=Q K(\zeta)+R$ maps D univalently onto Ω, it follows that

$$
\frac{1}{P_{\Omega}(z)}=\frac{|Q|\left(1-|\zeta|^{2}\right)|1+\zeta|}{|1-\zeta|^{3}}
$$

and

$$
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right|=\frac{n!4^{n-1}}{|Q|^{n-1}}\left|\frac{1-\zeta}{1+\zeta}\right|^{2 n-2}
$$

so that

$$
P_{\Omega}(z)^{1-n}\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right|=n!4^{n-1}\left(\frac{1-|\zeta|^{2}}{\left|1-\zeta^{2}\right|}\right)^{n-1}
$$

Hence, for $n \geq 2$,

$$
P_{\Omega}(z)^{1-n}\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right|=n!4^{n-1}
$$

if and only if $1-|\zeta|^{2}=\left|1-\zeta^{2}\right|$ or if and only if $\zeta \in \Xi(1)$. In conclusion, the equality holds in (5.1) at $z \in \Omega$ if and only if z is on \mathscr{L}, the image of $\Xi(1)$ by $z=Q K(\zeta)+R$.

Remark. Let ϕ be a universal covering projection from D onto Ω and let $z=\phi(w), w \in D . \quad$ Set

$$
\Delta(z)=\phi\left(\left\{\zeta ;\left|\frac{\zeta-w}{1-\bar{w} \zeta}\right|<\rho_{\Omega}(z)\right\}\right)
$$

possibly, $\Delta(z)=\Omega$. This simply connected domain is independent of the particular choice of ϕ and w as far as $z=\phi(w)$ is satisfied. We can replace, in Theorem 5, the condition on f that $f \in \mathscr{U}(\Omega)$ with the following weaker one. Namely, f is holomorphic in Ω and univalent in each $\Delta(z), z \in \Omega$.

6. Concluding remarks

For z of a hyperbolic domain Ω we set $\rho_{\Omega c}(z)=\rho_{c}(w, \phi)$, where $z=\phi(w)$ is a universal covering projection. Then $\rho_{\Omega c}$ is a function well defined in Ω and $\rho_{\Omega c}(z)$ is called the radius of convexity of Ω at z.

Suppose that $\Phi \in \mathscr{S}$ and $\Phi(D)$ is convex. Then,

$$
\left|B_{n k}(\Phi)\right| \leq\binom{ n-1}{k-1}, \quad n-3 \leq k \leq n
$$

[C, Lemma 2]. Hence if $2 \leq n \leq 4, z \in \Omega$, and $f \in \mathscr{U}(\Omega)$ with Ω hyperbolic, then

$$
\begin{equation*}
\left(\frac{\rho_{\Omega c}(z)}{P_{\Omega}(z)}\right)^{n-1}\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq(n+1)!2^{n-2} \tag{6.1}
\end{equation*}
$$

Note that

$$
\sum_{k=1}^{n} k\binom{n-1}{k-1}=\sum_{k=0}^{n-1}(k+1)\binom{n-1}{k}=(n+1) 2^{n-2}
$$

the case $m=n-1$ and $P=Q=1$ in (2.3). In view of the $\rho_{\Omega c}$ version of (5.6) the proof of (6.1) is now obvious. One can loosen the condition $f \in \mathscr{U}(\boldsymbol{\Omega})$ for (6.1) on only supposing that f is univalent in each domain

$$
\Delta_{c}(z) \equiv \phi\left(\left\{\zeta ;\left|\frac{\zeta-w}{1-\bar{w} \zeta}\right|<\rho_{\Omega c}(z)\right\}\right), \quad z=\phi(w) \in \Omega .
$$

Chua proved in [C, Theorem 3] that for $f \in \mathscr{U}(\Omega)$ with Ω convex,

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq(n+1)!2^{n-2} P_{\Omega}(z)^{n-1}, \quad z \in \Omega ; n=2,3,4 \tag{6.2}
\end{equation*}
$$

and if $f(\Omega)$ is convex further, then

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leq n!2^{n-1} P_{\Omega}(z)^{n-1}, \quad z \in \Omega ; n=2,3,4 \tag{6.3}
\end{equation*}
$$

We note that some results of Chua in the specified case $n=2$ are proved already in [Y1]. First, the estimate (4) for $n=2$ in [C, Theorem 1] is exactly $\|A\|_{C S} \leq 6$ in [Y1, Théorème 1]. The case $n=2$ in (6.2) and (6.3) are known; see $\|A\|_{S} \leq 6$ and $\|A\|_{C S} \leq 4$ in [Y1, Théorème 2]. If $\rho_{\Omega c}(z)=1$ in (6.1), then we have (6.2).

Acknowlegement. The referee considerably shortened the proof of Theorem 3 , to whom the present author expresses his gratitude.

References

[B] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137-152.
[C] K. S. Chua, Derivatives of univalent functions and the hyperbolic metric, Rocky Mountain J. Math., 26 (1996), 63-75.
[G] A. W Goodman, Unıvalent Functıons, Volume I., Marıner Publ. Co., Tampa, 1983.
[J] Z. J. Jakubowski, On the upper bound of the functional $\left|f^{(n)}(z)\right|(n=2,3$, .) in some classes of univalent functions, Ann. Soc. Math. Polon. Ser. I: Comment. Math., 17 (1973), 65-69.
[L] E. Landau, Einıge Bemerkungen über schlichte Abbildung, Jber. Deutsch. Math.-Vereın., 34 (1926), 239-243.
[M] F Marty, Sur les dérıvées seconde et troisième d'une fonction holomorphe et unıvalente dans le cercle unıté, C. R. Acad. Scı. Parıs, 194 (1932), 1308-1310.
[T] P G. Todorov, New explicit formulas for the nth derivative of composite functions, Pacific J. Math., 92 (1981), 217-236.
[Y1] S. Yamashita, La norme de fonctions holomorphes et univalentes dans un domane sımplement connexe, C. R. Acad. Sc1. Parıs Ser. I Math., 312 (1991), 571-573.
[Y2] S. Yamashita, La dérivée d'une fonction univalente dans un domaine hyperbolique, C. R. Acad. Scı. Parıs Ser. I. Math., 314 (1992), 45-48.

Department of Mathematics Tokyo Metropolitan University
Minami-Osawa
Hachioji
Tokyo 192-0397 Japan
e-mail: yamashın@comp.metro-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: Prımary 30C45, Secondary 30C50, 30F45.
 Key Words and Phrases: univalent function, convex function, de Branges' coefficient theorem, hyperbolic domain, Poncaré density, radii of unıvalency and convexity.

 Received August 25, 1998; revised June 14, 1999.

