S. YAMASHITA
KODAI MATH. J.
22 (1999), 384-401

LOCALIZATION OF THE COEFFICIENT THEOREM
SHINJI Y AMASHITA

Abstract

Let f be holomorphic and univalent 1n D = {|z| < 1} and set K(z) =z/(1 —2)%
We prove | (z)/f"(z)| < K™ (|z])/K'(|z|) at each ze D and for each n>2. This
mequality at z=0 1s just the coefficient theorem of de Branges, the very solution
of the Bieberbach conjecture. The equality condition 1s given mn detail. In the
specified case where f(D) 1s convex we have again a similar and sharp result. We also
consider |/ (z)/f'(z)| for f unvalent m a hyperbolic domain Q with the Pomncaré
density Pq(z) and the radius of umvalency pg(z) at ze Q. We obtamn the estimate
(Pa(2)/Pa(@)" 1 f™(2)/f'(z)] < nl4"! at zeQ for n = 2, together with the detailed
equality condition on f,Q, and z.

1. Introduction

Let % be the family of functions holomorphic and univalent in D=
{z;lz] < 1}. Writing f(z) = 7f(yz) for f €% and for y € 0D = {z;|z| = 1}, we
know that important members of % are K,, the y-rotations of the Koebe function
K(z)=2z/(1 —z)%. The coefficient theorem proved by L. de Branges [B] then
reads as follows. For each f €% and for each n > 2, the inequality

£"(0)
£(0)

holds. If the equality holds in (1.1) for an n > 2, then f = f'(0)K, + f(0) for
some y € 0D. Conversely the equality holds in (1.1) for all » > 2 and for all
f =AK, + B, where 4 #0,B, and y € 0D are complex constants.

By induction we have

< nln

(1.1)

Y 'nl(n + yz)

" (z) = () =
1) K= K)o =L

(n=1,y€dD),
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so that (1.1) is precisely

K™ (0)

(0)
<X 0)

10

We may therefore call the following a localization of the coefficient theorem.

(1.3)

THEOREM A. For f €U the estimate
)| _ _
@7 K2) (= 1z2)" N1+ 2)

holds for each n > 2 and at each z € D. If the equality holds in (1.4) at a point z
and for an n > 2, then

(1.5) f(w) = AKp(w) + B,

where A # 0, B, and € 0D are all complex constants. Conversely for f of (1.5)
the equality holds in (1.4) for all n > 2 and at all points of the radius

A(B) = {f;0 <t < 1}.
Furthermore, the inequality (1.4) is strict for all n > 2 and at all points of D\A(f).

K®(|z]) nl(n+|2))

(1.4)

Let & be the family of f e # with f(0) = f'(0) —1=0. Supposing (1.1)
the proof of which was unknown at that time, Z. J. Jakubowski [J, p. 67] proved
that

VANG)| GRS El)
@7 =1z (L +2])

for fe%,ze D, and n > 2, so that (1.4) is essentially due to him. However,
Jakubowski never gave any equality condition for (1.4J) even for f € .. Under
the condition that f € &, the equality condition for (1.4J) is the same as in
Theorem A except for the restriction that 4 = 1 and B =0 in (1.5). Actually, in
Section 2 we shall propose Theorem 1 which may be called the first generalization
of the coefficient theorem and which is a generalized form of Theorem A, in
terms of the radius of univalency. In particular, the proof of (1.4) is different
from Jakubowski’s.
For each function

(1.47)

h(z) =z+ Z apz*
k=2

of ¥ we know that
1+ |z

1.6 h(z)| <K'(z]) = ——
(16) e < K =
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for all ze D [G, p. 65]. Applying (1.4) and (1.6) to & we now have

nl(n+ |z|)

(1 =1z

for all n > 2 and all z e D, a known result in [L, Satz] and [M, (12)], where (1.1)

is again supposed; see also [G, pp. 74 and 103], This is also an immediate
consequence of |ax| < k,k > 2 for h because

(1.7) ™ (2)] < K®(|z]) =

0
()] < Y k(e — 1) (k — n+ Dk|z] ™" = K®)(|z]),
k=n
However, the proofs in [L] and [M] are not short. The equality condition is
incompletely given in the cited three literatures, so that the following might
be noteworthy. If the equality holds in (1.7) for an n > 2 and at a point z € D,
then h = K for a fe dD. Conversely, for 1 = K, f € 0D, the equality holds in
(1.7) for all n > 2 and at all points of A(f), whereas the inequality (1.7) is strict
for all n >2 and at all points of D\A(f).
To consider a convex version of Theorem A we recall the function L(z) =
z/(1 —z) of & for which

L"(2) . n!

L'(z) (1-2z)"" (n22);

note that L(D) is a half-plane, so that this is convex.

THEOREM B. Suppose that the image f(D) of D by f € U is convex. Then
fP@) L) _

1@ L) = z)™?

for each n > 2 and at each z € D. If the equality holds in (1.8) at a point z and
for an n > 2, then

(1.9) f(w) = ALg(w) + B,

where A # 0,B, and € 0D are all complex constants. Conversely for f of (1.9)
the equality holds in (1.8) for all n > 2 and at all points of A(B). Furthermore,
the inequality (1.8) is strict for all n > 2 and at all points of D\A(B).

(1.8)

The inequality (1.8) at z =0 is familiar [G, p. 117].
Jakubowski [J, p. 68] proved that

ARG
f'(2)
for f e & with convex f(D) again without detailed equality condition as ours.
Actually, in Section 3 we shall prove Theorem 2, a generalized form of Theorem

n!

1.8
- (1 =)™

A
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B, in terms of the radius of convexity. In particular, the proof of (1.8) is
different from Jakubowski’s.
Suppose that 4(D) is convex for he . Then

(1.10) W' ()] < L'(|z])

for all n>2 and all ze D [G, p. 118]. Applying (1.8) and (1.10) to h € & with
convex h(D), we have

(1.11) A" (2)] < L")

for all n > 2 and all z € D; this is a known result [G, p. 118] and also is a trivial
consequence of the coefficient theorem [G, p. 117] in the convex case. The
equality conditions like for (1.7) can easily be obtained.

In Section 4 we shall consider the inequalities containing 1’ f”,..., f",
n > 2, at the same time; the equality conditions in Theorems 3 and 4 there are
different from those in Theorems 1 and 2. One can regard Theorem 3 as the
second localization of the coefficient theorem.

In Section 5 we shall prove Theorem 5, a version of Theorem A in a
hyperbolic domain with the Poincaré density. Theorem 5 is sharp yet is not an
extension of Theorem A.

2. Radius of univalency

Suppose that f'(z) # 0 at a point z € D for f holomorphic in D. Then there
exists p(z, f) > 0, the greatest r such that 0 <r <1 and f is univalent in

(2.1) {w;‘w_2’<r}

1—2zw

which is the non-Euclidean disk of center z and the non-Euclidean radius arctanh
r, and also is the disk of

z(1 —1?)
1— r2|z)?

We call p(z, f) the radius of univalency of f at z.
A generalization of Theorem A is the following.

r(l = |21%)

center Z(z,r) = € D and radius Z(z,r) = <1—|Z(zr).

THEOREM 1. Let f be holomorphic in D and suppose that f'(z) # 0 at a point
ze D, so that p=p(z,f) >0. Then

19 _ g pyir KOGIED ok + 1" el

f(2) K'(plz]) pr1(1 = |z%)"

for each n>2. If the equality holds in (2.2) for an n =2, then p(z,f) =1, so
that f €U. Furthermore, f is of the form (1.5). Conversely for f of (1.5) the
equality holds (in (2.2), ie.,) in (1.4) for all n>2 and at all points of A(B),
whereas the inequality (1.4) is strict for all n>2 and at all points of D\A(B).

(2.2)
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We shall make use of the identity

m

(2.3) > (k+ 1)<k>P’" kQk = (P+ Q)" ' (P+ (m+1)Q)

k=0
for complex numbers P,Q and for a natural number m. Actually, it follows

from
m m—1
(%) (%))

fk( )PrQk = mo(p+ 0™

k=1

for 1 < k <m that

Proof of Theorem 1. Since the function

f(%)- 2
2.4 w)=———"ts——
(24) g(w) = b7 kZ:

of we D is in &, since

@) =p(1 = |21 f'(2)g(w) + f(2)

for
2
(=242 i ar =20 D 4 e,
1+ zpw (14 zpw)
and since
14+zow)"' 2/n-1 ek ke
el S (" et wro,
w k=0

for n > 1, it follows, after short computation, that

Mz 1 Q)
2.5 =5
(2.5) n! ZniJKg )/ (1=2)=p/2 (€ — )n+1 “
~ n—1 n— n 1—k 1 g(W)
—pn_l( Izl 14 ( ) 2mi JI ke ®
_ f (Z n- (l’l ) n 1-k
(1 = |2)P)"" 1 =0 e

Since |brt1| <k+1 for all k>1 (with b; = 1), and since (2.3) for m =
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n—1,P=p|z|, and @ =1 holds, it finally follows from (2.5) that

26 @I @Il + 1) (ol )
! (1= [

b

or (2.2).

If the equality holds in (2.2) for an n > 2, then there exists a f € 0D with g =
Kp. If p<1, then f has (pf+z)/(1+2zpf)e D as a pole. This contradiction
shows that p =1, so that fe%. We thus have

/(#5) -1 o
_ s =K = kB 1wk,
TR B

=1
Furthermore, with the aid of (2.3) for m=n—-1,P=2 and Q =4, (2.5) for
brs1 = (k+ l)ﬂk,k =1,2,..., is now reduced to
@) f'(z)

(2.7) PR TN (Z+P)" 2z +np).

Since
Z4Bl=z|+1 and |Z+4nf|=|z|+n,

if and only if z e A(f), we can conclude that ze A(f). Furthermore, for the
present z € A(f8), the equality holds in (2.2) for all n > 2.

Consequently, if the equality holds in (2.2) for an n > 2, then it holds for all
n > 2, and, furthermore,

ﬂ@saﬂﬁwwm(

for a fedD with z e A(p).
On the other hand, setting

49y g — <0459
(1= 1el)(1 = Be) (1= 1el*)(1 = Be)
for ¢ on the diameter
(2.8) E(B)={Bt;-1<t<1}, BedD,

one can prove that

w—z
1—zZw

)+ 76

A'(c) =

w—=cC

(2.9) Ks(w) = A'(c)K/;(l - cw) + B'(c).
Since z € A(B) = E(B), we have (1.5) with

(=120, _ (== 7)’f'(2) _ (L= [2)’/(2)
A'(z) (14 pz)° 1+
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and

' —lz 2\ g1 B '
B= 1)~y 1P e) = )DL - oy S,
Given f of (1.5) and n > 2 we have
R I L ) I VAR I <G
=" N1+p2 | K| | S| K'(2D)

if and only if
1—|z|=|1=pz|, l+|zl=|1+pz, and n+|z| =|n+ Bz,

if and only if Re(fz) = |z|, hence, if and only if z € A(f). The remaining part of
the proof of Theorem 1 is now obvious.

3. Radius of convexity

Suppose that f'(z) #0 at a point ze€ D for f holomorphic in D. Then
there exists p.(z, f) > 0, the greatest r such that 0 <r <1 and f is univalent in
the disk of (2.1) the image of which by fis convex. We call p,(z, f) the radius
of convexity of f at z. With the aid of the known theorem [G, p. 119] one can
prove that

(2 - \/g)p(z,f) < pc(Z’f) < /)(Z,f).

As a generalized form of Theorem B we shall prove

THEOREM 2. Let f be holomorphic in D and suppose that f'(z) # 0 at a point
ze D, so that p, = p.(z,f)>0. Then

() _
fI(Z) <R Z,Pc) Ll(pclzl) _p?_l(l _ |Z|2)n—1

for each n > 2. If the equality holds in (3.1) for an n > 2, then p,(z,f) =1, so
that f € U and f(D) is convex. Furthermore, f is of the form (1.9). Conversely
Sor fof (1.9) the equality holds (in (3.1), i.e.,) in (1.8) for all n > 2 and at all points
of A(B), whereas the inequality (1.8) is strict for all n>2 and at all points of
D\A(B).

(3.1) 1n LD (p l2))  nlp |z| + D)™

Proof. We have, this time,

) / SYEE
a2 0 e n_lz(”kl)(z,)c)"“l"‘bm,

n! prt(1 =z

where



LOCALIZATION OF THE COEFFICIENT THEOREM 391

FEE) -1 &
33 = : =) bwk
. e

is in &% with convex g(D). The well known coefficient theorem for g then reads
that |bg| <1 for all k > 2; furthermore, if |bg| =1 for a k > 2, then

0

(3.4) gw) = La(w) =Y _ B wk

k=1
for a f€dD, so that |bg| =1 for all k >2. Hence, (3.2) shows that
@I /')

< zl +1 n—l’
A S iy Y

from which follows (3.1).
If the equality holds in (3.1) for an n > 2, then g is of the form (3.4). Hence
p. = 1; otherwise, f has (p.f+2z)/(1 +zp,f) € D as a pole. We thus obtain

AN C)

nt (L= )

z+p)",

because by, = 5. Note that |Z4 ] = 1+ |z| if and only if z e A(B).
Consequently, if the equality holds in (3.1) for an » > 2, then it holds for all
n > 2, and furthermore

Fowy=(1- IZIZ)f’(Z)L/z< ) e

for a f € 0D with ze A(f). By the similar reasoning as in the proof of Theorem
2 we have

w —

z
1—2zZw

_O=EPYE oy
4= 01 o) =(1-12))"f"(2)
and

_Z2 IZ
B ) - UG

for ze A(B) = E(B) in (1.9) because
(1+/3c)2L (w—c)+c(1+[)’6) Ly(w)

L=l P\ =aw) =P T

for ce E(B). The rest of the proof is the same as that of Theorem 1 with K
replaced by L.

=f(z) —z(1 = |z f'(2)
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4. Estimates containing f',f" ..., f" n>2

Two sharp inequalities containing f’, /”,..., /™, at the same time will be
proved.
For ze D and for fedD we set

(. f) = {ﬁ"t+z

—-l<i< 1}.

1+ 2Bt
The set E(z, f) is the non-Euclidean (geodesic) line in D ending at points (z — f)/
(1 —2B) and (z + B)/(1 + zB) of 4D, or, a circular arc in (possibly, a diameter of)
D orthogonal to 0D at the two points. Note that E(z, f) = E(p) if and only if
ze E(f). In particular, E(f) = E(0, f).

THEOREM 3. Let f be holomorphic in D and suppose that f'(z) # 0 at a point
zeD. Then

(4.1) Pz )" <n

1 ( n—1> 2vk-1/P(2)
o )
;k! k-1 9" -2 )
for each n > 2. If the equality holds in (4.1) for an n > 2, then f is of the form
(4.2) f(w) = AKp <1 ) + B,
where A #0,B and p € 0D are constants. Conversely for f of (4.2) the equality

holds in (4.1) (with p(z,f) =1) for all n =2 and at all points of E(z,f8). The
inequality (4.1) is, furthermore, strict for all n > 2 and at all points of D\E(z, ).

THEOREM 4. Let f be holomorphic in D and suppose that f'(z) # 0 at a point
zeD. Then

(4.3) pelz, )"

- 1(’1—1) _\n—k 21/ (Z)
pr (=2)" 1=z
;k! k-1 )
Jor each n > 2. If the equality holds in (4.3) for an n > 2, then f is of the form
(4.4) flw) = AL/;(I > + B,
where A # 0,B and f € 0D are constants. Conversely for f of (4.4) the equality

holds in (4.3) (with p.(z, f)=1) for all n > 2 and at all points of E(z,f). The
inequality (4.3) is, furthermore, strict for all n =2 and at all points of D\E(z,p).

The proof of Theorem 4 is similar to that of Theorem 3, and hence is
omitted.

Proof of Theorem 3. First of all we claim that, for a complex 1 and 1 <
k < n, the expansion
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(4.5) (1 Ilw)kz Z;(_/l)n—k<z: i)wn,

holds provided that |[Aw| < 1. This identity follows immediately from

i)

n=0

for {|]<1and 1 <k <n.
Set p = p(z, f) and consider g of (2.4). Set

$(w)

W
1+ pzw

for we D and

F(p(1 = |2 +2) = f(2)
p(1=1z1*)f(2)

S [p(1 = 120"
K p(1— 121 f'(2)

F({) =

¢ o)
k=1
Then

1 f9(2)

o (= 12w,

NgE

g(w) = Fod(w) =

!

<

2)

so that, with the aid of (4.5) for 4 = pz, we have

g(w) = 3 byw"
n=1

x~
I

1

with
=1 /n-1 e k1S9 (2)
b=t > g (i) )Earta- eyt L
k! \k—1 f'(2)
Applying the coefficient theorem |b,| <n,n>2, to ge ¥ we immediately have
4.1).

If the equality holds in (4.1) for an n > 2, then it holds for all n > 2, p(z, f)
=1, and f is of the form (4.2) with 4 = (1 — 12|*)f'(z) and B = f(z).

Conversely, given f of (4.2) we suppose that the equality holds in (4.1) at
ce D and for an (hence, all) n > 2. In particular, for n =2 we have |Q(c)| =2
for

1

0c) = e+ 21 = o) L)

f'le)’

N
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Setting Y(w) = f(w —z)/(1 — zw),w € D, and recalling
(L= 21 = |ef’)

L=l = (1-zo)(1—z2)
we have that
Bz (g ] 1) K"(0(0))
00 = B2 (9@ + 30 - WP o n)
Hence
p— 2 K"(6(0)]
(46) |7+ 51 = W) | =
On the other hand,
= 1 1 K"(Q)|
’—C‘l‘i(l - |C' )K'(C)l -

for { e D if and only if 1 — |¢|* = |1 —¢?| or if and only if { e E(1) = (=1,1). It
then follows from (4.6) that y(c) € E(1), so that c e E(z,). Given ¢’ € E(z,f)
for f of (4.2) we may trace back the above argument on replacing ¢ with ¢’ to
observing that the equality holds in (4.1) at ¢’ for all n > 2. The remaining part
of the proof is now obvious.

For f e % at z =0, the inequality (4.1) is just (1.1). One can call Theorem
3, therefore, the second localization of the coefficient theorem; similarly for
Theorem 4.

The case n =2 in (4.1) reads

_s 1 152 f"(2)
P )| ~2 45 (L= ) 2

which is familiar in case p(z,f) =1 or f e, see [G, (5), p. 63].

<2,

5. Hyperbolic domain

A domain Q in the plane C = {|z] < 400} is called hyperbolic if C\Q
contains at least two points. Let ¢ be a universal covering projection from D
onto a hyperbolic domain Q in C;¢ is holomorphic and ¢’ is zero-free in D. The
Poincaré density Pg is then the function in Q defined by

1
(1= ) g (w)]’
where z = ¢(w); the choice of ¢ and w is immaterial as far as z = @¢(w) is satisfied.
We next set pg(z) = p(w, @) for z = ¢(w) e Q. Again, pg(z) is independent

of the particular choice of ¢ and w as far as z = ¢(w) is satisfied. We call pq(z)
the radius of univalency of Q at z.

PQ(Z) =

)
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Let %(Q) be the family of all the functions holomorphic and univalent in Q;
in particular, % = % (D).
As another application of the coefficient theorem we propose

THEOREM 5. For feU(Q) of a hyperbolic domain Q < C the inequality

Pa(@\" /" (2)
G-1) <Pa<z>> 7@

holds for each n =2 and at each z € Q. If the equality holds in (5.1) at a point
ze€Q and for an n > 2, then the following items (1) and (II) hold.
(I) There exist complex constants Q # 0 and R such that Q is the slit domain

< nl4n-!

(5.2) Q:C\{QZ+R;Z_<_—%};
in particular, po(z) = 1.
(II) The function f is of the form
_ S(R—w)
(53) S =5 0—4r
where S # 0 and T are complex constants.

Conversely, suppose that f of (5.3) is given in Q of (5.2). Then the equality
holds in (5.1) at each point of the half-line

+ T,

$={@+Rn>—ﬂ

and for each n > 2, whereas the inequality (5.1) is strict at each point of Q\& and
for each n > 2.

The extremal function f of (5.3) maps Q of (5.2) univalently onto the slit

domain
C\{S!+ T;t< — ‘1—1}

K. S. Chua [C, Theorem 1] proved (5.1) in case pg(z) = 1, namely, in case
Q is a simply connected, proper subdomain of C; his equality condition is not
complete enough. Chua actually proved that the equality holds in (5.1) at 0
for f of (5.3) with Q=1,R=0,S=(-1)", and T =0 in Q of (5.2) [C, p. 69].
In case Q=D and f e %, the inequality (5.1) at z =0 reads

A ()
1(0)

a worse result than (1.1) for n > 2. Theorem 5 is, in this sense, never an
extension of Theorem A.

-1
< nl4"

(5.4)
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Theorem S for the fixed n =2 is known; see [Y2, Théoréme et seq.).

The inverse function of he & in h(D) is always denoted by h*. The
function h** = (h*)k, the k-th power of A*,k=1,2,..., in A(D), then has the
expansion

o0
) =S Buh)
n=k
in a neighborhood of 0 € A(D) and By (h) = 1. An important case is that 4 = K|

n\n-—

B (K) = (—l)"'klf< 2nk)’ l<k<n,

for which

Zk|B,,k Zk: (nz_”k) _ g,

=1
see [C, (8) and (14)]. Moreover, for y € dD one has
Bu(K;) = Bu(K)y"™*, 1<k<n.
Notice that
(Ky)"(Q) =7K*(¥0), (e K, (D).
Proof of Theorem 5. We first suppose that 0 € Q and ¢(0) = ¢'(0) —1 =0

for a projection ¢: D — Q. Then Po(0) =1. Supposing further that f(0) =
f'(0) — 1 =0 we shall prove that

(5.5) p" M (0)] < ntamt,
where p = pg(0). The functions
@(z) =p~'$(pz) and F(z) =p~' f($(pz)) = p~' f(p®(z)) for zeD
both are in &. Since
pHf(pL) =Fo®*((), (=®(z)e®(D),
it follows from [T, Theorem 1, p. 220] for F o ®* defined in ®(D) that

d"
g/ (h) = ZAnk DFO(@*(0)),

where
k—y k—; *7y(n)
() = H§:<1 (§)er=wenv@, n-12...

Since ®*(0) =0 it then follows that
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et pn & F®)(0)
(5.6) p ‘f“(0>=;n!3nk(<b> 0

On the other hand, it follows from Chua’s theorem [C, Theorem 2], applied to
® e &, that

(5.7) |Bue(@)| < [Bu(K)|, 1<k<n.

Recalling the coefficient theorem for F € &, one finally has (5.5) from (5.6).
Observe that if # > 2 and if the equality holds in (5.7) for a pair, n,k with k < n,
then @ = Kj for a ff € 0D, so that the equality holds in (5.7) for all pairs of n,k
with 1 <k <n.

Suppose that the equality holds in (5.5) for an n > 2. Then

F=K, and ®=Kjp

for o, fe0D. If p <1, then f has a pole ¢(p&) € Q. This contradiction shows
that p =1, so that ¢ = ® = Kz. Hence

~ 1
Q= C\{ﬁl, t< — Z},
so that 0 =f and R=0 in (5.2). On the other hand, it follows from (5.6) that
SP0) =ny " Bu(K)B" Fka*!
k=1

with |f™(0)] = n'4"~!. Setting y = —af and Cuy = k|Bu(K)|,1 <k <n, we
now have

(n) n
— |f (O)| — 4n—1 — Zan,

nl

Z anyk
k=1
so that, on squaring the left- and the right-most sides, we have

3 CuCu(l — ¥y =0 (Z for k#1,1 <k<n,l sISn).

Since Re(1 — ') >0 and CuCy >0, it follows that Re yk=l =1 for k # 1,
l<k<nl<l<n We may choose k=2, and /=1, so that

(5.8) l=y=—af.
Since
K'(0) = 20+1 —22/4C+ 1 ’
it follows that
K(-K'(0) = g7, (e K(D)
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Consequently, for w € Q, we have

f(w) = Ky 0 (Kp)"(w) = Ku(BK* (w)) = aK (K" (fw)) = 4515

by (5.8). Hence we have S = —f and T =0 with R=0 in (5.3).
To complete the proof of (5.1) at z = a € Q in the general case, we choose a
projection ¢ with ¢(0) =a, and set

fla+4'(0)w) — f(a)
¢'(0)f"(a)

(5.9) g(w) =

for the variable w in the domain

zZ—a
-{=<9}
onto which Y = (¢ —a)/¢’(0) is a projection with (0) = '(0) —1 =0. Since

(n) 1y n—1
4 (0) =f—(—f)%<)—°)— ps(0) = pafa) and |§(0)] = 1/Pa(a),
it follows from (5.5) applied to g at 0 with p = ps(0) that
pa@\" M@t -
(bt ) = (o)l 0)] < i

This is (5.1) for z=a.
Suppose that the equality holds at z=a in (5.1). Then, in (I) and (II), we
can set, with the aid of g of (5.9),

0=p4'0), R=a, S=-P40)f"(a), and T=f(a)

for a fedD.
Conversely, given f of (5.3) in Q of (5.2) and n>2 we have
. nl(—4)" (=S
f( )(Z) — ( ) ( nQ+)1 ,
(4z+ Q —4R)
so that
(n) 1 — n—1
fe) __ ni(=4) .

'@ (@z+Q-4R)" "
Since z = QK ({) + R maps D univalently onto Q, it follows that

Lol - gt +¢
Pq(2) n1-¢°

and
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O] _ ntartn g

S jortii+d
so that

PQ(Z)I—n f(n)(z) — n'4n-—l 1- |Cl2 "
fle | -2
Hence, for n > 2,
1-n f(n)(z) . n—1
Po(z) 7 =nl4

if and only if 1 —|¢|* =|1 —¢?| or if and only if { € Z(1). In conclusion, the
equality holds in (5.1) at z € Q if and only if z is on .#, the image of E(1) by
z=QK(() +R.

Remark. Let ¢ be a universal covering projection from D onto Q and let

z=¢(w),weD. Set
=2 cnit)

A = o({4

possibly, A(z) = Q. This simply connected domain is independent of the par-
ticular choice of ¢ and w as far as z = ¢(w) is satisfied. We can replace, in
Theorem 5, the condition on f that f € #(Q) with the following weaker one.
Namely, f is holomorphic in Q and univalent in each A(z),z e Q.

6. Concluding remarks

For z of a hyperbohc domain Q we set po.(z) = p.(w,$), where z = ¢(w) is
a universal covering projection. Then pg. is a function well defined in Q and
Pac(2) is called the radius of convexity of Q at z.

Suppose that ® € ¥ and ®(D) is convex. Then,

|Buk (P)| < (Z:i) n-3<k<n

[C, Lemma 2]. Henceif 2 <n<4,zeQ, and f € %(Q) with Q hyperbolic, then
(6.1) (pnc(Z))"" /@)
Po(z)

1)
Note that

< (n+1)12"2
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the case m=n—1and P=Q =1 in (2.3). In view of the pg, version of (5.6)
the proof of (6.1) is now obvious. One can loosen the condition f € %(Q) for
(6.1) on only supposing that f is univalent in each domain

s =o({tfom] <ma}) z=dmen
Chua proved in [C, Theorem 3] that for f e %(Q) with Q convex,

()
f2)

and if f(Q) is convex further, then

/)
/')

We note that some results of Chua in the specified case n =2 are proved
already in [Y1]. First, the estimate (4) for n =2 in [C, Theorem 1] is exactly
(|4|lcs <6 in [Y1, Théoréme 1]. The case n =2 in (6.2) and (6.3) are known;
see ||4]lg <6 and |4 o <4 in [Y], Théoréme 2]. If po.(z) =1 in (6.1), then
we have (6.2)

(6.2) <(n+ 12" 2Pa(2)"!, zeQ;n=2,34,

(6.3) <nl2" 'Po(2)"!, zeQn=2,3,4.
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