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LOCALIZATION OF THE COEFFICIENT THEOREM

SHINJI YAMASHITA

Abstract

Let / be holomorphic and univalent in D = {\z\ < 1} and set K(z) = z/(l — z) 2 .

We prove | / ( n ) (z)// ' (z) | < K^{\z\)/Kf{\z\) at each zeD and for each n > 2. This

inequality at z — 0 is just the coefficient theorem of de Branges, the very solution

of the Bieberbach conjecture. The equality condition is given in detail. In the

specified case where f(D) is convex we have again a similar and sharp result. We also

consider | / ^ ( z ) / / ' ( z ) | for / univalent in a hyperbolic domain Ω with the Poincare

density Pςι(z) and the radius of univalency /?Ω(z) at z e Ω. We obtain the estimate

(pςι(z)/Pφ))n~λ\f{n\z)lf'(z)\ <n\4n~ι at z e Ω for n > 2, together with the detailed
equality condition on /, Ω, and z.

1. Introduction

Let % be the family of functions holomorphic and univalent in D =
{z; \z\ < 1}. Writing fγ(z) = yf{yz) for / e % and for γ e dD = {z; \z\ = 1}, we
know that important members of % are Ky, the y-rotations of the Koebe function
K(z) =z/(l — z)2. The coefficient theorem proved by L. de Branges [B] then
reads as follows. For each / e % and for each n > 2, the inequality

(1.1)
/'(0)

< n\n

holds. If the equality holds in (1.1) for an n > 2, then / = f'(0)Kγ+f(0) for
some γedD. Conversely the equality holds in (1.1) for all n>2 and for all
/ = AKy + B, where A φ 0, B, and y e dD are complex constants.

By induction we have

(1.2) ς 1 ^ + ^
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so that (1.1) is precisely

(1.3)

385

(1.4)

/'(0)

We may therefore call the following a localization of the coefficient theorem.

THEOREM A. For f e °ll the estimate

holds for each n>2 and at each z e D. If the equality holds in (1.4) at a point z
and for an n>2, then

(1.5) f(w)=AKβ(w)+B,

where A φ 0, B, and β e dD are all complex constants. Conversely for f of (1.5)
the equality holds in (1.4) for all n>2 and at all points of the radius

Furthermore, the inequality (1.4) is strict for all n>2 and at all points of D\A(β).

Let Sf be the family of / e % with / ( 0 ) = /'(()) - 1 = 0 . Supposing (1.1)
the proof of which was unknown at that time, Z. J. Jakubowski [J, p. 67] proved
that

(1.4J)
n\(n

for / G £f,z e D, and n > 2, so that (1.4) is essentially due to him. However,
Jakubowski never gave any equality condition for (1.4J) even for f e £f. Under
the condition that / e ^ 7 , the equality condition for (1.4J) is the same as in
Theorem A except for the restriction that A — \ and B — 0 in (1.5). Actually, in
Section 2 we shall propose Theorem 1 which may be called the first generalization
of the coefficient theorem and which is a generalized form of Theorem A, in
terms of the radius of univalency. In particular, the proof of (1.4) is different
from Jakubowski's.

For each function

k=2

of £f we know that

(1.6) \h'(Z)\<K'(\z\) =
(i-N)3
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for all zeD [G, p. 65]. Applying (1.4) and (1.6) to h we now have

for all n > 2 and all z e D, a known result in [L, Satz] and [M, (12)], where (1.1)
is again supposed; see also [G, pp. 74 and 103], This is also an immediate
consequence of \ak\ <k,k> 2 for h because

00

•l) -(k-n+l)k\z\k-n=Kw(\z\).
k=n

However, the proofs in [L] and [M] are not short. The equality condition is
incompletely given in the cited three literatures, so that the following might
be noteworthy. If the equality holds in (1.7) for an n > 2 and at a point zeD,
then h = Kβ for a β e δD. Conversely, for h = Kβ,β e δD, the equality holds in
(1.7) for all n > 2 and at all points of A(β), whereas the inequality (1.7) is strict
for all n > 2 and at all points of D\A(β).

To consider a convex version of Theorem A we recall the function L(z) =
z/(l - z ) of Sf for which

Z,W(z) n\

! / ( * ) - ( l - z ) - ( " - 2 ) ;

note that L(D) is a half-plane, so that this is convex.

(1.8)

THEOREM B. Suppose that the image f(D) of D by f e^ is convex. Then

LW(\Z\) n\

\n-\

for each n>2 and at each z e D. If the equality holds in (1.8) at a point z and
for an n>2, then

(1.9) f(w) = ALβ(w) + B,

where A Φ 0, i?, and β e dD are all complex constants. Conversely for f of (1.9)
the equality holds in (1.8) for all n>2 and at all points of A(β). Furthermore,
the inequality (1.8) is strict for all n>2 and at all points of D\A(β).

The inequality (1.8) at z = 0 is familiar [G, p. 117].
Jakubowski [J, p. 68] proved that

(1.8J) n\

( i -

for / e Sf with convex f(D) again without detailed equality condition as ours.
Actually, in Section 3 we shall prove Theorem 2, a generalized form of Theorem
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B, in terms of the radius of convexity. In particular, the proof of (1.8) is
different from Jakubowski's.

Suppose that h{D) is convex for h e £f. Then

(1.10) \h\z)\<L\\z\)

for all /I > 2 and all z e D [G, p. 118]. Applying (1.8) and (1.10) to h e ¥ with
convex h(D), we have

(1.11) |//">(z)|<Z>>(|z|)

for all n > 2 and all z e D; this is a known result [G, p. 118] and also is a trivial
consequence of the coefficient theorem [G, p. 117] in the convex case. The
equality conditions like for (1.7) can easily be obtained.

In Section 4 we shall consider the inequalities containing / ' , / " , . . . , / ^ \
n>2, at the same time; the equality conditions in Theorems 3 and 4 there are
different from those in Theorems 1 and 2. One can regard Theorem 3 as the
second localization of the coefficient theorem.

In Section 5 we shall prove Theorem 5, a version of Theorem A in a
hyperbolic domain with the Poincare density. Theorem 5 is sharp yet is not an
extension of Theorem A.

2. Radius of univalency

Suppose that f'{z) φ 0 at a point z e D for/holomorphic in D. Then there
exists /?(z, /) > 0, the greatest r such that 0 < r < 1 and / is univalent in

(2.1) {w; w-z
1 -zw

which is the non-Euclidean disk of center z and the non-Euclidean radius arctanh
r, and also is the disk of

z(\ — r

2) r(\ — \z\
2)

center %{z,r) = — j eD and radius $(z,r) = — ι-^γ < 1 - |«2T(z,r)|.
1 - r2\z\ 1 - r2\z\

We call /?(z, /) the radius of univalency of / at z.
A generalization of Theorem A is the following.

THEOREM 1. Let f be holomorphic in D and suppose that f'(z) φ 0 at a point
z e D, so that p = p(z, f) > 0. Then

(2.2)
f{n)(z)

K'{P\z\) ι2x«-l

for each n>2. If the equality holds in (2.2) for an n > 2, then p(z,f) = 1, so
that f e °U. Furthermore, f is of the form (1.5). Conversely for f of (1.5) the
equality holds (in (2.2), i.e.,) in (1.4) for all n>2 and at all points of A(β),
whereas the inequality (1.4) is strict for all n>2 and at all points of D\A(β).



388 SHINJI YAMASHITA

We shall make use of the identity

(2.3)
k=o

for complex numbers P, β and for a natural number m. Actually, it follows
from

(m\ (m-\

for 1 < k < m that

k=\

Proof of Theorem 1. Since the function

*+L\ _ f(7\
(2.4) g ( w ) = ^ 4 = y

of wei ) is in 5 ,̂ since

for

and since

for « > 1, it follows, after short computation, that

ί M = _Lf /(O ,,

Since | ^ + i | < Λ+ 1 for all /: > 1 (with b\ — 1), and since (2.3) for m —
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n - l,P = p\z\, and Q= 1 holds, it finally follows from (2.5) that

n\

or (2.2).
If the equality holds in (2.2) for an n >_2, then there exists a β e dD with g =

£β. If p < 1, then / has (/?/? + z)/(l + z/?jβ) e D as a pole. This contradiction
shows that p=l, so that / e <%. We thus have

Furthermore, with the aid of (2.3) for m = n-l,P = z and Q = β, (2.5) for
ί)fc+i = (k + l)βk, k = 1,2,.. ., is now reduced to

τ = ( i - | Z | 2 ) " - l ( g + / 0 ( z " + q f f

Since

|f + ̂ | = | z | + 1 and |z +/ii8| = |z| + Λ,

if and only if zeA(β), we can conclude that zeA(β). Furthermore, for the
present z e A(β), the equality holds in (2.2) for all n > 2.

Consequently, if the equality holds in (2.2) for an n > 2, then it holds for all
n>2, and, furthermore,

f(w) = (1 - \z\2)f\z)Kβ(j^ +f{z)

for & βedD with zeA(β).
On the other hand, setting

A'{c)= { l +

2

β c ) and ̂ ( C ) = «
(l-\c\2)(l-βc) ( i - i

for c on the diameter

(2.8) Ξ(β) = {βί;-Kt<l}, βedD,

one can prove that

(2.9) Kβ{w) Ξ A'(c)Kβ{^£) + B\c).

Since z e Λ(β) <=Ξ(β), we have (1.5) with

) (1 - βz){\ - \z\2)2f\z) _ (
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Given / o f (1.5) and n > 2 we have

n\\n+βz\

\\-βz\n-ι\\+βz\

if and only if

1 - \z\ = |1 -βz\, l +

/'(*)

= |l+/?z|, and n

K'{\z\)

\z\ = n+βz\,

if and only if Re(/?z) = \z\, hence, if and only if z e A(β). The remaining part of
the proof of Theorem 1 is now obvious.

3. Radius of convexity

Suppose that / '(z) φ 0 at a point zeD for / holomorphic in D. Then
there exists pc(z,f) > 0, the greatest r such that 0 < r < 1 a n d / i s univalent in
the disk of (2.1) the image of which b y / i s convex. We call pc(z,f) the radius
of convexity o f / a t z. With the aid of the known theorem [G, p. 119] one can
prove that

(2-V3)p(z,f)<pc(z,f)<p(z,f).

As a generalized form of Theorem B we shall prove

THEOREM 2. Let f be holomorphic in D and suppose that f'{z) φ 0 at a point
z e D, so that pc = pc(z,f) > 0. Then

(3.1)

/ « > 2. 7/* ίΛe equality holds in (3.1) /or an n>2, then pc(z,f) = \, so
that f G% and f(D) is convex. Furthermore, f is of the form (1.9). Conversely
for f of (1.9) ί/*e equality holds (in (3.1), z.e.,) in (1.8)/or all n>2 and at all points
of Λ(/?), whereas the inequality (1.8) w sίπcί /?r all n > 2 and at all points of
D\A(β).

Proof.

(3.2)

where

We have,

f{n\z)
n\

this

Pc~l

time,

(1 - z | 2 ) " " ' ^
(" k

ιyzpcr
ι-%+i
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"v ' pc(l~\z\2)f'(z) tt

is in £f with convex g(D). The well known coefficient theorem for g then reads
that \bk\ < 1 for all & > 2; furthermore, if \bk\ = 1 for a fc > 2, then

(3.4) g{w) = Lβ(w) =

for a β e dD, so that \bk\ = 1 for all & > 2. Hence, (3.2) shows that

from which follows (3.1).
If the equality holds in (3.1) for an n > 2, then g is of the form (3.4). Hence

pc — \\ otherwise, / h a s (pcβ + z)/(l -\-zpcβ) e D as a pole. We thus obtain

( 1 - lzl2)""1

because Z?̂ +i = ^ . Note that |z + /?| = 1 + |z| if and only if zeA(β).
Consequently, if the equality holds in (3.1) for an n > 2, then it holds for all

n > 2, and furthermore

/(w) = (1 - \z\2)f\z)Lβ(j^j +/(z)

for a )ff e 3Z> with z e Λ(/?). By the similar reasoning as in the proof of Theorem
2 we have

^ivω 1 m
{\+βz)2

and

for zeA(β) <=Ξ(β) in (1.9) because

H
| | l-cw) \-\c\1

for ceΞ(β). The rest of the proof is the same as that of Theorem 1 with K
replaced by L.
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4 . E s t i m a t e s c o n t a i n i n g / ' , / " , . . . , f { n ) , n > 2

Two sharp inequalities containing / ' , / " , . . . ,f^n\ at the same time will be
proved.

For ze D and for β e dD we set

The set Ξ(z,/?) is the non-Euclidean (geodesic) line in Z> ending at points (z —/?)/
(1 - zβ) and (z + /?)/(l + z/0 of dD, or, a circular arc in (possibly, a diameter of)
D orthogonal to dD at the two points. Note that Ξ(z,/?) = Ξ(β) if and only if
z e ΞQff). In particular, Ξ(/?) = Ξ(0,β).

THEOREM 3. Let f be holomorphic in D and suppose that f\z) # 0 at a point
ZGD. Then

(4.1) N/l-1

for each n > 2. If the equality holds in (4.1) for an n > 2,

(4.2) /(κ>) =

/ is of the form

where A φ 0,2? <z«<i y5 G 5Z) <zre constants. Conversely for f of (4.2) ί/ze equality
holds in (4.1) (vw'ίλ /?(z,/) = 1) for all n>2 and at all points of Ξ(z,β). The
inequality (4.1) is, furthermore, strict for all n>2 and at all points of D\Ξ(z,β).

THEOREM 4. Let f be holomorphic in D and suppose that f'(z) # 0 at a point
zeD. Then

(4.3) Pcfrf)
n-\

/ ' (
< 1

(4.4)

each n>2. If the equality holds in (4.3) for an n > 2, then f is of the form

w —.
f(w) = ALβ 1 — zw

where A φ 0, B and β e dD are constants. Conversely for f of (4.4) the equality
holds in (4.3) {with ρc{zj) = 1) for all n>2 and at all points of Ξ(z,/?). The
inequality (4.3) is, furthermore, strict for all n>2 and at all points of D\Ξ(z,β).

The proof of Theorem 4 is similar to that of Theorem 3, and hence is
omitted.

Proof of Theorem 3. First of all we claim that, for a complex λ and 1 <
k <n, the expansion
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(4.5)

holds provided that \λw\ < 1. This identity follows immediately from

1

for ICI < I and I < k < n.
Set p = p(z,f) and consider g of (2.4). Set

φ(w) = w
I + pzw

for w e D and

f(p(l-\z\2)ζ + z)-f(z)

p{\ - \z\ι)f\z)

= Σ
k=\

Then

so that, with the aid of (4.5) for λ = pz, we have

with

Applying the coefficient theorem \bn\<n,n>2, to g e Sf we immediately have
(4.1).

If the equality holds in (4.1) for an n > 2, then it holds for all n > 2, p(z,f)
= 1, and / is of the form (4.2) with A = (1 - \z\2)f'(z) and B = f(z).

Conversely, given / of (4.2) we suppose that the equality holds in (4.1) at
c e D and for an (hence, all) n>2. In particular, for n = 2 we have | Q(c) | = 2
for
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Setting ψ(w) = β(w — z)/{\ — zw), w e D, and recalling

we have that

Hence

(4.6)

On the other hand,

K"(φ(c))

K"(ψ(c))

= 2.

= 2

for C e D if and only if 1 - \ζ\2 = |1 - ζ2\ or if and only if C e Ξ(l) = (-1,1). It
then follows from (4.6) that φ(c) e Ξ ( l ) , so that ceΞ(z,β). Given cf eΞ(z,β)
for / of (4.2) we may trace back the above argument on replacing c with c' to
observing that the equality holds in (4.1) at c' for all n>2. The remaining part
of the proof is now obvious.

For / e % at z — 0, the inequality (4.1) is just (1.1). One can call Theorem
3, therefore, the second localization of the coefficient theorem; similarly for
Theorem 4.

The case n = 2 in (4.1) reads

which is familiar in case p(z,f) = 1 or f e%; see [G, (5), p. 63].

5. Hyperbolic domain

A domain Ω in the plane C = {|z| < + 0 0 } is called hyperbolic if C\Ω
contains at least two points. Let φ be a universal covering projection from D
onto a hyperbolic domain Ω in C; φ is holomorphic and φ1 is zero-free in D. The
Poincare density PQ is then the function in Ω defined by

1

where z = φ(w); the choice of ^ and w is immaterial as far as z = ^(w) is satisfied.
We next set /?Ω(z) = p(w,φ) for z = φ(w) e Ω. Again, /?Ω(z) is independent

of the particular choice of φ and w as far as z = ^(w) is satisfied. We call PQ(Z)
the radius of univalency of Ω at z.
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Let ^(Ω) be the family of all the functions holomorphic and univalent in Ω;
in particular, °U = Φ(Z>).

As another application of the coefficient theorem we propose

THEOREM 5. For f e %(Ω) of a hyperbolic domain Ωa C the inequality

n-\ Aή\f

(5.1) PaV) < n\4n~λ

holds for each n>2 and at each z e Ω . If the equality holds in (5.1) at a point
zeΩ and for an n>2, then the following items (I) and (II) hold.

(I) There exist complex constants Q φ 0 and R such that Ω is the slit domain

(5.2) = C\{β ί

in particular, pΩ(z) = 1.
(II) The function f is of the form

(5.3)
Aw+Q-AR

where S φO and T are complex constants.
Conversely, suppose that f of (5.3) is given in Ω of (5.2). Then the equality

holds in (5.1) at each point of the half-line

and for each n>2, whereas the inequality (5.1) is strict at each point ofΩ\& and
for each n>2.

The extremal function / of (5.3) maps Ω of (5.2) univalently onto the slit
domain

K. S. Chua [C, Theorem 1] proved (5.1) in case PQ(Z) = 1, namely, in case
Ω is a simply connected, proper subdomain of C; his equality condition is not
complete enough. Chua actually proved that the equality holds in (5.1) at 0
f o r / o f (5.3) with Q = 1,Λ = 0,5 = (-1)", and T = 0 in Ω of (5.2) [C, p. 69].
In case Ω = D and / e °U, the inequality (5.1) at z = 0 reads

(5.4)
f(n){0)

/'(0)
</ι!4Λ-\

a worse result than (1.1) for n>2. Theorem 5 is, in this sense, never an
extension of Theorem A.
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Theorem 5 for the fixed n = 2 is known; see [Y2, Theoreme et seq.).
The inverse function of h e £f in h(D) is always denoted by A*. The

function A** = (h*)k, the fc-th power of A*,it = 1,2,..., in A(Z>), then has the
expansion

in a neighborhood of 0 e A(Z>) and Bkk(h) = 1. An important case is that h = K,

for which

see [C, (8) and (14)]. Moreover, for γ e dD one has

Bnk{Ky) = Bnk{K)γn-\ \<k<n.

Notice that

\ ζeKγ(D).

Proof of Theorem 5. We first suppose that 0 e Ω and ̂ (0) = φ'{0) - 1 = 0
for a projection φ : D —> Ω. Then PQ(0) = 1. Supposing further that /(0) =
/'(0) - 1 = 0 we shall prove that

(5.5) Pn~l\f{n)(θ)\ <n\4"-\

where P = PQ(0). The functions

Φ(z)=p-1φ(pz) and F(z) = p-ιf(φ(pz)) = p-ιf(pΦ(z)) foτzeD

both are in y\ Since

p-χf{pζ)=FoΦ*{ζl ζ = Φ(z)eΦ(D),

it follows from [T, Theorem 1, p. 220] for Foφ* defined in Φ(D) that

s k=\

where

Since Φ*(0) = 0 it then follows that
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(5-6)
k=\

On the other hand, it follows from Chua's theorem [C, Theorem 2], applied to
Φ e ^ , that

(5.7) \Bnk(Φ)\<\Bnk(K)l \<k<n.

Recalling the coefficient theorem for F e £f, one finally has (5.5) from (5.6).
Observe that if n > 2 and if the equality holds in (5.7) for a pair, n,k with k < n,
then Φ = Kβ for a β e dD, so that the equality holds in (5.7) for all pairs of n,k
with 1 <k <n.

Suppose that the equality holds in (5.5) for an n > 2. Then

F = Ka and Φ = Kβ

for oc,β e dD. If p < 1, then / has a pole φ(pδί) e Ω. This contradiction shows
that p = 1, so that φ = Φ = Kβ. Hence

so that Q = β and R = 0 in (5.2). On the other hand, it follows from (5.6) that

k=\

with | / ( n ) (0) | - n\4"-1. Setting γ = -ocβ and Cnk = k\Bnk(K)\, 1 < k < n, we
now have

k=\
n\

k=\

so that, on squaring the left- and the right-most sides, we have

Since Re(l - yk~ι) > 0 and CnkCnι > 0, it follows that R e y ^ = 1 for k φ /,
l < f c < w , l < / < « . We may choose k — 2, and / = 1, so that

(5.8)

Since

it follows that

= γ = -

2 C + 1 —

, ζeK(D).
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Consequently, for w e Ω, we have

f(w) = Kx o (Kβ)*(w) = Ka(βK\βw)) = xK(-K*(βw)) = •

by (5.8). Hence we have S = -β and T = 0 with R = 0 in (5.3).
To complete the proof of (5.1) at z = a e Ω in the general case, we choose a

projection φ with ^(0) = a, and set

(5.9)
(a + φ'(0)w)-f(a)

Φ'(0)f'(a)

for the variable w in the domain

2 _ J _. z e

o n t o which φ = (φ — a)/φ'(0) is a project ion with ^ ( 0 ) = ^ ; ( 0 ) — 1 = 0 . Since

f{n)(a)φΊθ)n~ι

it follows from (5.5) applied to g at 0 with p = pΣ(0) that

n-l

f\a)

This is (5.1) for z = a.
Suppose that the equality holds at z = a in (5.1). Then, in (I) and (II), we

can set, with the aid of g of (5.9),

Q = βφ'(0)1 R = a, S = -βφf(0)f'(a), and T = f(a)

for a β e dD.
Conversely, given / of (5.3) in Ω of (5.2) and n > 2 we have

fM(z) _ n l(-4)- '
1 ( ) (4 + Q

so that

, zeΩ.
f'{z) (4z+Q-4R)"-1

Since z = QK(ζ) + R maps £) univalently onto Ω, it follows that

l i - C I 3

and
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1/1-1

\Q\
n-\ l+C

2n-2

so that

Hence, for n > 2,

v l - n

Λ - l

= n\An-\

i - ί 2

v l - « = n\An-\

if and only if 1 - \ζ\2 = |1 - ζ2\ or if and only if ζ e Ξ(l). In conclusion, the
equality holds in (5.1) at z e Ω if and only if z is on jSf, the image of Ξ(l) by
z = β*(C) + Λ.

Remark. Let ^ be a universal covering projection from Z> onto Ω and let
z = φ(w),w e D. Set

ζ-w

possibly, Δ(z) = Ω. This simply connected domain is independent of the par-
ticular choice of φ and w as far as z = ^(w) is satisfied. We can replace, in
Theorem 5, the condition on / that / e ^(Ω) with the following weaker one.
Namely, / i s holomorphic in Ω and univalent in each Δ(z),zeΩ.

6. Concluding remarks

For z of a hyperbolic domain Ω we set pΩc(z) = pc{w,φ), where z — φ(w) is
a universal covering projection. Then pΩc is a function well defined in Ω and
PΩC(Z) is called the radius of convexity of Ω at z.

Suppose that Φ e ^ and Φ(D) is convex. Then,

\Bnk(Φ)\ < (ll1^, n-3<k<n;

[C, Lemma 2]. Hence if 2 < « < 4, z e Ω, and / e <%(Ω) with Ω hyperbolic, then

(6.1)

Note that

(Pad2)
n-\ /W(2



400 SHINJI YAMASHITA

the case m = n - 1 and P = Q = 1 in (2.3). In view of the pΩc version of (5.6)
the proof of (6.1) is now obvious. One can loosen the condition / e <9l(Ά) for
(6.1) on only supposing that / is univalent in each domain

f;
ζ-w

1 -wζ

Chua proved in [C, Theorem 3] that for / e ^(Ω) with Ω convex,

(6.2) \Λ-1

and if /(Ω) is convex further, then

(6.3) < «!2
\Λ-1 eΩ;«-2,3,4.

We note that some results of Chua in the specified case n = 2 are proved
already in [Yl]. First, the estimate (4) for n = 2 in [C, Theorem 1] is exactly
Miles < 6 in [Yl, Theoreme 1]. The case n = 2 in (6.2) and (6.3) are known;
see \\A\\S < 6 and \\A\\CS < 4 in [Yl, Theoreme 2]. If pΩc(z) = 1 in (6.1), then
we have (6.2).
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