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EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS
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Introduction

Kolyvagin discovered the method of Euler system, and used it to analyze
ideal class groups of certain cyclotomic fields and Selmer groups of elliptic curves.
Rubin used the method of Euler system to obtain a new proof of Iwasawa main
conjecture and a proof of the main conjecture for imaginary quadratic fields
([Koy], [Koz], [Ruy], [Ruy]). It is vaguely believed that once a nice Euler system
is discovered, we can analyze certain étale cohomology groups and “Selmer groups™
which are generalizations of ideal class groups and of Selmer groups of elliptic
curves. This paper is an attempt to prove the truth of this belief. In this paper,
we show that once a nice Euler system of a p-adic representation of Gal(Q/Q) is
given (see Proposition 1.1 for the meaning of “an Euler system for a p-adic
representation of Gal(Q/Q)”), then we can prove finiteness theorems for the
second étale cohomology HZ (Theorem 13.3) and for the Selmer group (Theorem
13.2) of the Galois representation, and can prove a part of an analogue of
Iwasawa main conjecture (Theorem 0.8) of the Galois representation.

During I was preparing this paper, I leaned that similar results were obtained
also by B. Perrin-Riou and by K. Rubin, independently ([Pe], [Rus]). The results
of this paper will be used in [Ka;] to develop the Iwasawa theory of elliptic cusp
forms and Iwasawa theory of elliptic curves without complex multi-
plication. Results of this paper on H2 and Selmer groups are obtained under
the assumption that we are given a nice Euler system, and how to find an Euler
system is a difficult problem. In [Ka,], we actually find nice Euler systems for
two dimensional Galois representations associated to elliptic cusp forms. These
Euler systems come from Beilinson’s elements in K, of modular curves ([Be]).

I thank Prof. V. A. Kolyvagin for encouragement. I appreciate the hospital-
ity of Institute for Advanced Study at which some part of this paper was written.

§0. Main result

In this §0, we fix the meaning of “an Euler system for p-adic representation
of Gal(Q/Q)” (cf. 0.1) in our sense, and state the main result Theorem 0.8 of this
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paper. The well known Euler system of cyclotomic units is reviewed in Ex-
amples 0.2, 0.5.1, 0.6.1, Remark 0.8.1, and the reader will see how our Euler
systems, if discovered, generalize this example.

0.1. Let p be a prime number, we use the following notation
F  a finite extension of Q,,
Of the integer ring of F,
Q an algebraic closure of Q,
T a free Op-module of finite rank endowed with a continuous Op-
linear action of Gal(Q/Q).

Let N > 1 be a multiple of p, and assume that the action of Gal(Q@/Q) on T
is unramified at any prime number which does not divide N. Let N’ > 1 be an
integer which is prime to N.

By an Euler system for (F,T,N,N’) (or simply, an Euler system for T), we
mean a system of elements

1
Zm € Hl (Z[Cmvﬁ] ) T)
(¢ denotes a primitive m-th root of 1 in @) defined for any integer m > 1 such

that N|m and (m,N’) = 1, satisfying the conditions (0.1.1) below. Here for a
finite extension K of Q@ with integer ring Ok,

(o [t]-1) 5 bm e (ou[3) 7)o

denotes the étale cohomology. (It is known that each H9(Ok[l/N],T/p"T) is a
finite group and H?(Ok[1/N],T) is a finitely generated Or-module.)
For a prime number / which does not divide N, let

Pi(t) =deto, (1 —¢;t; T — T) € Ot
where ¢; denotes the action of the arithmetic Frobenius substitution of / on T
(which is determined up to conjugacy but P;(z) is well defined). (So, P;(¢)”" is
the congruence zeta function of restriction to Spec(Fj), of the dual Op-sheaf
T* = Homo, (T, Of) of the Or-sheaf T on Spec(Z[1/N]),. On the other hand,
for such / and for an integer m > 1 which is not divisible by /, let 0;,, be the
arithmetic Frobenius substitution in Gal(Q((,)/ Q).

(0.1.1) For any integer m > 1 such that N|m and (m,N’) =1, and for a
prime number 1 which does not divide N’', the norm map

o (efes]r) - (efe ]

Zyml 10 Z, (rESp. tO Pl(l‘]a;,l,,) “Zm)

sends

if | divides m (resp. | does not divide m).
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Here Pi(I'o;,,) is regarded as an element of the group ring
Or|Gal(Q(¢,)/ Q)] acting naturally on H(Z[{,,,1/N], T).

Example 0.2 (Classical example). Let F = Q,, T = Z,(1),N =p, and N' =
1. We have

(0.2.1) H1<0K B],Z,,(l)) ~ (oK H ) ®zZ,

if K is a finite extension of Q, where ( )™ is the multiplicative group of invertible
elements. (This isomorphism comes from the connecting maps of the Kummer
exact sequence

0—Z/p"Z(1) = Gn 5 Gy — 0 (n>0)

for etale topology.) Fix a primitive m-th root {,, of 1 in Q for each m > 1
satisfying ({,,)" = {,n for any m,n > 1. For a multiple m of p, let

. eH1<z[cm,]1)],z,,(1))

be the image of 1 —{, € (Z[{,,1/p])”" under the isomorphism (0.2.1) for K =
O((n). Then (z),, is an Euler system for (Q,,Z,(1), p,1) in the sense of 0.1.
Indeed, (0.1.1) follows from

P;(l“la,j,ln) =1- 0.1—’1 (since Pi(t) =1-—1r),

m

and from the fact that the norm map

dood] - ofed]
sends 1 —¢,; to 1 —¢, if [ divides m, and to

(1= &) (1 =07, ()"
if / does not divide m.

Example 0.3. In the forthcoming paper [Ka;], we will study an Euler
system in the case T comes from an elliptic cusp form of weight >2 which is an
eigen form for all Hecke operators.

0.4. Fix a divisor d > 1 of N. Let Q({4p) =J, Q(4r) and let

A = OF([Gal(Q((4=)/ Q)]

where for a profinite group G and a ring R, R[[G]] denotes lim ., R[G/H] where
H ranges over all open subgroups of G. Then if A denotes the finite subgroup



316 KAZUYA KATO

of Gal(Q({z~)/Q) consisting of all elements of finite orders, A is isomorphic to
the formal power series ring Of[A][[f]] (¢ is an indeterminate). From this we
have (cf. 10.4):

(0.4.1) Let p be a prime ideal of A of height one which does not contain
p. Then A, is a discrete valuation ring.

(0.4.2) If the order of A is prime to p (this happens for example, if d = 1 and
p #2), A is regular and A, is a discrete valuation ring for any prime ideal of A
of height one.

0.5. Let

. 1
H? = kIEHq(Z[Cdp”)N}7T>

n

where the inverse limit is taken with respect to the norm maps. It is known that
HY=0if g# 1,2, and H' and H? are finitely generated A-modules. The A-
module H? is especially important and are the main subject of our study. It is
closely related to ideal class groups of cyclotomic fields in the case of Example
0.2 (see Example 0.5.1 below) and to Selmer groups and Tate-Shafarevich groups
of elliptic curves over O in some cases of Example 0.3 ([Ka;]). Let

H} = Ker<H2 — @ lim H*(Q; ®g @4, T)).

IN o

Example 0.5.1. Let F=Q,, T =2Z,(1), N=p as in Remark 1.2, and let
d =1. Then

#(2]n] Z0)) = CUQGP)

where CI(Q({,~)) denotes the ideal class group of Q((,») and {p} means the p-
primary part. (The Kummer exact sequence in Example 0.2 gives

CHQ(n)) = H' <Z [cpn, }J , Gm) — H? <Z [{,,,,, }J,Z/pnza))

and induces the above isomorphism.) In this case, we have

Hj = H? = lim (CI(Q(¢,»){P})
where the limit is taken with respect to norm maps.

Remark 0.5.2. For a prime number /, the group (liﬂn H*(Q;® Q(lypn), T)
is well understood. In fact, by local Tate duality ([S,, Chapter II §5]),

lim H*(Q, ® @((ypr), T) = Hom(H"(Q, ® Q(lyp), T*(1) ® Q/ Z), 0/ Z)
Wheren T* = Homy, (T, Of) with the dual action of Gal(Q/Q).
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0, ® O(4) is a finite product of fields, and hence H°(Q; ® Q((yx),
T*(1) ® Q/Z) is a subgroup of finite product of copies of T*(1) ® Q/Z. By
duality, this shows that @n H*(Q,® Q(4n), T) is a finitely generated Op-
module, and is a torsion A-module (that is, it is killed by a non-zero-divisor of A).

0.6. We consider the following conditions on (F,7T,N,N’).
In the following, let mr be the maximal ideal of Of, and let Qab be the
maximal abelian extension of @ in Q.

(i) V =F ®p, T is irreducible as a representation of Gal(Q/Q) over F.

(isr) Or/mp ®q, T is irreducible as a representation of Gal(Q/Q) over
OF/ mr.

(ii) There exists an element o of Gal(Q/Q%) such that dimp(Ker(1 — o;
V—-V)) =1

(iig) There exists an element o of Gal(Q/Q™) such that Coker(l1 —o :
T — T) is a free Op-module of rank one.

(We see easily that (i) is stronger than (i) (that is, (i) implies (i)) and that
(iigr) is stronger than (ii)).

(iii) There exists an integer w such that for any prime number [ which does not
divide NN', the roots of Pi(t) are algebraic numbers whose all conjugates have
absolute value 1"/? in C. (In other words, V is “pure”.)

To state the condition (iv,), we need some preliminary.

For a prime ideal p of A such that A, is a discrete valuation ring, let
sgn(p) € {1, -1} be the image of the complex conjugation in Gal(Q({s~)/Q)
under Gal(Q({4=)/Q) =< A — A,. B

Fix an embedding Q — C, and let 1 € Gal(Q/Q) be the complex conjugation.
Let

n(V,p) = dimp({x € V;1(x) = —sgn(p)x}).
Then n(V,p) is independent of the choice of @ — C, and
rankAv(H;) - rankAp(H;) =n(V,p).

This follows from Tate ((Ta, Theorem 2.2]). Now the condition (iv,) is as
follows.
(ivy) For a prime ideal p of A such that A, is a discrete valuation ring,

n(V,p)=1.

Example 0.6.1. Let F = Q,, T =Z,(1),N=p,N' =1, and let d = 1. Then
the conditions (is), (iist), (iii) are satisfied. (In (iig), take o = 1. In (iii), w =
—2.) (ivp) is satisfied if sgn(p) = 1.

Example 0.6.2. Let E be an elliptic curve over @, and consider the case
F=Q,,T is the p-adic Tate module (li_n_ln Ker(p": E(Q) — E(Q)), and N is the
conductor of E, N’ =1. Then the conditions (i), (iii) are satisfied (the integer w
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in the condition (iii) is —1), and the condition (iv,) is satisfied for any prime ideal
p of A such that A, is a discrete valuation ring. If E® Q does not have a
complex multiplication, the condition (i) is satisfied, for the image of
Gal(Q/Q™) in Autz (T) = GL,(Z,) contains an open subgroup of SL(Z,)
(Serre [S4, Chapter IV]) and hence contains an element of the form o = (§ §)
with ¢ # 0 which satisfies dimp(Ker(l —o:V — V)) = 1.

Remark 0.6.3. The condition (iii) is satisfied if there exist a proper smooth
scheme X over Z[1/N] and g € Z such that V is a subquotient of the represen-
tation F ®p H(X ® Q,Q,) of Gal(Q/Q) over F. The integer w in (iii) in this
case is ¢. This is by Deligne [De].

0.7. Let
EeH'

be the image of (znpn),sq € }iﬂnHl(Z[CNp",l/N],T) under the norm map.
(Note (znpn),o belongs to the above inverse limit by virtue of (0.1.1).) Define
the ideal J(&) of A by

J(&) = {h(&);h is a A-homomorphism H' — A}.

Now the main result of this paper is the following.

THeoreM 0.8. Let (F,T,N,N’) be as in 0.1 and let (z,,), be an Euler
system for (F,T,N,N'). Let d and A be as in 0.4, and let p be a prime ideal of
A such that A, is a discrete valuation ring. Assume p does not contain p (resp. p
contains p). Assume that the image &, € Hé =A, O H U of the element ¢ € H!

(cf. 0.7) is not a A,-torsion element, and that the conditions (i), (ii), (iii) (resp. (istr),
(iigtr), (iii)) are satisfied. Then Hg is a torsion Ap-module and

length, (Hj ) < length, (Ap/J(E),).
If furthermore the condition (iv,) is satisfied, H ; /A&, is a torsion Ay-module and

lengthAv(Hg’p) < length, (H;/Avép))-

Remark 08.1. Let F=Q, T=2Zy)(1),N=p,N =1, and let d=1.
Assume p # 2. Let p be a prime ideal of A of height one such that sgn(p) = 1.
Then the image &, of (1 —{n),», (cf. 0.2) in H is not a Ap-torsion element.
Theorem 0.8 says

(%) length, (H}) < length, (H,/Ay¢,).
Iwasawa main conjecture, which says

length, (H 3) = length, (H ; JApEL),



EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS 319

follows from (x) by the analytic class number formula (see [Ru;]). Iwasawa
main conjecture was proved by Mazur-Wiles (MW]) and a new proof of it by
using the method of Euler system was found by Rubin ([Ru;]). In fact Rubin
proves (x) in [Ruy], and our proof of Theorem 0.8 is a natural generalization of
the proof of (x) by Rubin given in [Ru].

Remark 0.8.2. Let (F,T,N) be as in 0.1, let d, A be as in 0.4, and let p be
a prime ideal of A such that A, is a discrete valuation ring. Then the conjecture
in [Ka;, Chapter I, 3.2.2] on “p-adic zeta elements” predicts that, if H :, is torsion
free as a Ay-module (e.g. if H%(Q((4=),V)=0) and if the condition (iv), is
satisfied, there is an Euler system (z,),, for (F,T,N,1) such that

length, (H;) = length, (H}/Ay&,).

If ¥V comes from a motif M, this Euler system should be related to special values
of complex zeta functions of M ® y for Dirichlet characters y.

0.9. We sketch the main idea of the proof of Theorem 0.8 and the plan of
this paper.

For an integer m > 1 which divides dp* for some i, and for » > 1, consider
the localization sequence of étale cohomology

(0.9.1) HY(Qn), T/p"T) > 61—)H0(F1 ® Z[(n], T/p"T(-1))

) 1
H*( Z|Cp—|, T/p"T
(2ot i)
where / ranges over all prime numbers which do not divide N. The image of the
map ¢ “nearly” coincides with the kernel H*(Z[(,,1/N],T/p"T), of

12 (2|t /T ) ~ D 101 © Q). T/ T)
IIN

where [ ranges over all prime divisors of N. That is, H*(Z[(,,,1/N],T/p"T), is
nearly the cokernel of 0. To have the inequalities in Theorem 0.8, we have to
show that H%(Z[{,,, 1/N],T/p"T), is small enough, that is, the image of 0 is big
enough. To show this, we define in §2 certain elements «, in H'(Q((,), T/p"T)
(following the definition of the “derivatives” of the Euler system by Kolyvagin)
and we compute the images of x, under ¢ (Theorem 4.5). From this com-
putation, we can conclude that the image of 0 is big enough. This is a rough
idea of the proof of Theorem 0.8.

The following point is technically important. In the direct sum @), in (0.9.1),
we consider exclusively the /-components for “good prime numbers” / in the sense
of §5. In fact, the l-components for good prime numbers / have simple structures
(they are almost isomorphic to the group ring (Or/p"Or)[Gal(Q({,)/Q)]) and
can be analyzed well (Proposition 5.5, here the condition (ii) in 0.6 plays an
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essential role). It is sufficient to consider the /-components only for good prime
numbers /, because the images of /-components for good prime numbers / under :
nearly generates H*(Z[(,,,1/N|,T/p"T), (cf. 11.11). To show the last fact, we
need results on Galois cohomology proved in §6 and §7.

§88—12 are final steps of the proof of Theorem 0.8. In §8 (resp. §9), we show
that Q ® H*(Z[1/N], V) = 0 (resp. the localization of H? at some prime ideal of
A of height zero is zero) under a certain assumption on (F,7T,N,N’) and the
Euler system (z,,),. After a module theoretic preliminary in §10, we complete
the proof of Theorem 0.8 in §11 and §12.

In §13, we prove a finiteness theorem for Selmer groups (Theorem 13.2) and
a finiteness theorem for H? (Theorem 13.3) as applications of Theorem 0.8.

§1. A local property of Euler system

The aim of §l is to prove

ProposITION 1.1. Let (F,T,N,N') be as in 0.1, and let (z,,),, be an Euler
system for (F,T,N,N'). Then for an integer m such that N\m and (m,N') =1,
of N and for a prime number | which does not divide mN', the image of z,y in
HY(Q,(lw), T) coincides with the image of

_ 1
(=0 P o) = P i)} 2m e 1Y (2]my ] 7))
Note that P;(I"'g;}) = Pi(o7,,) mod (I — 1), and hence

(1= )7 (Pl ap,,) = Pil075,) € OF[Gal(Q(&)/ Q)]
is defined.
This Proposition 1.1 will play an important role in §4 (Proposition 1.1 is not
used in §2, §3).

Remark 1.2. In the case of the Euler system of cyclotomic units in Example
0.2

(=) (P ) = Pilar))) = a7k,

and the statement of Proposition 1.1 is the fact that 1 — {,; and 1 — GZ,ln(Cm) has
the same image in

HY(Z)[), Zp(1) = H' (Fi(Cn), Zp(1)) = Fi(Gn) *{P}

where {p} denotes the p-primary component of F;({,,)*. This property of the
system of cyclotomic units is called the “congruence property”, and the property
(0.1.1) of the system of cyclotomic units is called the norm property. It is
proved in [Rus] that the congruence property of any Euler system of units is
deduced from its norm property, by a different method.

In the rest of §l, we prove Proposition 1.2.
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1.3. The map H'(Z[(,;,1/N],T) — H(Q,({m), T) factors through

1
HI(ZI®Z|:CmI’N:|’T)$
and

~

(20 2|t ] T) = H'(F1© 210, T) = 1 (F1© 21, T).

We consider the inverse limit m . H' (FF®Z (Cmpn], T') with respect to norm
maps, and prove that the image of (zupn),s, in this inverse limit coincides with
the image of

{ = 1) P 07 ppn) = PiOT g )} * Zmp o
Lemma 1.4. 4liﬁnHl(F,@)Z[C,,,pn,l/N],T) is a torsion free Op-module.

Proof. By the duality of Galois cohomology of a finite field,
{hEHI(FI ®Z[Cmp"]’ T) = HomOF(HO(FI ® Z[Cmp‘”], T* ®0F F/OF)>F/0F)

n

It is sufficient to show that H°(F; @ Z[(y=), T* Qo, F/OF) is p-divisible.
Since the degree of any finite extension of Fy({,,~) is prime to p, we have
H'(F;® Z[(,yy=], T*/pT*)=0. By the long exact sequence of H'(F;®
Z[(,p~], ) associated to the exact sequence

0— T*/pT* - T*®, F/Or L T* ®0, F/Or — 0,
this implies that H(F) ® Z[{,«], T* ®o, F/Of) is p-divisible.

1.5. By Lemma 1.4, it is sufficient to prove that the image of (/ — 1) - zy,»
in H'(F; ® Z[(y), T) coincides with the image of (Pi(I"'a7, n) = Pi(0] p,n)) -
Zmpn for any n. By replacing mp” by m, we are reduced to

LemMa 1.6. (1) The image of (I—1) -z in H'(F;® Z[(,,T) coincides
with the image of P;(l_la,“’,ln) - Zm.
(2) The image of Pi(oy,,) - zm in H'(FI® Z[(,),T) is zero.

Proof (1) follows from (0.1.1) by the commutative diagram

H! (Z [cm,,-ji—,} , T) —— HY(FI® Z[,),T)

fm lz_l

H! (Z[ ,,,H , T) —— HYF® Z[(,),T).
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To prove (2), let
D, = A ®p, T where A, = Or[Gal(Q((n)/ Q)]
on Wthh Gal(Q/Q) acts as follows. For g€ Gal(Q/ Q), the action of o on ®,,
is ()”' ® o, where & denotes the image of ¢ in Gal(Q((,)/Q) = A,. Then
H'(Fi® Z[(,), T) = H' (F1, ©p) = @/ (1 ~ 9) P
as A,,-modules (for explanations of these isomorphisms, see 3.4 and 4.2), and

Pi(o7),) = deta, (1 — ¢ : @ — Opy).
This shows that Py(o7 ) kills H'(F; ® Z[(n), T).

§2. Derivatives of an Euler systems

21. Let (F,T,N,N’) be as in 0.1, and let (z,),, be an Euler system for
(F,T,N,N’). Fix an integer m such that N|m and (m,N’) =1, and integers
n,n’ such that n’ >n>1. Assume

(2.1.1) there exists an integer ¢ > 0 such that p¢ kills H*(Q((,,), T ® (Q/Z)) and
n' >n+2c.

The aim of §2 is to define important elements

v e i (2]t ] 717)

for integers r > 1 satisfying the following conditions (2.1.2) and (2.1.3). Our
definition of x, here follows the definition of the derivative of an Euler system in
[KOl], [KOZ]'

(2.1.2) r is square free, and is prime to m.

(2.1.3) Py(I- la, 1) e p" Or[Gal(Q((,)/ Q)] and I — 1 € p™ Z for any prime divisor
Il of r.

(In fact x, is defined canonically only after we fix generators of some cyclic
Galois groups over Q. See Remark 2.9.)

2.2. Assume r satisfies the condltlons (2.1.2) and (2.1.3).
For a prime divisor / of r, let L"Y/Q(¢,) be the unique subextension
of Q(Lm)/Q (L) of degree p™. For a divisor s of r, let L() be the composite of
L") where I ranges over all pnme divisors of s, and let R®®) be the integral closure
of Z[1/Nr] in L®).
In this 2.2, we define an element w, € H'(R"), T/p™T). As a preliminary
for the definition of w,, we define

vse HY(RW, T), wv.,e H'(RD,T)
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as follows. Let v, be the image of z,, under the norm map
H! (Z [C’”‘”NLJ , T) 2, HY(RY),T).
¥

Let v, be the image of
uis)- TI PP~ (o7h x 1)) § v,
I\(r/s)

under the canonical map H!(R®,T) — H'(R™, T) associated to the inclusion
map R®) = R"). Here, u(s) denotes Mobius function (that is, u(s) = (—1)*
where k is the number of prime divisors of s), [];,/,) means the product over all
prime divisors / of r/s, and a; 1 x 1 means the element of Gal(Q({,)/Q) (acting
on HY(R® T)) whose restriction to Q((,) coincides with o} and whose
restriction to Q((;) is the identity map. Let ’

Wy = § Vr,s
s

where ) means the sum over all divisors s of r.

2.3. For a divisor s of r, let G¥ = Gal(L®)/Q({,)). Then for a prime
divisor / of r, G!) is a cyclic groups of order p”, and G = 1, G". Fixa
generator oy of GU) for each /, and regard «; as an eclement of G via this
isomorphism.

For a G"-module M killed by p”, and for a divisor s of r, let

DY M- M

be the composite [],, D) where I ranges over all prime divisors of s and D?) is a
homomorphism M — M defined as follows (D) commutes with each other);

Pl

DO) = i ()" (x).

1=0

LEmMMa 2.4. The map
DY H'(RY, T/p"T) — H'(RV,T/p" T)
sends w, into the G"<fixed part of H'(R",T/p"'T).

For the proof of Lemma 2.4, we use

LemMma 2.5. For a prime divisor | of r, the norm map

NO:HY (R, T) - HY(R"D,T).
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sends w, (cf. 2.2) to
(Pt (01_,’1', x 1)) - Pl(l_lal_,rlnr/l)) Wy

Proof. Let s be a divisor of r/l. Then by simple computation we have
NO, ) =P(I7" - (a7 X 1)) - Vojis-
By using (0.1.1), we have also
ND (v, g) = —P;(l"laz,lnr/,) “Vy/Ls-

By taking the sum of these equations for all 5, we obtain Lemma 2.5.

2.6. We prove Lemma 2.4 by induction on the number of prime divisors
of r.

It is sufficient to prove (1 — a;)(D")(w,)) =0 for each prime divisor / of r.
We have

(1—-o)oDV = Z T.
e G
Hence

(1 — o) o DY = DYD(ND(w,)).

By Lemma 2.5, N¥)(w,) is generated by elements of the form (1 — 7)(w,/;) with
7€ G'/). Hence we are reduced to proving

(1-1)0oD"D(c, ;) =0

but this follows by induction.

LEMMA 2.7. Let ¢ be as in 2.1. Then for any a >0 and a’' > a+ c, the
canonical map

HRY,T/p* T)— H'(RY,T/p"T)
is the zero map.
Proof. We have a commutative diagram
HO(R(r), T/p”IT) —C_’ HO(Q(Cmr)v T® (Q/Z))
JV Jpa'—a
HY(RV,T/p*T) —— H*(Q(lm), T ® (Q/Z))

with injective horizontal arrows. Since @’ — a > ¢, it is sufficient to prove that p¢
kills H°(Q({m), T ® (Q/Z)). For this it is enough to show that the inclusion

H(Q(ln), T ®(Q/Z)) =« H*(Q(wm), T ® (Q/Z))
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is in fact an equality. This follows from the fact that Gal(Q/Q((,)) is generated
by Gal(Q/Q((,,)) and the inertia subgroups at prime divisors of r which act
trivially on T.

2.8. Now we define x,. Consider the exact sequences
0— H'(G", H'(R", T/p"T)) — H' (Z [cm,Ni] , T/p“T)
r

— H(GY,H'(RY,T/pT)) —» H*(G",H*(RV,T/p"T))

for a > 1.

By Lemma 2.4, D) (w,) belongs to H*(G"), H'(R", T/p" T)). By Lemma
2.7 and by the above exact sequences for a =n+ ¢ and a = n’, we see that the
image of D) (w,) in H*(G"), H'(R"), T/p™*€T)) is the image of an element x of
HY(Z[{,1/Nr],T/p"*T). By Lemma 2.7 and by the above exact sequences
for a=n and for a=n+ ¢, the image of x in H'(Z[{,,1/Nr],T/p"T) is in-
dependent of the choice of x. We define x, € H'(Z[(,,,1/Nr], T/p"T) to be the
image of x.

Remark 2.9. The element

1 n
(2.9.1) (%«,) ®K, € H! (Z[cm,m], ((I>|§ G(’)) ®T/p T).

is independent of the choices of the generators o; of GU).

§3. Local study

In this section, we review some basic facts about Galois cohomology of a
local field, and prove Proposition 3.6 which will play a key role in the proof of a
local property Theorem 4.5 of derivatives of an Euler system.

3.1. In this section, let K be a complete discrete valuation field with residue
field k. Let K be a separable closure of K, and let K,; be the maximal un-

ramified extension of K in K. Then the residue field k£ of K, is a separable
closure of k, and -
Gal(Ky/K) — Gal(k/k).

To make arguments about inverse limits of Galois cohomology simple, we
assume that K has the following property: If T is a discrete finite abelian group
endowed with a continuous action of Gal(K/K), and if the order of T is in-
vertible in k, HY(K,T) is a finite group for any ¢q. For example, K has this
property if k is a finite field (and this case is sufficient for this paper). For a
prime number p which is invertible in k and for a finitely generated Z,-module T’
endowed with a continuous action of Gal(K/K), let

HY(K,T) = lim HY(K,T/p"T).

n
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3.2. We review some general fact on Galois cohomology of K.

Let p be a prime number which is invertible in k, and let 7 be a finitely
generated Z,-module endowed with a continuous action of Gal(Ky/K). Then
we have an exact sequence

(3.2.1) 0— HYk,T) — HI(K,T) > HI"\(k, T(—=1)) — 0
where (—1) means the Tate twist by —1. The second arrow in (3.2.1) is the

inflation map for the surjection Gal(K/K) — Gal(Ky,/K) = Gal(k/k), and 0 is
defined as follows. Consider the isomorphisms

(3.2.2) H'(Ky, Z/n(1)) < K3/ (KX)" = Z/n

where the first arrow is by Kummer theory and the second arrow is the valuation
of Ky. By tensoring (3.2.2) with 7T(—1), we obtain

(3.2.3) H'(Ky, T) = T(-1).
The map 0 is defined to be the composite
HY(K,T) — H°(Gal(Ky/K), H (Ky, T)) = H'(k, H (Ky, T))
~ Hk,T(-1)).
62y (k, T(-1))

3.3. Let L be a totally ramified Galois extension of K and assume that n =
[L: K] is invetible in k. Then K contains a primitive s#-th root of 1, L is a cyclic
extension of K,L = K(n'/") for some prime element 7 of K, and we have an
isomorphism

Gal(L/K) = Z/n(1); o~ o(a)a”" where o =n!/".
(Cf. [Se;, Chapter IV §2, Corollary 1].)

3.4. We give general comments on Galois representations.

Let A be a field and let A’ be a subring of 4 which is normal Noetherian
and whose field of fractions is 4. Let 4 be a separable closure of 4, B a finite
Galois extension of 4 in 4 with Galois group G, and let B’ be the integral
closure of 4’ in B. Assume B’ is unramified over A’. Let p be a prime number
and let T be a finitely generated Z,-module endowed with a continuous action of
Gal(A4/A4) which is unramified at any prime ideal of 4’. Let

R=2Z,[G, M=R®,T,

and endow M with the following R-linear action of Gal(4/A4): For ce
Gal(A/A), the action of ¢ on M is (5)”' ® ¢ where & denotes the canonical
image of ¢ in G < R. If we identify T (resp. M) with the corresponding Z,
(resp. R)-sheaf on Spec(4’)

ét>

(3.4.1) M=ffT



EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS 327

as an R-sheaf, where f is the canonical morphism Spec(B’) — Spec(4’). So we
have

(3.4.2) HYA'M)=HYB',T) for any ¢ >0

as an R-module, where HI( ,M)=1lm HI ,M/p"M), HI(,T)=
lim HY( ,T/p"T). -

The norm map HY(B',T) — H9(A',T) is identified with HY(4',M) —
H(A',T) induced by M — T; 6 ® x — x (o € G), and the canonical morphism
Hi(A',T) — HY(B',T) is identified with H9(4',T) — HY(A', M) induced by
1:T—=M; x— (3 ,.60) ®x.

3.5. Let the situation be as in 3.4. Let I; be the kernel of the homo-
morphism Z[G] - Z; c— 1 (c€G) and let G* = G/[G,G]. We define a
homomorphism

(3.5.1) D:IgM — G®QT

to be the composite map
IGM —IGMJIEM S I6/I12®; M/IcM = Ig/I2®@T =GP T
where the last isomorphism comes from
G® =, IG/1; o~ 1-o.

If G is a cyclic group of order » and « is a generator of G, we regard D as a
homomorphism IgM — T/nT (G® in (3.5.1) is identified with Z/nZ by o — 1).
In this case, the diagram

IcM —<~—- M
n—1
DJ/ lvz iOCl
1=0
T/nT —— M/nM

is commutative (thus D is related to the homomorphism D) in §2), and hence we
have a commutative diagram

HYA' IgM) —— H9(A',M)=H9B,T)
n—1
DJV JVZ o
1=0
HYA',T) —— H4(B',T/nT)
for any i.

PROPOSITION 3.6. In 3.4, consider the case A= A’ = K, B= B’ = L where L
is a totally ramified cyclic extension of K of degree p" for a prime number p which
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is invertible in k and for some n>0. Assume that T is p-torsion free, and the
action of Gal(K/K) on T factors through Gal(Ky/K). Then the map

(3.6.1) HY(K,IgM) — H' (K,M)(;Z) WL, T)
coincides with the minus of the composite
(3.62) H\(K,IcM) > H'(K,G® T) = H'(K,T/p"T(1))

% H(k, T/p"T) = H'(K, T/p"T) > H'(K,T) —» H'(L, T)

where & denotes the comnecting map of the exact sequence

075717 T/p" —0.
The rest of §3 is devoted to the proof of Proposition 3.6.

LemMa 3.7. Let f: HY(K,T/p"T) — HY(K,IcM) be the following homo-
morphism. For ae T such that amod p" e H*(K,T/p"T), let f(amod p") be
the class of the 1-cocycle

g : Gal(K/K) — IgM; 0= (1—(5)"") ® a(a) - (Z(l —a)) ® p"(0(a) - a).

aeG

(ga is a l-cocycle because

gal) = (1 —a){z(l —a)@p-"a} in Q@ IM.)
aeG
Then:
(1) The diagram

9(K,T) — HY%K,T/p"T) — HYK,T) —2— HY(K,T)

) 1 J |

HYK,T) —— H'(K,IcM) —— H'(K,M) -2~ H'(K,T)

is commutative, where the upper horizontal sequence is the exact sequence obtained
from the exact sequence 0 — T LT T/p" — 0 and the lower horizontal se-
quence is the exact sequence obtained from the exact sequence 0 — IgcM — M —
T —0.

(2) f is surjective.

Proof. (1) is checked directly. To prove (2), by the commutativity of the
diagram in (1), it is sufficient to prove that

(3.7.1) Ker(H!(K,T) 2 H'(K,T)) — Ker(H'(K, M) — H'(K,T))
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is surjective. Note that H!(L,T) = H'(K,M) — H'(K,T) is the norm map.
The surgjectivity of (3.7.1) follows from the commutative diagram of exact
sequences

0 —— H'(k,T) —— HYL,T) —— H°k,T(-1)) —— 0

,,nl ml ldl
0 —— H'(T) — H'(K,T) —— H%k,T(~1)) —— 0.

Now by Lemma 3.7 (2), for the proof of Proposition 3.6, it is sufficient to
show that the compositions (3.6.1) o f and (3.6.2) o f* are equal.

LemMMA 3.8. The composite

HYK,T/p"T) L H'\(K, IsM) 2 HY(K,G® T) > HO(k, T/p"T)
=H(K,T/p"T)
coincides with the multiplication by —1.

Proof. Let a be an element of T such that @ mod p" € H*(K,T/p"T).
Then Do f (e@amod p") is the class of the 1-cocycle

Gal(K/K) - G®T; o— —6®@a—» {a® p"(o(a) —a)}.

aeG
Since o(a) —a = 0 if o belongs to Gal(K/K,), we see that 0 kills the class of the
1-cocycle o +— 3 ,.{a ® p(a(a) —a)}. It remains to show that H'(K,G) ~

HY(K,Z/p"(1)) 2 HY(K,Z/p"Z) sends the class of the 1-cocycle g — G to 1.
But this follows from the definitions of the isomorphism G ~ Z/p"(1) and .

3.9. Now we complete the proof of Proposition 3.6. Consider the com-
mutative diagram
HYK,T/p"T) —— H'(K,T)
| |
HY(K,IcM) —— HYK,M)=H'(L,T)
(Lemma 3.7 (1)). The composite H*(K,T/p"T) ER HY(K,IgM — H'(L,T) in
this diagram coincides with (3.6.1) o f. On the other hand, by Lemma 3.8, the

composite H°(K,T/p"T) — H'(K,T) — H'(L,T) in this diagram coincides
with —(3.6.2) o f. This shows that

(3.6.1)0 f = —(3.6.2) o f.
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§4. Local property of derivatives of an Euler system

We prove a formula Theorem 4.5 concerning a local property of derivatives
of an Euler system.

4.1. We first give a preliminary on “cofactor homomorphism”.

Let R be a commutative ring, let M be a free R-module of finite rank r, and
let f: M — M be an R-homomorphism. Then the cofactor homomorphism
¢ M — M is defined to be the unique R-homomorphism which makes the
following diagram commutative.

M =, Homg (r/_\lRM,/r\RM>
| ()

~ r—1 r
M = HomR</\RM,/\RM>

Here the horizontal arrows are x — (¥ +— xA ).

If f is expressed by a matrix A4, ¢s is expresed as the matrix of cofactors
of A.

We have

f ocr =c¢ro f=multiplication by det(f).

4.2. Let [ be a prime number, and let ¢, € Gal(F;/F;) be the arithmetic

Frobenius F; — F;; x — x’. Let R be a pro-finite commutative ring, and let M

a free R-module of finite rank endowed with an R-linear continuous action of
Gal(F;/F;). Assume

detg(l —¢;: M — M) =0.
We define an important homomorphism
Y, H'(F,M) — H°(F;, M)
as follows.
Recall that HY(F;,M)=0 for ¢#0, 1 and there are canonical iso-
morphisms
HO(F;,M) =Ker(l —g,: M — M),
H'(F;,M) = Coker(1 — ¢, : M — M).
(In the latter isomorphism, an element of H'(F;, M) represented by a continuous

1-cocycle ¢ : Gal(F;/F;) — M corresponds to the element ¢(¢,) mod (1 — ¢,) M.
Cf. [Se;, Chapter XIII §1].
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Let f=1—-¢,: M — M, and consider the cofactor homomorphism c¢;.
Since focs and cso f induce the zero map detr(f : M — M) on M,

c:M—-M
induces
Coker(f: M — M) - Ker(f: M — M),
that is,
H'(F,M) — H(F;,M)
which we denote by y,.
43. Now let (F,T,N,N’) be as in 0.1. In 4.3 and 4.4, we fix some

notations.
For m > 1, let

Ap = Or[Gal(Q((,)/0)], Amn = Am/p"Am for n>0.

Define a A,-module ®,, endowed with a Aj,-linear continuous action of
Gal(Q/Q) as follows. As a A,-module, let

(I)m = Am ®OF T

Define the action of ¢ € Gal(Q/Q) on ®,, to be (3)"' ® o where & denotes the
canonical image of ¢ in Gal(Q((,)/Q) = Am. (Cf. 3.4.) Then, if / is a prime
number which does not divide Nm, we have

PI(UZ,I,,) =detp, (1 — ¢, : Py — Dsy),

(4.3.1)
P(I"'a7)) =dety, (1= 17gp: @y — D).
Let
®,,=,/p"®, forn=>0.
If

det/\m,n(l — ¢ (Dm,n - (I)m,n) =0
(i.e. if Pl(a;,'n) = 0 mod p"),

Y H' (FI® Z (L), T/p"T) — HY(FI ® Z[(,), T/p"T)

is defined by identifying HY(F; ® Z[(,],T/p"T) with HY(F;,®, ,) (9=0,1)
(cf. 3.4) and by taking A, , and @, , as R and M in 4.2, respectively.

44. Let (F,T,N,N’) be as in 0.1 and let (z,,), be an Euler system for
(F,T,N,N").

Let m,n,n’,r be as in 2.1 assuming (2.1.1)—(2.1.3) are satisfied. Let / be a
prime divisor of r.
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By fixing generators of G (cf. 2.3) for any prime divisor I of r/l, we
denote the element (2.9.1) of H(Z[{,,1/Nr],GY ® T/p"T) by k.. We have
also an element «,/; € H'(Z[(,,, 1/(Nr/1)],T/p"T).

Let

00 1 (2]t | 6V @ T/0T) = 1@ 2101 T/0"T)
be the composite map
1 (2[tng] - 60 O /5T ) ~ 1@ ® Q(0). 6" @ T/p"T)

> H'(Q, ® Q(), T/P"T(1)) > HY(F; ® Z[(,), T/p"T).

33
(See 3.2 for the homomorphism 0.)
Note that
deta,, (1 —¢;: ®pp — Ppp) =0
because

deta, (1= 1"'g;: @y = @py) =0 and [=1mod p”
by (2.1.3) and (4.3.1). Hence

Yy - H'(F1 ® Z|0,), T/p"T) — H(Fi ® Z[(,,], T/p"T)
is defined.

THEOREM 4.5. Let m,n,n’,r,l be as in 4.4. Assume
H(Fy(¢),T) =0,
and assume that
= 1 mod r/l.

Then the image of k) under
1
1 . n  H! n
1 (2]tngir] 7107 ~ B F 0 21 1))

¥
— H(FI® Z[(,), T/p"T)

coincides with 0;(x;,).

To prove Theorem 4.5, we use the following Lemmas 4.6-4.8.

LemmA 4.6.  Let R be a pro-finite commutative ring and let M be a free R-
module of finite rank endowed with an R-linear continuous action of Gal(F;/F).
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Let n>1 and assume

detr(l1 —¢;: M — M) =0mod p".
Assume R is p-torsion free. Let 6:H°(F;,M/p"M)— H'(F;,M) be the
connecting map of the exact sequence 0 — M LMo M /p"M — 0. Then the
composite map

H'(F, M) — H'(F,, M/p"M) % H(F,, M/p"M) > H'(F\, M)
coincides with the map induced by

—p"detg(l—gy: M > M): M — M.

Proof Let ue M, and consider the class # of u in H'(F,M)=
M/Im(l —¢,: M — M). Then y,(u )e HY(F,M/p"M) = M/p"M is cpu
mod p”M where ¢, is the cofactor homomorphism of f =1-g¢, Hence
doy,(u) is represented by the l-cocycle Gal(F;/F;) — M which sends ¢, to

Mo, — V)eru = —p~" detg(l — ¢)) - u.

LEmMA 4.7. Let the notation be as in 2.2. Then the image of w, in
HYQ,®L",T/p"T) coincides with the image of

{p—n/Pl(o-l_,rlnr/l)} “ Q)1

Here, Pi(o, mr/l) =1 mod p” because P;(o] O m !)=1mod p" and o, = id.
(The last equation follows from the fact / = 1 mod r/l.)

Proof of Lemma 4.7. Let s be a divisor of r/l. By Proposition 1.1, the
image of z,y in H'(Q; ® Q(uy), T) coincides with the image of

(4.7.1) {0 =17 P17 ) = PG )}~ Zims

From this we see that the image of vy in H'(Q, ® Lt)), T) coincides with the
image of

{P-nl(Pl(l_lal_,rlnr/1) - Pl(al_,rlnr/l)} -vye H'(RY, T).
This shows

CLamv 4.7.2.  The image of v, g in H'(Q; ® LV, T) is equal to the image of
(P (PiI™" 03 ) = Pi(GTpuey)} - Viprs € H'(RVD, ).
On the other hand, by definition,

CLAaM 4.7.3. v, coincides with the image of
{p™ P77k X D)} vogrs = {07 PiT 0 0y} - Ve

When we take the sum of Claims 4.7.2 and 4.7.3 in H!(Q, ® L"), T'), we obtain
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CrLamM 4. 7 4. The image of vy g+ Vys in H o ® L"), T) coincides with the
image of {p™" Pl(al mr/l)} Vi/l,se

We obtain Lemma 4.7 by taking the sum of Claim 4.7.4 for all s.

LEmMMA 4.8. w, belongs to
Ker(norm : H'(R", T) — H'(R"/), T)).
This follows from Lemma 2.5 and o;,/ = id.
4.9. Now we prove Theorem 4.5.
Let G= G, and consider the Gal(Q/L"/"))-module
M=2Z|G|®,;T

on which ¢ € Gal(Q/L(/!) acts by (6)”' ® o, where & is the canonical image of
o in G. Consider the commutative diagram

H' (R, IsM) 2 H\RYM, 6o T) 2%  H'(RUD,G®T)

611 a,l
HO(F,® RN, T/p") 2 HOF,® RV/D, T/p")

W/T ‘I’IT
H'(F,@ RO, T/p") 2% HY(F, @ RO, T/p).

Here D is the map defined in 3.5 (we are considering the case 4 = LU/,
Al — R(f/l)’ B:L(r)’ B/ — R(r))
The composite of the two upper horizontal arrows sends
w, € H' (R I¢6M) = Ker(norm : H' (R, T) — H'(R"/D, T))

(cf. Lemma 4.8) to D" (w,). To prove Theorem 4.5, it is sufficient to show that
0/(D"(w,)) € H(F;® R"D T/p") coincides with the image of —D/)(w,))
under ;. Hence by the above diagram, it is sufficient to prove that

a=0/(D(e,)) € H(F ® RUD T /p"'T)
€

coincides with the image f of w,; under y,;.
The connecting map

5:H(F,® R, T/p 'TY — H'(F;® R"),T)

of the exact sequence 00— T LroT /p"T — 0 is injective since
HY(F;® R"/) T)=0. By Proposition 3.6 (which we apply by taking n’ as n in
Proposition 3.6), J sends o to the image of —w, under the canonical map

H'(R".T) - H'(F,® RV, T) & H'(F,® R"),T).
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On the other hand, by Lemma 4.6 (which we apply by taking »n’ as » in Lemma
4.6), 6 sends f to

—{P_",Pl(o'l_,,lm/l)} -w, € H' (R, T).

Hence by Lemma 4.7, 6 sends « and f to the same element of H!(F; ® R(/!) T).
Since ¢ is injective, we have a = f.

§5. The condition (ii)

We consider effects of the condition (ii) in 0.6.

Let (F,T,N,N’) be as in 0.1 and fix a divisor d >1 of N. Let V =
F ®o, T.

In §5, we assume that the condition (ii) in 0.6 is satisfied. That is, we
assume that there exists an element ¢ of Gal(Q/Q?) such that dimz(Ker(l1 — o :
V—V))=1. We fix such o.

The aim of this section is to prove Proposition 5.5 which says that for a
prime number / which is “good for (¢,m,n)” in the sense of 5.2, the map

Y, HY(F1® Z[(,), T/p"T) — H*(FI ® Z[(,,), T/p"T)

(cf. 4.4) is defined and is nearly an isomorphism, and the A, ,-modules
HYF,®Z[,], T/p"T) for ¢ =0,1 are nearly isomorphic to A, ,.

5.1. We define some fields Q,Q’, etc.

Let Q be the extension of Q% corresponding to the kernel of Gal(Q/Q) —
Auto,(T). Let Q' be the fixed subfield of Q by o.

For m,n > 1, let Q,, , be the extension of Q((,,) corresponding to the kernel
of Gal(Q/Q((m)) — Auto,(T/p"T), and let Q, , be the fixed subfield of Q,,,
by o.

5.2. By a “good maximal ideal for (o,m,n)”, we mean a maximal ideal v
of Oq [1/(mN")] (Oq denotes the integer ring of Q,, ) satisfying the following
conditions (5.2.1) and (5.2.2).

(5.2.1) The Frobenius substitution of v in Gal(Q,x({,")/L,, ,) coincides with the
image of o.

(5.2.2) v is of degree one over Q. (That is, the local field of v is isomorphic to
0, for some prime number /.)

By Chebotarev’s density theorem, there are infinitely many good maximal
ideals for (o,m,n).

By a “good prime number for (g,m,n)”, we mean a prime number which
lies under a good maximal ideal for (o, m,n).

A good prime number [ for (g,m,n) satisfies / =1 mod p" because the
Frobenius of / in Gal(Q({,»)/Q) coincides with the image of ¢ which is the
identity element.
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LemMa 5.3. If | is a good prime number for (o,m,n),
detp,,,(1 =@, : Ppp — ) =0

where Ay n and @, , are as in 4.3.

By Lemma 5.3 and 4.2, for a good prime number / for (g,m,n),
Vi : H (FI® Z[(a), T/p"T) — H(F1® Z[(,], T/p"T)
is defined.
Lemma 5.3 and (4.3.1) show that if (m,n,n’) has the property (2.1.1) and if
r>1 is a square free integer whose all prime divisors are good prime numbers

for (o,m,n’), then the conditions (2.1.2) and (2.1.3) are satisfied and hence «, €
HY(Z[{,n, 1/Nr],T/p") is defined.

Proof of Lemma 5.3. Since [ splits completely in Q((,,)/Q by (5.2.2), we
have the first equation in

detp,,,(1 — @) : @pp — Dpyn)
= detg, pno,(1 — ¢, : T/p"T — T /p"T)
= detg, pno,(1 —a: T/p"T — T/p"T)
=deto,(l —0: T — T) mod p".

But
deto,(1—-0:T—>T)=detr,(1-0:V->V)=0

since 1 —o: V — V has a non-trivial kernel.

5.4. Take Op-homomorphisms
u:T—0Of, v:0p—T

such that po (1 — o) =0, u is surjective, and v induces an isomorphism from Of
to Ker(l—o: T —T).

For a good maximal ideal v for (g,m,n) lying over a prime number I/, we
have A,, ,-homomorphisms

w,: H(FI® Z[(,), T/p"T) — Amn
Vo : Amn — H'(F1 ® Z[(,], T/ p"T)

defined as follows. Let u be the maximal ideal of Z[(,,1/N] lying under o.
Since I splits completely in Q({,,)/Q and the residue field F, of v coincides with
F;, we have canonical A, ,-isomorphisms

(x) HYF;® Z[(,), T/p"T) <— Amn ® HI(F,,T/p"T)
= Aun ® HY(F,,T/p"T)
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for any gq. The map u induces H'(F,,T/p"T) — Op/p"Or and the map v
induces Of/p"Op — H(F,,T/p"T). These maps and the composite isomor-
phism in (*) give the A,, ,-homomorphisms x, and v,. As is easily seen, the map
U, 1s surjective and the map v, is injective.

PROPOSITION 5.5. (1) There exists a non-zero integer t having the following
property. For any m,n > 1, and for any good maximal ideal v for (o,m,n) lying
over a prime number I, t kills the kernels and the cokernels of the maps

Vi H'(FI ® Z[,), T/p"T) — H(FI ® Z|L,), T/p"T)
Hy * HI(FI®Z[CM]7 T/PnT) - Am,n
Vy o Am,n — HO(FI ® Z[Cm]v T/pnT)

(2) Assume that the condition (iiy,) in 0.6 is satisfied, and assume that p

is choosen so that yu induces T/(1 —a)T—;a Or. Then for v and I as in (1),
vy, 1y, and v, are bijective.

PROPOSITION 5.6. Let v be a good maximal ideal for (o,m,n) lying over a
prime number I Let t),t € Ay, a€ H\(F1 ® Z[(,], T/p"T), and r a multiple
of | Assume that t, kills the cokernel of ,: H'(F/® Z[(,),T/p"T) —
HYFI® Z[(,],T/p"T), and t, kills the kernel of u,: H'(F/ ® Z[(,), T/p"T) —
Amn. Assume also that if we identify HY(F® Z[(,),T/p"T) with
HY(F)® Z|,), T/p"T(-1)) by using a Z/p"Z-basis of H*(F;,Z/p"Z(1)), then
¥,(a) belongs to 0,(H'(Z[(,,, 1/Nr], T/p"T). Then titau,(a) kills the cokernel of
81 H(Z(, 1/ N1, T/p"T) — HO(F, ® Z[Z,,], T/ p"T(-1)).

(Note that if | is a good prime number for (6,m,n), then F; has a primitive
p"-th root of 1.)

We prove Proposition 5.5 in Lemmas 5.7, 5.8 and section 5.9 below, and
prove Proposition 5.6 in 5.10 below.

LEmMMA 5.7. Lety : T — T be the cofactor homomorphism of | —o: T — T.
Then
Yy=a-vopu

for some element a of Of such that

(57.1) length,,, (Or/(a)) = length,, (Ker(T/(1 — 0)T = OF)).

Proof. Ker(l —g: T — T) is an Op-direct summand of T, for the quotient
T/Ker(l —o: T — T) is embedded in T via 1 — ¢ and hence torsion free. Hence
there exists an Op-basis (¢;);,, of T such that e; = v(1). On the other hand,
there exists an Op-basis (e)); _,, of T such that u(e{) = 1 and such that (¢)), ., .,
is an Op-basis of Ker(u). From the definition of the cofactor homomorphism,
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we have
(5.7.2) Y(e)=0 for2<i<r,
(5.7.3) Y(e;) = ae; where a is the element of Of satisfying

eiA(l—0)ean - A(l—0)e,=a-e A --- Aey.
Let b be the element of O such that
(5.7.4) (1-0)ean---A(l—a)e,=b-e5n - Ae].

Then
length, (O /(b)) = length,, (Ker(T/(1 — 0)T £ OF)).
By taking ej Aof (5.7.4), we have by (5.7.3)
a-eqn---ANe=b-ejA-- Ael.
Hence a = b - (unit of Of).

LeMMAa 5.8. Let yw: T — T be as in 52. Let a be an element of Of
satisfying the equation (5.7.1), and let ¢ be an element of Op which kills
Ker(T/(1 —0)T 4 Of). Then for any n > 1, we have:

(1) The map

Coker(1—a: T/p" — T/p") 5 Or/p"

is surjective, and its kernel is killed by c.
(2) The kernel and the cokernel of

Y :Coker(l—a:T/p" - T/p") — Ker(l —6:T/p" — T/p")

are killed by ac.
(3) The map

Or/p" 5 Ker(1—a:T/p" — T/p")
is injective, and its cokernel is killed by c.

Proof. (1) and (3) are shown easily, and (2) is deduced from Lemma 5.7.

5.9. Now we can prove Proposition 5.5. By Lemma 5.8, the kernel and
the cokernel of y,; are killed by ac, and the kernels of x, and v, and the cokernels
of u, and v, are killed by ¢. Under the assumption of (ii), we can take
a=c=1.

5.10. We prove Proposition 5.6. Let xe H'(F,® Z[(,],T/p"T). Then
thx= y,(y) for some ye H'(F;® Z[{,,], T/p"T). Since

Ho(1y(@)y) = py(@)p,(y) = p,(1,(¥)a), we have
bu,(a)y = tyu,(y)a.
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By applying ; to the last equation, we obtain

tntzuv(a)x=tzuv(y)¢z(a)Eaz(H( l:mv ] T/p”T>>

§6. Preliminary on Galois cohomology I

The aim of §6 is to prove Proposition 6.1 concerning Galois cohomology of
a Galois representation of Gal(Q/Q).

PROPOSITION 6.1. Let (F,T,N) be as in 0.1, and let V=Q® T. Assume
either one of the following (i) (ii) is satzsﬁed

(i) Vis semz-szmple and HO(Q™ V) =

(ii) HO(Q™, V)= V.

Fix a subﬁeld of Q such that Gal(Q/E) is an open subgroup of
Ker(Gal(Q/Q®) — Aut(T)) (the arrow is the action on T) and such that = is
Galois over Q. Let

A = 0r[[Gal(@*/Q)]],

and let a < A be the annihilator of the A-module H°(Q™, T) (so a is A in the case
(1)). Then there exists a finite number of open ideals by,...,b, of A such that the
product ideal ab, - --b, annihilates the kernel of

H'(K,T/p"T) — H'(E,T/p"T)
for any subfield K of Q® and for any n > 1.

Here H'(K,T/ p"T) is regarded as a A-module in the natural way. The
kernel in problem is a A-submodule of H'(K,T/p"T).

We prove Proposition 6.1.

The image of Gal(Q/Q) in Aut(T) is a Lie group over @, ([Bo, Chapter III]).
Let g be the Lie algebra of this Lie group (loc. cit. §3), and let b = [g, g].

For a sufficiently large finite Galois extension L of Q in Q, the Lie algebra of
the image of Gal(Q@/L?) in Aut(T) coincides with . In the case (i), fix any
such L. In the case (ii) (h =0 in this case), take L = Q. We prove the fol-
lowing two lemmas.

LemMMa 6.2. HY(Gal(EL?®/L?),T) is a finite group for any q > 1.

LemMa 6.3. Let A = Op[[Gal(L*®/L)]], and let o’ = A’ be the annihilator of
the A'-module H(L®®,T). Then in the case (i), the ideal a’A of A generated by
the image of a' is open.

We prove Proposition 6.1 assuming Lemmas 6.2 and 6.3.
By Lemma 6.2, for each ¢ > 1, there exists an open ideal cq of A’ which
annihilates HY (Gal(_Lab /L), T). Since A’ — A is a finite morphism, the ideal
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¢/A of A generated by the image of ¢, is an open ideal of A. On the other hand,
since Qal(QabL/ Q%) is a finite group, for each g > 1, there exists an open ideal
¢; of A which annihilates H%(Gal(Q*°L/Q™),T). Let o be as in Lemma
6.3. Note a = a’ in the case (ii). We show that the ideal (a’A)(c|A)*(cjA)Ee
annihilates the kernel of the map H'(K,T/p"T) — H'(EL*®,T/p"T) for any
subfield K of @ and for any n > 1. This implies Proposition 6.1 (by virtue of
Lemma 6.3 in the case (i)). This map factors as

H(K, T/p"T) 25 H\(KL, T/p"T) & H'(EL®, T/p"T).

We show that ¢, kills the kernel of (a), and o (c{)zcé kills the kernel of ().

We consider the kernel of (a). In the case (ii), (a) is the identity map and
there is nothing to prove. So consider the case (i). The kernel of (a) is
contained in the kernel of HY(K,T/p"T)— H'(Q*L,T/p"T) which is iso-
morphic to H'(Gal(Q*®L/K), T/p"T). There is an exact sequence

0 — H'(Gal(Q*/K), H(Q*,T/p"T)) — H'(Gal(Q*’L/K), T/p"T)
— H'(Gal(Q*L/Q@™),T/p"T).
By the exact sequence
HY(Q®,T)— H*(Q®,T/p"T) — H'(Gal(Q**L/Q*), T)
2, H'(Gal(Q®L/Q™), T) — H'(Gal(Q™L/Q™), T/p"T)
— H*(Gal(Q*L/Q@*), T)

and by the assumption H(Q*®, T) =0, ¢; kills H*(Q®, T/p"T) and ¢ ¢, kills

H'(Gal(Q*L/Q%®),T/p"T). Hence ¢i¢, kills H'(Gal(LQ™/K),T/p"T).
Next we consider the kernel of (b). It 1is isomorphic to

H'(Gal(EL*/KL),T/p"T). There is an exact sequence

0 — H'(Gal(L*®/KL), H*(L®™, T/p"T)) — H'(Gal(EL®/KL), T/p"T)
— HY(Gal(EL®® /L), T/p"T).
We have an exact sequence
HO(L™, T)— H°(L*®, T/p"T)
— HY(Gal(EL*™/L*), T) 25 H(Gal(EL®/L™), T)
— HY(Gal(EL® /L), T/p"T) — H*(Gal(EL*®/L®), T)

where H9(Gal(EL**/L*),T) denotes lim, H¥(Gal(EL*/L*),T/p'T). (Since
Gal(EL?/L?) — Aut(T) has finite kernel, Gal(ZEL*"/L?®) is a Lie group over
Q,. Hence H?(Gal(EL*®/L®), T/p'T) are finite groups for all ¢ and i by [La].
The above sequence is exact because the inverse limits for filtered inverse systems
of finite sets preserve exactness.) Hence a’c| kills H(L®, T/p"T) and c|¢} kills
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H'(Gal(EL? /L), T/p"T). Hence a’(c])>¢, kills
H'(Gal(EL*®/KL),T/p"T).

It remains to prove Lemmas 6.2 and 6.3.

64. We prove Lemma 6.2. Let g>1. Since HY(Gal(EL?®/L?),T)
is a finitely generated Op-module, it is sufficient to prove that
H9(Gal(EL*® /L), V) = Q ® HY(Gal(EL*/L?*),T) is zero. Since the Lie
algebra of Gal(EL?/L?) coincides with ), H9(Gal(EL*®/L*), V) is embedded
in Hi(h, V') by [La, Chapter 5, Theorem 2.4.10]. As we will see below, f) is a
semi-simple Lie algebra, and this implies H?(h, V') =0 ([CE]).

The semi-simplicity of §) can be proved as follows. In the case (ii), we have
h =0 and hence is semi-simple. Consider the case (i). V is regarded as a g-
module and is a semi-simple representation of g. (The last fact follows from

{g-submodules of V'}

= {Q,-submodules of V" which are stable under the action of some
open subgroup of Gal(Q/Q)}

((La]) and from the fact that V' is semi-simple as a representation of any open
subgroup of Gal(Q/Q) over @,.) Since g has a semi-simple faithful represen-
tation, b = [g,g] is a semi-simple Lie algebra ([Bo, Chapter I, §6 Proposition 5]).

6.5. We prove Lemma 6.3. Assume we are in the case (i). Let I be the
kernel of A’ — A. It is enough to show that A’/(a’ +1) is a finite group. The
ring A /a’ is finitely generated as an Op-module since it is embedded in
Endo, (H°(L®, T)). Since V is semi-simple, Q ® A’/a is a product of fields.
Since the Q ® A’/a’-module Q® A'/(a' +1) has no non-trivial homomorphism
into the faithful Q ® A’/a’-module V as is seen by

0= H"(Q®, V) =Homy (A/I,V)

= HomQ®;\,/a,(Q®[\//(a/ +1),V),
we have Q® A'/(a’ +1) =0. This proves the finiteness of A’/(a’ + I).

Remark 6.6. 1 learned the method to use the cohomology theory of Lie
algebras as above for the study of Galois cohomology, from Serre [Ses], and also
from Jannsen [Ja] in which (§4, Theorem 3) Serre’s results in [Ses3] are applied to
obtain results on Galois cohomology.

§7. Preliminary on Galois cohomology II

In this §7, we review the duality theory (cf. 7.1) for étale cohomology in
number theory and the localizing exact sequence (cf. 7.2), and relate them in
Proposition 7.7 to Proposition 6.2.

Let (F,T,N,N’) be as in 0.1.
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7.1. We review a duality theory of Tate, Poitou, Artin, Verdier, Mazur
(JAV], [Ma], [Se;, Chapter II, §6]).

Let K be a finite extension of @, M >1 a multiple of N, and let P =
P(K,M) be the set of all places of K which are either archimedean or finite
places dividing M. Then there exists an exact sequence

0 B (oK [%] , T/p") — DHK,, T/p")

veP

— tomo, (17(0x 3] 715", 0x/p")
- H! <0K [%] : T/p”) - @H(K, T/p")
(

veP

(0 [%] TW)/5").0r/p")

veP

—>HomoF(H< [ J T (1)/p> 0p/p"> — 0.
(

Here T* denotes Homg,(T,O0F) which is endowed with the dual action of
Gal(Q/Q), K, denotes the completlon of K at v, H'(K,, ) = H°(K,, ) if vis a
finite place, H°(K,, ) =0 if v is a complex place, and H°(K,, ) is the cokernel
of the norm: HO(I?,,, ) — H%(K,, ) if v is a real place.

— Homy,

7.2. For a finite extension K of @ and for a multiple M of N, the exact
sequence of étale cohomology for Spec(K) — Spec(Ok[l/M]) (the localizing
exact sequence) has the form

! (oK []l—ll] , T/p”) — H'(K,T/p") s D H(F., T(=1)/p")

(), 1
——>H2<OK{H:|, T/pn) —_—

where v ranges over all finite places of K which do not divide M, and F, denotes
the residue field of v for each v. The map 0, is defined by 3.2.

Concerning the relation of the localizing exact sequence with the duality in
7.1, the map 1, coincides with the composite

HO(F,, T(~1)/p") = Homo, (H'(F,, T*(1)/p"), Or/p")
— Homo, (H‘ <0K [%] , T*(l)/p") : OF/p”>

— H? <01< [%J , T/p”)
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where the first arrow is induced by the cup product to H'!(F,, Or/p") = Or/p”,
the second arrow is induced by H'!(Ok[l/M],T/p") — H'(F,,T/p"), and the
third arrow is the map in 7.1.

7.3. Let n>1, M a multiple of N, K a finite extension of Q in Q, L an
extension of K in Q, and let ye H'(L,T*/p") (resp. y€ H°(L,T/p")). We
define homomorphisms

o m(L/K, T,y) : Gal(L?®/L)
~ Homy, (H‘ (OK [%] , T/p") , op/p")

(resp. Bur(L/K,T,y): Gal(L*/L)

- Ker<H2 (01( [%],T(l)/p”) - &P HZ(KU,T/PH)>>

veP(K,M)
as the map induced by the composite map
1
H' (OK [M] , T/p”) — H'(L,T/p")
% H'(L, Op/p") = Homeon (Gal(L™ /L), OF /p").
(resp. as the composite of o, »(L/K,T*(1),y) with the map

1 * n 1 n
Homy, (H‘(OK[H],T (1)/p ),0F> H2<0K[M],T(1)/p ) (cf. 7.1).
By the definitions, the map o, »(L/K,T,y) (resp. B, »(L/K,T,y)) factors
through the canonical surjection

Gal(L*®/L) — My (L) = Hom <H‘ (oL {%} : Q/Z) : Q/Z) = Gal(L/L)

where L is the maximal abelian extension of L which is unramified outside prime
divisors of M.

7.4. We give a preliminary argument. For a finite group G, a ring R, and
an R[G]-module X, there exists a canonical isomorphism
Hompg (X, R) =~ Homgg (X, R[G])
which sends 4 € Homg(X,R) to x — >, ¢ h(a~'x)a.
7.5. Assume that the conditions (i), (ii) in 0.6 are satisfied.

Let ¢ be an element of Gal(Q/Q) such that dimg(Ker(1 —c:V — V)) =
1. Take Op-homomorphisms u: 7T — Of and v: Of — T satisfying the con-
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ditions in 5.4. Fix a Z,-basis # of Z,(1). Let the notations Q,Q',Q,,,,
Q,, ,(mmn=>1) be as in 5.1. Let Ay, = (Or/p")[Gal(Q((n)/Q)] as before.
The following maps will be important in later sections:

(751) o"l,M(Qr/n,rt/Q(Cm)> T, ,u) :
(@) — Homa,..(#' (2|t | 7/8") A
(7.5.2) B st( @y n/ Q). T ™) :

(9, ) = Ker(17( 2|t g] 7/07) ~ @ 1@ T/
(M is a multiple of N, P = P(Q((,,),M)). Here we identify the target group
Homy, (HY(Z[{n, 1/M],T/p"),Amn) of (7.5.1) with the target group
Homo, (H'(Z[(,n,1/M],T/p"),Or/p"™) in 7.3 via the isomorphism in 7.4.

We give statements 7.6 and 7.7 concerning the maps (7.5.1) and (7.5.2). In
Proposition 7.7, let {u) (resp. {v)) be the Or[Gal(Q/Q)]-submodule of T* (resp.
T) generated by u (resp. by the image of v). By the condition (i), there exists a
non-zero integer which kills 7*/{u) and T/{v).

LEMMA 7.6. Let v be a good maximal ideal for (o, m,n) which does not divide
M, and let | be the prime number lying under v. Then:

(1) The map (7.5.1) sends the Frobenius of v in T (L, ,) to the composite
homomorphism

H(2[tn g /0") = ' F1© 2001 710 2 A

(2) The map (7.5.2) sends the Frobenius of v in Ty(Q,, ,) to the image of
1 € Ay n under

vt 1
Ao ™0 HYE® 2, T/ 1) 2 (2|t . 70"
where 0; is the sum of 0, for prime divisors u of | in Q((,).

Lemma 7.6 (1) is easily shown, and Lemma 7.6 (2) follows from the de-
scription of d, in 7.2.

PROPOSITION 7.7. Let the assumptions and the notations be as in 7.5. Let c

be a non-zero integer which kills T*/{uy and T/{v). Fix a finite extension E of
Q such that Z is Galois over Q, and consider the A, ,-homomorphisms

(7.7.1) Amn ® Gal(E®/Z) — Hom,, <H1 (z {cm, %} , T/p"> , A,,,,,,)
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(172)  Ama® Gal(E®/Z)

- Ker(Hz (Z[gm,ﬁ—ll} , T/p”) — @ H* Q) T/p”))
veP
(P = P(Q((m), M)

induced by (71.5.1) and (7.5.2), respectively. Let A = Or[[Gal(Q*/Q)]], and let
a < A be the annihilator of the A-module H°(Q, T) (resp. H(Q®,T*(1)). Then
there exists a finite number of open ideals by,...,b, of A such that the product
ideal caby - - -b, kills the cokernels of (1.7.1) (resp. (7.7.2)) for any m,n > 1 and for
any multiple M of N.

Remark 7.8. In Proposition 7.7, since we assumed that V' is simple (the
condition (i) in 0.6), H°(Q®,T) is either zero or T itself. If H(Q* T) =0,

then a = A.

7.9. We prove Proposition 7.7. We consider the statement for (7.7.1).
We apply Proposition 6.1. Let bj,...,b, be open ideals of A having the
property stated in Proposition 6.1. We prove below that cab;---b, kills the
cokernel of (7.7.1).

For the statement for (7.7.2), if we take by,...,b, for T*(1), the same
argument shows that cab; ---b, kills the cokernel of the A,, ,-homomorphism

Am,n ® Gal(E*®/Z) — Hom,,,, (Hl (z [cm,%} ,T*(1) /,;”),Am,,,)

induced by o, a(Q,, ,/Q(Cm), T*(1),vy7!), and this implies that cab; ---b, kills
the cokernel of (7.7.2).

Now consider the homomorphism (7.7.1). By Proposition 6.1 and the
injectivity of H'(Z[{,,,1/M), T/p") — H'(Q(,,), T/p") and by duality, ab; ---b,
kills the cokernel of

(7.9.1) Apn® T* ® Gal(E**/E) — Hom,,,, (H’ (z [cm,%} , T/p"),A,,,,,,)

For 7€ Gal(Q/Q), let T be the canonical image of 7 in Gal(Q((,)/Q) < Am n.
Then we see easily that for any x€ A, yeT*, zeGal(E*®/E), and 1€
Gal(Q/Q), the image of 7 !x® ty ® rzr! under (7.9.1) coincides with that of
x®y®z. Let xe Ay yeT*, zeGal(E®/E). Then we have cy=3_a,-
tu for some finite family (z) of elements of Gal(Q/Q) and for some a; € Of.
The image of ¢- (x ® y ® z) under (7.9.1) coincides with that of > a,Tx® ¢ ®
77127, ie. with the image of 3, a,7x ® t™!zr under (7.7.1).

§8. A finiteness result

The aim of §8 is to prove the following finiteness result Theorem 8.1 under a
certain additional assumption “w # 0,—2”. A complete proof of Theorem 8.1
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will be given in §13. In fact, in §13, we prove a finiteness result Theorem 13.3
which is a little stronger than Theorem 8.1.

THeoreM 8.1. Let (F,T,N,N’) be as in 0.1, and let (z,,),, be an Euler
system for (F,T,N). Assume that the conditions (i), (ii), (iii), in 0.6 are satisfied,
and that the image of & (cf. 0.7) in H'(Z[1/N), T) is not a torsion element. Then
the kernel of

H? (Z {%] , T) — @H*Q,T)

1IN

is finite.

COROLLARY 8.2.  Under the assumption in Theorem 8.1, if H*(Q;, V*(1)) =0
for any prime divisor | of N, then H*(Z[1/N),T) is a finite group. _
(Here V* = Homp(V,F) endowed with the dual action of Gal(Q/Q).)

Corollary 8.2 follows from Theorem 8.1 and from the local Tate duality
which says that Q ® H?(Q,, T) is the dual F-vector space of H°(Q,, V*(1)).

In this §8, we prove Theorem 8.1 under the assumption that the integer w in
the condition (iii) in 0.6 for V satisfies w # 0, —2.

8.3. Assuming that the condition (ii) in 0.6 is satisfied, we fix o€
Gal(Q/Q®) such that dimg(Ker(s — ;¥ — ¥)) =1 and Op-homomorphisms
u:T — Op and v: O — T satisfying the conditions in 5.4. Fix a basis # of
Z,(1). Let

«: Gal(Q**/Q) — Homy, (H‘ <Z [%] , T) , Op)

1
B : Gal(Q*/Q) — Ker <H2 (z M , T) - P H*(Q, T))
1IN
be the homomorphism induced by the case m =1, M = N of (7.5.1) and (7.5.2),
respectively.

Lemma 8.4.  Assume that the conditions (i) and (i) with w # 0,—2 in 0.6 are
satisfied. Then Coker(o) and Coker(f) are finite groups.

Proof. If H°(Q®,T) =0, this follows from Proposition 7.7.
_Assume H°(Q®™,T) #0. Then Gal(Q/Q%) acts trivially on T (cf. 7.8). Let
e: A — Of be the unique continuous Op-homomorphism which sends all ele-
ments of Gal(Q*/Q) in A to 1 € Op. If the annihilator 7 = A of the A-module
T @® T*(1) satisfies ¢(I) # 0, then Lemma 8.4 follows from Proposition 7.7. If
¢(I) =0, then T = Op (with the trivial action of Gal(Q/Q)) or T = O(1). But
this contradicts the assumption w # 0, —2.
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ProrosiTION 8.5. Let (F,T,N,N’) be as in 0.1, and let (z,,),, be an Euler
system for (F,T,N,N'). Assume that the conditions (ii) and (iii) with w # 0, -2
in 0.6 are satisifed. Let & be the image of ¢ in H'(Z[1/N],T). Then:

(1) a(x)(&) - B(x) e H? <Z H , T) for any x € Gal(Q*/Q)

where o(x)(E) € Op means the image of & under the homomorphism o(x), and
H?*(Z[1/N],T),, denotes the torsion part of H*(Z[1/N], T).

tor

@ 2@ B0 + o)D) e (2| ].T)  for any 5.y e Gai@/@),
tor

8.6. We deduce the case w # 0, -2 of Theorem 8.1 from Proposition 8.5.

Since Coker(«) is finite (cf. Lemma 8.4) and ¢ is not a torsion element, there
exists x € Gal(Q*°/Q) such that a(x)(£) # 0. By Proposition 8.5 (1), this shows
B(x) e H¥(Z[1/N},T),,. Let y be any element of Gal(Q®™®/Q). By Proposition
8.5 (2) and by f(x) € H*(Z[1/N], T),,,, we have a(x)(&) - B(y) €e H*(Z[1/N],T),,,-
Since a(x)(&) # 0, this shows B(y) € H*(Z[1/N],T),,- Thus the image of f is
contained in the finite group H*(Z[1/N],T),,- Since Coker(f) is a finite group
(cf. Lemma 8.4), this shows that Ker(H*(Z[1/N],T) — @,y H*(Q,,T)) is a
finite group.

We deduce Proposition 8.5 from

PrROPOSITION 8.7. Let Q' be as in 5.1, and let
o« : Gal((Q)*®/Q') — Homyo, (Hl (Z [%} , T) , OF)
B : Gal((Q)**/Q) — H? (z H , T)

be the homomorphisms induced by the case m =1, M = N of (7.5.1) and (7.5.2),
respectively. Then for any x € Gal((Q')**/Q’) whose image in Gal(Q/Q') coin-
cides with the image of o, we have

o' (x)(&) - f'(x) e H? <Z [ﬂ , T)wr.

8.8. We prove Proposition 8.5 assuming Proposition 8.7. It is sufficient to
prove Proposition 8.5 (1). Fix an element ¢ of Gal((Q' )% /Q') whose image in
Gal(Q/Q') coincides with that of 0. Let x € Gal(Q*®/Q) and let x’ be the image
of x in Gal((Q')*®/Q’). Then for any n € Z, the image of the product 7(x')" in
Gal(Q/Q') is the image of ¢. Hence

n z ! nn 1
()@ B e e 12 (2| )
tor
by Proposition 8.7. This implies
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o' (1) (&) - B'(7) + n{o' (x)(E) - B(x) + a(x)(E) - B'(x)}
+ n?a(x)(&) - B(x) € H? (Z L—H , T)

tor
By making n vary, we obtain Proposition 8.5 (1).
To prove Proposition 8.7, we prove first

LeEMMA 8.9. Let n’ > n > 1, and assume that the condition (2.1.1) for m= N
is satisfied. Let | be a good prime number for (o,N,n’), and let &), be the
image of &€ HY(Z[1/N),T) in H'(F,T/p"). Then y,(&(I),) belongs to
a(H'(Z[1/N1), T/p")).

Proof. By the remark after Lemma 5.3, x;€ H'(Z[{y,1/N],T/p"T) is
defined. Consider the commutative diagram

1
norm 1 - n
H(2]tng] /) 2 (2] 7r0)
& l a,l
HYFI® Z{Ly), T/p") ——  H(F,,T/p")
11/1[ 'I/IT
H'(F;® Z[Ly), T/p") —  H'(F,,T/p").
By Theorem 4.5, x; is sent by 0; (on the left hand side) to y,(zn({),), where
zn{(l), denotes the image of zy in H'(F,® Z[{y],T/p"). Since &(I), is the
1mage of zy(l), in H'(F;,T/p") under the norm map, the diagram shows that

the image of x; in H'(Z[1/N],T/p") under the norm map is sent by ¢; (on the
right hand side) to y,(&(0),).

8.10. We prove Proposition 8.7.

Take a non-zero integer ¢ having the property described in Proposition 5.5.
We show that for any x € Gal((Q')*/Q') whose image in Gal(Q/Q') coincides
with that of ¢ and for any n > 1, the image of #*- «(x)(¢) - B(x) in H?(Z[1/N],
T/p"T) is zero. This implies ¢2 - a(x)(&) - B(x) =0 in H*(Z[1/N],T).

Since w # 0, H*(Q({y), T® Q/Z) is a finite group. Hence there exists
n' > n satisfying (2.1. 1) for m=N.

The group My (Qy )/ p" " (cf. 7.3) is finite, for it is the Pontragin dual of the
finite group H ‘(OQ/ [1 /N],Z/p"). Hence by Chevotarev’s density theorem,
there is a maximal 1dea1 v of OQ/ ,[1/NN'] whose Frobenius substitutions in the
Galois groups

My (Qy,,)/p" and  Gal(Qu,u (Lw)/Q ),
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coincide with the images of x, respectively, and which is of degree one over
Q. Then, v is a good maximal ideal for (g, N,n’) in the sense of 5.2. Let / be
the prime ideal lying under v. Then by Lemma 7.6 (1), the element «(x)(¢) mod p” €
Op/p" coincides with p,(&(1),) where w,: H'(F;, T/p") — Op/p" is as in 5.4,
and by Lemma 7.6 (2), the element B(x) mod p" € H*(Z[1/N], T/p") belongs to
the image of ¢ : H*(F;,(T/p")(—1)) — H*(Z[1/N],T/p"). Thus it is sufficient
to prove that 2.y, (&(),) kills the image of the last map 7. Since 7 kills the
image of 0, : H'(Z[1/NI|, T/p") — H°(F;,(T/p")(~1)) (cf. 7.2), it is sufficient to
prove that the cokernel of this map 9, is killed by 2 - ,(¢(/),). But this follows
from Proposition 5.6 and Lemma 8.9.

§9. Torsion property of H>
Let (F,T,N) be as in 0.1. For d and A as in 0.4, it is conjectured by many

people (Schneider, Greenberg, Jannsen, Perrin-Riou,...... ) that the A-module
H?=H*(T) = }iEHZ <Z[cd,,n,ﬂ , T)

is a torsion module, i.e., killed by a non-zero-divisor of A (at least in the case T
comes from a motif). (See for example, [Ja, §4]).

The aim of §9 is to prove the following Theorem 9.1 concerning this
conjecture.

THEOREM 9.1. Let (F,T,N,N’) be as in 0.1, let d, A be as in 0.4, and let
(zm),, be an Euler system for (F,T,N,N'). Assume that the conditions (i), (ii),
(iii) in 0.6 are satisfied. Let q be a prime ideal of A of height zero (i.e. a prime
ideal of A such that A, is a field), and assume that the image &, of & (cf. 0.7) in

H; is not zero. Then

H? = (0).

We give some preliminaries for the proof of Theorem 9.1, in 9.2-9.7.

9.2. We discuss the notion “the twist of an Euler system by a character”.

Let F' be a finite extension of F, let y: Gal(Q({y=)/Q) — (Op/)™ be a
continuous homomorphism, and let 7’ be the following Op;-module endowed
with a continuous Op:-linear action of Gal(Q@/Q). As an Op-module, T’ =
Or ®¢, T. An element ¢ of Gal(Q/Q) acts on T’ by 1(0)' ®o.

We obtain an Euler system (z],),, for (F/,T',N,N’), called the twist of
the Euler system (z,), by the character y, in the following way. For an
integer m > 1 such that N|m and (m,N’) =1, we define the element z,, of

HY(Z[(,, 1/N],T") by

1
I / : 1 - 1) n
Zm = (Zm,n)n € llnEH (Z[Cm)N]aT /p )
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where z,, , is the following element of H YZ[(w,1/N),T'/p"). For an integer
n> 0, there is i > 1 such that the homomorphism Gal(Q/Q({p:)) — (Or/p")*
induced by y is trivial. We define z,, to be the image of z,, €

HY(Z[yp:,1/N), T) under

Hl <Z|:Cmp’7%:| ’ T/pn) — Hl <Z|:Cmp'7%:| ’ T,/pn)

2 (2 [ty 710"
N
(The first arrow is induced by the canonical map 7T'/p" — T’'/p" which is a

Gal(Q/Q(¢mpr))-homomorphism.) It is checked easily that (z,,),, is an Euler
system for (F',T',N,N’).

LemMA 9.3. Let the notation be as in 9.2. Let
A’ = Or/[[Gal(Q(Lyp=)/ Q)]
(1) There is an isomorphism of A'-modules
AN ®,HYT)=H{T')
where A — A' is the unique continuous Op-homomorphism which sends o€
Gal(Q(4)/Q) = A 1o 2(a)o.

(2) If the conditions (i), (ii) in 0.6 are satisfied, then (F',T',N,N’) also
satisfies the conditions (i), (ii).

(3) Assume that the condition (iil) in 0.6 is satisfied and that there are
an integer r and a continuous homomorphism A: Gal(Q({4=)/Q) — (OF')™ of finite
order such that the product yA coincides with the r-th power of the cyclotomic cha-
racter. (The cyclotomic character means the homomorphism Gal(Q({4=)/Q) —

(Z,)* defined by the action on p"-th roots of 1 for all n>0.) Then
(F',T',N,N') satisfies the condition (iii).

Proof. (1) and (3) are easy, and (2) follows from

LEMMA 9.4. Let k be a field, G a group, and let U be a finite dimensional k-
vector space endowed with a k-linear action of G. Assume that there exists € G
such that

dimg(Ker(l1 —6: U — U)) = 1.

Then the following (i) (ii) are equivalent.

(i) U is irreducible as a representation of G over k.

(i) Ker(l —g: U — U) generates U as a k[G]-module, and Ker(l —o:
U* — U*) generates U* as a k[G]-module. Here U* denotes Homy (U, k) endowed
with the dual action of G.

Proof. 1t is clear that (i) implies (ii). Assume (ii). Let W be a k[G]-
submodule of U such that W # U. Then by the assumption, W does
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not contain Ker(l —¢:U — U). Hence 1 —o: W — W is bijective. Thus
dimy(Ker(l —o: U/W — U/W)) =1, and hence dimy(Ker(l —o: (U/W)" —
(U/W)™)=1. This means that the k[G]-submodule (U/W)"* of U* contains
Ker(l —o: U* — U*), and hence we have (U/W)" = U*. Hence W =0.

We use the following module theoretic lemma for the proof of Theorem
9.1.

LeMMA 9.5. Let R be a Noetherian integral domain, and let M be a finitely
generated R-module.

(1) Assume that there exists a prime ideal p of R such that k(p) ®g M =
O(k(p) here denotes the residue field of p). Then M is a torsion R-module.

(2) Let x be an element of M, and assume that x is not an R-torsion element
(that is, if ae R and ax =0, then a = 0). Then for almost all prime ideals p of R
of height one, the images of x in k(p) ®g M are non-zero.

(3) If M is a torsion R-module, k(p) ®g M = 0 for almost all prime ideals p
of R of height one.

Proof. (1) If x(p) ®gM =0, we have R, Qg M =0 and hence M is a
torsion R-module.

(2) For some non-zero element f of R, R[1/f]x becomes an R[1/f]-direct
summand of R[l1/f] ®r M and is a free R[1/f]-module of rank one. For any
prime ideal p of R which does not contain f (note there are only finitely many p
which contain f'), the image of x in x(p) ®g M is not zero

(3) There exists a non-zero element f of R which kills M. For any prime
ideal p of R which does not contain f, we have x(p) ®x M = 0.

9.6. Let m > 1 be an integer which divides dp’ for some i. Then there
exist spectral sequences

1
Ey/ = Tor™(Am, H’) = E. = H’(Z[Cm,ﬁ],T> (m=3or p#2)
1
E)) = Q@ Tor™ (A, H’) = E. = Q®H’(Z [cm,ﬁ] : T) (any m)
which comes from the isomorphism

An ®% R lim RT(Z[L4,], T/p"T) = R lim RT (z [cm,%] T/p'T)

n,n

for m>=3 or p#2 ([BO, Appendix B]). (The strange condition “m >3 or
p # 27 appears here to have the finiteness of the cohomological dimension. If
m >3 (then F has no real place) or if p # 2, the p-cohomological dimension of
Spec(Z[L, 1/N1) is 2 ([Mal).
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9.7. Now we prove Theorem 9.1.
Let A be the torsion part of Gal(Q({z)/Q), and let F' be the subfield of A,
generated by the image of Z,[A] in A,. Let ® be the set of all continuous

homomorphisms
x: Gal(Q(Lgp=)/ Q) — (OF)”
satisfying the following conditions (9.7.1) and (9.7.2).

(9.7.1) For g€ A, x(o) coincides with the image of ¢ under the canonical map
Ac Z,Al — F' < A,.

(9.7.2) There are an integer r and a continuous homomorphism 4:
Gal(Q(Lyp=)/Q) — (Op)™ of finite order such that y1 coincides with the r-th
power of the cyclotomic character.

If x € © is given, define T, (z),),,, A’ as in 9.2 with respect to y. We regard
A’ as a ring over A with respect to the unique continuous Op-homomorphism
which sends o € Gal(Q({4=)/Q) to x(a)a. Let g’ be the ideal of A’ generated by
the image of q. Then q'NA =4q. Since A'®) H*(T) =~ H*(T') (cf. Lemma
9.3 (1)), H*(T), = 0 is equivalent to H*(T’),, = 0. Furthermore (F’,T’,N,N’)
satisfies the conditions (i), (ii), (iii) by Lemma 9.3 (2), (3). Thus Theorem
9.1 for (F,T,N,N',(zm),,d,q) is equivalent to Theorem 9.1 for
(F',T',N,N',(z},),n»d,q"). By the condition (9.7.1), q’ is contained in the kernel
of the unique continious Op--homomorphism &: A’ — F’ which sends

Gal(Q((y-)/0) = A’ to 1.

Consider the spectral sequence
9.7.3) Ey’ = Tor(F,H/(T')) = EX=H* (Z [%] V’),
where F’ is regarded as a A’-module with respect to ¢: A"’ — F’, and V' =
O ® T’ (the case m = 1 of the second spectral sequence in 9.6). We obtain from
(9.7.3) 1

F' ®y H*(T') = H? (Z[N], V’).

By Lemma 9.5 (1) applied to R=A'/q’ and p = Ker(A'/q’ — F’), we see the
following fact: If H?(Z[1/N],T') is a finite group, then A'/q' ®, H*(T') is a
torsion A’/q’-module and hence H*(T")_, = 0. Hence for the proof of Theorem
9.1, it is sufficient to prove that there exists y € ® for which H*(Z[1/N],T’) is a
finite group.

For y € O, let p, be the kernel of A/q — F' which is induced by the unique
continuous Or-homomorphism A — F’ which sends o € Gal(Q({4<)/Q) to x(0).
Then p, is a prime ideal of height one. By Lemma 9.5 (2) applied to R = A/q,
M= A/q ®AH1, x = the image of & in M, we see that the image of & in
k(p,) ®x H ! is not zero for almost all y € ®. On the other hand, by Lemma 9.5
(3) applied to R= A/q and to the R-modules

A/q®, lim H*(Q) ® Q(Lyp), T)
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for prime divisors / of N, which are torsion R-modules by Remark 0.5.2, we see
that x(p,) ®x }_iEnHZ(Q, ® Q(4), T) =0 for almost all y € ®. These things

show that there exists y € @ satisfying the following conditions (9.7.4)-(9.7.6).
(9.7.4) The image of ¢ in x(p,) ®x H' is not zero.

(9.7.5) x(p,) ®a }i_n_lnHz(Q,@) Q(l4n), T) =0 for all prime divisors / of N.
(9.7.6) V' (defined by y) is not of weight # 0, —2.

We prove that H2(Z[1/N], T') is a finite group for 7"’ defined by y, by using
the part of Theorem 8.1 already proved in §8. Since we have a commutative
diagram

0®A/g — Q®AN/q,

J l

k(p,) —— F
in which the horizontal rows are isomorphisms, (9.7.4) (resp. (9.7.5)) is rewritten
as the following (9.7.7) (resp. (9.7.8)).
(9.7.7) Define &' e H'(T') for (F',T',N,N’,(z.),,d) just as ¢& for
(F,T,N,N’,(zm),,d). Then the image of ¢ in F' ®, H'(T') is not zero.

(9.7.8) Q® H*(Q,,T') =0 (equivalently, H°(Q,,(T")"(1)) =0) for all prime
divisors / of N.

(9.7.9) By (9.7.3), we have an injection

F'@uyH(T') - Q® H! (Z[ﬂ , T’).

Hence (9.7.7) is rewritten as
(9.7.10) The image of ¢’ in H!(Z[1/N],T’) is not a torsion element.

By (9.7.6), (9.7.9) and (9.7.10), the case w # 0, —2 of Theorem 8.1 proved in
§8 shows that H*(Z[1/N],T’) is a finite group.

§10. Ring theoretic preliminaries

10.1. In this §10, we prove some ring theoretic propositions which are
used in later sections. In Propositions 10.2 and 10.3, let R be a Noetherian
commutative ring, and let p be a prime ideal of R such that the local ring R, is a
discrete valuation ring. Fix an element 7= of R whose image in R, is a prime
element, and let ¥ be the set of all ideals a of R such that the image of # in R/a
is a non-zero-divisor.
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ProrosITION 10.2. Let M be a finitely generated R-module. Then there
exists an element t of R\p having the following property: For any a € ¥ and any

q > 1, t annihilates Tor,f(R/a,M).

Proof. We have M, ~ N, for some R-module N of the form

N=R® @ (é R/(n"<">)>.
=1

There are R-homomorphisms
f:M—N, g:N—-M

and an element ¢ of R\p such that go f: M — M coincides with the multi-
plication by ¢. This ¢ has the desired property. In fact, for any a € ® and any
q > 1, the composite

R S R g R
Tor, (R/a, M) = Tor, (R/a,N) — Tor, (R/a, M)
coincides with the multiplication by . But Torf(R/ a,N)=0.

PrOPOSITION 10.3. Let M be a finitely generated R-module, let s1,...,s; be
elements of M, let I,... I be ideals of R, and assume that for 1 <i <k, the
annihilator of

1—1
s, mod Z R, s,

J=1

in R, and the annihilator of the R,-module (Zf:l R, s,)/(Z;_:ll R, -s;) both
coincide with (I;),. Then there exists t € R\p having the following property: If
aeVW, 1<i<k, c,eR (1<j<i),byetJ(R)+I, (1<j<i,1<qg<k,J(R)
denotes the Jacobson radical of R, that is, J(R) is the intersection of all maximal
ideal of R), and if

1 k
Z c, <sj + Z qusq> €aM
J=1 g=1
then
tc,ea+l; for 1 <j<i.
Proof. Let N = Zf=1 R-s,.

First take #; € R\p which kills TorX(R/a,M/N) for any ae¥ (cf.
10.1). Since there exists an exact sequence

Tor®(R/a,M/N) — N/aN — M/aM,
t; kills the kernel of N/a — M /aM for any ae V.
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Next we show that there exist 1, € R\p and R-homomorphisms
hji: N — R/I;
defined for j,i such that 1 < j <i <k, satisfying the following condition:
hji(s,) = t, mod I;
hji(sq) =0 for any g such that 1 <¢g <i and g # j.

Indeed, for 1<i<k, >' | Ry-s is an Ry-direct summand of N, and
(=1 Ry-5)/I),(3 - Ry~5;) is a free Ry/(I),-module with basis
(sg mod(Z;),(3°)—; Ry - 8j))1 <4<, Hence there exist R,-homomorphisms

h;-i :Ny = Ry/(li), (1<j<i)
satisfying
h;i(sj) =1,
h}i(sq) =0 for any ¢ such that 1 < ¢ <i and q # ;.

This proves the existence of ;.
Now let ¢; and £, be as above. We show that ¢t = t;#, has the property
stated in Proposition 10.3. Let 1 <i <k and assume

! k
Zc] (sj-l-ijqsq) €aM,
J=1 gq=1
geR (1<j<i), byet-JR)+L (1<j<i,1<q<k).

Then we have

1 k
Ztl e (s] + ijqsq> €aN.
J=1 q=1
By applying A, (1 <m <i), we obtain

1
t.<cm+ cjam])ea—l-li (am; € J(R))
J=1

for 1 <m<i. Since the matrix 1,+(amj)lgmsylﬁj£, (1, denotes the unit
matrix of degree i) is invertible, we have t-c,ea+1; for 1 <m <.

10.4. In later sections, we will apply the above propositions to the following
situation: Let (F,T,N,N’) be asin 0.1, and let d, A be asin 0.4. We will take
the ring A as R in the above propositions. In the rest of §10, we prove
preliminary results Propositions 10.5-10.7 concerning this situation.
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ProrosiTiON 10.5. Let the situation be as in 10.4.

(1) A[l/p] is a finite product of principal ideal domains.

(2) The following three conditions (i)—(iii) are equivalent.

(i) A is a regular ring.

(i) Let A be the torsion part of Gal(Q({s~)/Q). Then the order of A is
prime to p.

(iii) There exists a prime ideal p of A such that p € p and such that A, is a
discrete valuation ring.

(3) The equivalent conditions in (2) are satisfied if p#2 and d = 1.

(4) The equivalent conditions in (2) are not satisfied if p = 2.

Proof. (1) Since Gal(Q({p=)/Q) =A X Z),
A= Of[[A x Z,)) = Of[[X )] /A}

From this we have that A[l/p] is isomorphic to a finite product of rings of the
form Op [[X]][1/p] for finite extensions F’ of F. These rings Op/[[X]][1/p] are
principal ideal domains.

(2) It is easy to see that (ii) implies (i) and that (i) implies (iii). We show
that (iii) implies (ii). Identify A with Of[[X]][A]. Let p be a prime ideal as
in (iil). Then p’= Of[[X]]Np coincides with the prime ideal of Of[[X]]
generated by the maximal ideal of Or. Write A=A x A, where the order
of Ay is a power of p and the order of A, is prime to p. Since
Or[[X]][A1] — (Or[[X]}[A1])[A2] = A is étale, the regular ring A, is étale over the
local ring Of[[X]],/[A1]. Hence Of[[X]],,[A1] is regular, and this implies A; =

1}.

(3) If p#2 and d =1, A is isomorphic to (Z/pZ)™ whose order is prime
to p.
(4) The complex conjugation in Gal(Q({4~)/Q) is of order 2.

COROLLARY 10.6. Let the situation be as in 10.4, and let p be a prime ideal
of A such that A, is a discrete valuation ring. Then, if p does not contain p

(resp. if p€p), pA[l/p] (resp. p) is a principal ideal.

Proof. The case p does not contain p follows from Proposition 10.5 (1).
In the case pep, A is a regular semi-local ring by Proposition 10.5 (2), and
hence any prime ideal of A of height one is principal.

ProPOSITION 10.7. Let the situation be as in 10.4, and let p be a prime ideal
of A such that A, is a discrete valuation ring. Let X4 be the set of all positive
integers which are divisors of dp' for some i > 0. Assume that p does not contain
Ker(A — Ap) for any me Z,. (A = Or[Gal(Q((,,)/ Q)] as before.) Then there
exists an element t of A\p which kills the kernel and the cokernel of
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An@\H' — H' (z[gm,%] , T).
for any meX,.

Proof. We may assume m > 3. (The norm argument reduces the cases
m=1 or 2 to the case m > 3).

If p does not contain p, take an element © of A which generates the ideal
All/plp of A[l/p]. If pep, let = be a generator of the ideal p. (Such 7 exists
by Proposition 10.5.) We apply Proposition 10.2 to the case R=A, M = H?,
and to p and = here. Then the ideal a = Ker(A — A,,) belongs to the set ¥ in

10.1. Take ¢ of Proposition 10.2 for the A-module H?. By 9.6, we have an
exact sequence

Tor (A, H?) — Ay @p H'
— H! (z [cm,]—:[-] , T) — Tor (A, H?) — 0.

Since ¢ kills Tor;\(Am,H 2) for ¢ > 2, t has the property described in Proposition
10.7.

§11. Proof of Theorem 0.8, (I)

In this §11, we deduce Theorem 0.8 from Proposition 11.6, and reduce the

proof of Proposition 11.6 to Proposition 11.14 which will be proved in §12.
In §11 and §12, let the assumptions and the notations be as in Theorem 0.8.
Fix a prime ideal p of A such that A, is a discrete valuation ring.

11.1. By Theorem 9.1 applied to the unique prime ideal q of A of height

zero such that p o q, we see that H’f is of finite length as a A,-module.

11.2. The inequality
length, (H ) < lengthy (H}/AyE,)
in Theorem 0.8 under the condition (iv,) is deduced from the inequality
lengthy, (H3 ,) < lengthy (A,/J(&),)
in Theorem 0.8, as follows. Under the condition (ivy),
rankAp(H:,) = rankAp(Hg) +n(V,p)=0+1=1,

(cf. 0.5) and hence
H,~A,®N

as a Ay-module with N a Ay-module of finite length. Let pry : H ;1, — A, be the
first projection. Then J(&), = Aypri(&y,), and hence
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length, (Ay/J(E),) = lengthy (Ayp/Appri(Ey))
< length, (H;/Apfp)'

11.3. For the proof of Theorem 0.8, we may replace 7 by the Tate twist
T(r) (reZ). (Twist the Euler system by a power of the cyclotomic character
(cf. 9.2).) Hence we may assume that the following conditions (11.3.1)—(11.3.4)
are satisfied. Let X; be the set of all positive integers which divide dp’ for some
i>0.

(11.3.1) The integer w in the condition (iii) in 0.6 is not 0, —2.
(11.3.2) For any me Xy, H*(Z[{,,1/N],T) is a finite group.
(11.3.3) For any m € %4, p does not contain Ker(A — A,,).

(11.3.4) The following does not hold: The action of Gal(Q/Q) on T factors
through Gal(Q({4~)/Q), and the induced action of A on T factors through
A/p.

In the rest of §11, we assume that the conditions (11.3.1)—(11.3.4) are satisfied.

11.4. Take an element = of A as follows. If p does not contain p, let 7 be
an element of A which is a generator of the ideal pA[l/p] of A[l/p]. If pep,
let = be a generator of p. (Such n exists by Corollary 10.6.)

11.5. For a commutative ring R, an R-module M, and an element x of M,
define an ideal Jr(x, M) of R by

Jr(x, M) = {h(x);h is an R-homomorphism M — R}.

If R is injective as an R-module, and N is an R-module containing M, we
have Jg(x, M) = Jr(x,N). In this case we sometimes denote Jg(x, M) simply
by Jr(x). The ring A, , = Or[Gal(Q({,,)/0Q)/p"] is injective as a A, ,-module.

ProposITION 11.6. For meX; and n>1, let &, , be the image of & in
HYZ[(,,,1/N],T/p"T). Let ezlengthAp((Hg)p). Then there exists an ele-
ment t of A\p such that for any meX; and n > 1, we have the following inclu-
sion between ideals of Ay

(11.6.1) t-JIpp o (Emn) © A p.

We deduce Theorem 0.8 from this Proposition 11.6.
We prove first some lemmas.

LemMa 11.7. There exists t € A\p such that for any m e ¥y, the image of
t-JA(E HY) in Ay, is contained in Iy, (Epy H(Z[Cn, 1/N],T)). Here &, denotes
the image of ¢ in HY(Z[(,1/N], T).
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Proof. By Proposition 10.7, there exists s € A\p which kills the kernel and
the cokernel of

1 L a 1
H®AAm H <Z|:£maleaT>

for any meZX;. Let h be a A-homomorphism H' — A. Then there exists
a Amp-homomorphism H'(Z[{,,1/N],T) — A,, which induces s’ on H'®,
An. This shows that the image of s2Jo(&,H') in A, is contained in
In, Emy HY(Z[Cn, 1/N],T)). So we can take t = s°.

LemmMa 11.8. Let t be as in Lemma 11.7. Then for any meX,
and any n>1, the image of t-JA(EH 1) in Amn is contained in
JAmn(ém,mHl(Z[Cm’ I/N]’ T/pn))-

Proof. The image of Ja, (&, H (Z[(,1/N],T)) in Ay, is contained in
Ia, (& mod p", HY(Z[(,,,1/N],T)/p")). By the exactness of

0~ 1 (2|t | T) " = 1 (2]tn] 777)

and by the injectivity of A,,, as a A, ,-module, we have

e (oot .5 2o 1] 7) )
= JAm,n (ém,mHl (Z [Cma?{]':l ) T/pn)>

Hence Lemma 11.8 follows from Lemma 11.7.

11.9. Now we deduce Theorem 0.8 from Proposition 11.6. By Proposition
11.6 and Lemma 11.8, there exists ¢t € A\p having the following property: For
any meX; and any n > 1, the image of t-JA(é,Hl) in A, is contained in
7¢Am,n. By taking (hﬂ for various m and n, we have that ¢ J (&, H') = t- J(¢)
is contained in 7°A. This proves e < length, (A,/J({),), and hence proves
Theorem 0.8.

11.10. In the rest of §11, we reduce Proposition 11.6 to Proposition 11.14
which will be proved in §12.

In 11.10-11.13, we fix notations which are necessary to state Proposition 11.14.

First, take an element o of Gal(Q/Q%) such that dimp(Ker(l—o:
V — V))=1. In the case p e p, we take ¢ such that Coker(l —¢: T — T) is
torsion free. We fix such o.

Fix homomorphisms x: 7T — O and v:Op — T having the properties
stated in 5.4. Fix a Z,-basis n of Z,(1).

Let the notations Q,Q',Q,, ,,Q, , be as in 5.1.

11.11.  We fix elements 7,,...,7 of Gal((Q')**/Q’') and an open subgroup
U of Gal(Q*®/Q) as follows. Consider the homomorphism
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B : Gal((Q)*/Q")) — H?

obtained from £,(Q'/Q(¢,), T,vy™') (meZ,nys >1). By 7.7, (Hg)p coincides
with the Ayp-submodule of H 2 generated by the image of Gal(Q*/Q) under S.
Hence (Ho) coincides with the Ap-submodule of H 2 generated by B(z) when t
ranges over all elements of Gal((Q')ab /Q') whose i 1mages in Gal(Q'/Q) coincide
with the image of . By this fact, we can find inductively, elements 7;,72,... of
Gal((Q')*/Q’) satisfying the following conditions (11.11.1), (11.11.2).

(11.11.1) For any i, the image of 7, in Gal(Q/Q') coincides with that of o.
(11.11.2) For i > 1, the annihilator of

1—1
B(z;) mod ZAP B()
J=1

in A, coincides with the anmhllator of the A,-module H0 . Z Ay - B(1)).

Then for some k> 1, YK, A, -B(z,) = H0 We fix such k.

For 1<i<k, let e() be the length of the Ap-module (37 Ay - B(1)))/
(Z A, - B(7))).  (So the sum of e(i) for 1 <i < k coincides with the length of
the A -module H0

If we denote A by R, the image of H® in H} by M, the image of B(z,) in M
by s;, and 7°)R by I, then the assumptions of Proposition 10.3 are satisfied.
Let fy be the element t € A\p of Proposition 10. 3 The Jacobson radical J(A) of
A 1s an open ideal of A, and hence # - (3.X,J(A)s;) is an open subset of
Z, 1A -5, Hence there exists ,an open subgroup U of Gal(Q® /Q) whose i image
under f is contained in - (3%, J(A)s,), such that the extension Z of Q in Q%
corresponding to U is Galois over Q We fix 7, and U.

11.12. For m,n >1 and for an integer i such that 0 <i <k, let T, ,, be
the set of maps w from {1,...,i} to the set of all good maximal ideals for
(o,m,n) (cf. 5.2) satisfying the following conditions (11.12.1) and (11.12.2).

(11.12.1) For each j=1,...,i, there exists an element u; of U such that the
image of w7, in [Ty(Q,,)/p" (cf. 7.3) coincides with the Frobenius of w(j).

(11.12.2) For j=1,...,i, let &(j) be the prime number lying under w(j). Then
the map @ from the set {1,...,i} to the set of prime numbers is an injective
map.

For we Yy, ., let r(w) be the product H1<,<,CU(J)
(We interpret Y, , 0 to consist of one element w which satisfies r(w) = 1.)

11.13. For me X; and r,n > 1 such that there exists »’ > n for which the
4-ple (mN,n,n’,r) has the properties (2.1.1)—(2.1.3) (m in 2.1 is replaced here by
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mN) let

1
Kr,mn € Hl (Z [Cm, N] ) T/Pn)

be the image of x, € H'(Z[{,uy,1/N],T/p") under the norm map.
For example, x| pmn = &Ep p-

PROPOSITION 11.14.  There exists t € A\p having the following property: Let
meXZg,n>1. Then for any sufficiently large n', and any 1 <i<k and any
o € Yy n -1, We have the inclusion

t In, Kr@ymn) © 31D Tn, (K mn)s
wl

where ' ranges over the subset of Yy n,, consisting of elements whose restrictions
to {1,...,i—1} coincide with o.

Now we deduce Corollary 11.6 from this Proposition 11.14.
By downward induction on i, Proposition 11.14 implies the following
Proposition 11.15. (Note the case i = k of Proposition 11.15 is clear.)

ProposITION 11.15. There exists an element t of A\p having the following
property: Let meXy,n > 1. Then for any sufficiently large n', for any 0 <i <k
and for any @ € Yy n.,, we have the following inclusion between ideals of Am n

(11.15.1) t Inp (K),mn) © ROEDE BN

Consider the case i = 0 of Proposition 11.15. For me X; and n > 1, since
H(Qun), T ® (Q/Z)) is finite by the assumption w # 0 (cf. 11.3.1), there exists
n' > n such that (mN,n,n’) satisfies (2.1.1). Since the unique element w of
Yo nio satisfies Ky) mn = Smn, the case i=0 of Proposition 11.15 implies
Corollary 11.6.

§12. The proof of Theorem 0.8, (II)

The aim of §12 is to complete the proof of Theorem 0.8.

In §12, we have reduced Theorem 0.8 to Proposition 11.14. In this §12, we
prove Proposition 11.14. Let the notation and the assumption be as in
Proposition 11.14 (in particular, we assume (11.3.1)—(11.3.4)).

Proposition 11.14 is clearly reduced to the following Proposition 12.1 and
Proposition 12.2.

PROPOSITION 12.1. There exists an element t of A\p having the following
property: Let me Zy,n> 1. Then for any sufficiently large n', for any 1 <i <k
and for any w € Loy n -1,

1+ JApn (Kr(w),mn) C ZAm,n Moy (i) (Kr(w),m,n(a_)l(i)))
w/
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where ' ranges over elements of Y, ., whose restrictions to {1,...,i—1}
coincide with @ and which satzsfy @'(i) = 1 mod r(®). (Ky(w),mn(@'(i)) denotes
the image of Kyw)mn in H'(Fg ® Z[(], T/p").)

PROPOSITION 12.2. There exists t € A\p having the following property: Let
meXy,n=>1. Then for any sufficiently large n', for any 1 <i <k and for any
@€ YN, n -1, @ € Loy n,, such that w is the restriction of @' to {1,...,i—1}
and such that @ "i)=1 mod r(w), we have

Lty (Kr(w),m,n(@l(i))) en. JAm,,.(Kr(w’),m,n)'

Proposition 12.1 follows from

LEMMA 12.3. There exists an element t of A\p having the following property:
Let meXyn'>n>1, 1<i<k, weYuyn.,-1. Let h: HY(Z[(,,1/Nr(o))],

T/p") — Amn be a Ay n-homomorphism. Then t-h is a Ay, ,-linear combina-
tion of Ay n-homomorphisms of the form

iz [cm, o } /6T H'(Fary ® 2. T/"T) % A,

where ' ranges over elements of Yy .., whose restrictions to {l,...,i—1}
coincide with w and which satisfy, @' (i) = 1 mod r(w).

Proof of Lemma 12.3. We will deduce from Proposition 7.7 that there exists
t € A\p having the following property (12.3.1).
(12.3.1) For any m,n > 1 and any multiple M of N, the cokernel of

Amn® U — Homy,,, (Hl (Z [cm,%] , T/p”> , Am,n)
is killed by .

This ¢ has the property stated in 12.4. Indeed, 7-h is a A, ,-linear
combination of a,(#) with ue U, where o, = o, N,(w)(Q' /OCn), T,u) (cf. 7.3).
Since o, (1) = o, (ut,) — 0y(7,), t-h is a A, p-linear combination of o,(ut,) with
ue U. Take a maximal ideal v of Oq' [1 /mN'r(w)] satisfying the following
(12.3.2) and (12.3.3).

(12.3.2) The Frobenius substitutions of v in the Galois groups

HNr(w)(Qr/nN,n’)/pn and  Gal(Quy,» ( L) /QmN n)
coincide with the images of ur,, respectively.
(12.3.3) v is of degree one over Q.

Such v exists by Chebotarev’s density theorem, since these Galois groups are
finite groups. This v is a good maximal ideal for (o,m,n’).
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Define o’ € Ty, by @'(j) = w(j) for 1 < j <i and by w’(i) =v. Then
@'(i) = 1 mod r(w) because the Frobenius of @'(i) in Gal(Q({x«))/Q@) coincides
with the image of ur, which is the identity element. By Lemma 7.6 (1), a,(ut,)
coincides with the composite map

H'(Z[(m,ﬁ],T/p"T) — H'(Fg4) ® Z[6), T/P"T) —

It remains to prove the existence of ¢ satisfying (12.3.1). Consider the part
of Proposition 7.7 concerning the map (7.7.1). Let a,b;,...,b, be as there.
Then the image of a under A — A is not contained in p by (11.3. 4) and the
images of b; (1 <i <r) under A — A is not contained in p since the images are
open in A. If pep, take ¢ =1 in Proposition 7.7 (we can take ¢ =1 since
T =<v)and T* = {u) by (isr) and (iis) of 0.6). Then by what we have seen,
there exists an element of cab, - - - b, whose image ¢ under A — A is not contained
in p. By Proposition 7.7, this ¢ has the property (12.3.1).

Heop! (1)
Am.n.

12.4. For the proof of Proposition 12.2, it is sufficient to prove that there
exists € A\p having the following property: For m,n,n’,i,w,w’ as in Pro-
position 12.2, there exists a A, ,-homomorphism

1
1 n
o (2]t g 717 s
such that the image of f(w),m,a(@'(i)) under
Weiy Hl(FcT)’(i) ®Z[Ly), T/p") = Ampn
is contained in 7V g(K, () mn) - Amn-

12.5. As a preliminary for the definition of g in 12.4, we define first A, 4~
homomorphisms 4, : H'(Z[{,,, 1/Nr(w')], T/p?®) — Am,. for integers a such
that 1 <a <n'’. By 5.5, there exists an element f; € A\p having the following
property: For any m,a > 1, and for any good maximal ideal v for (o,m,a) lying

over a prime number /, #; kills the kernel and the cokernel of the homo-
morphisms

Vi H' (Fi® Z[L), T/p) — H'(Fr ® Z[Lw], T/ P*)
ﬂv : HI(FI ® Z[Cm]’ T/pa) - Am,a'
Fix such ¢, and define a A, ,-homomorphism

ha:H( [m, (1 )] /p>—>A,,,,a (1<a<n

as follows. Let v=c'(i), [=ad'(i). Let xeHY(Z[(, 1/Nr(w)],T/p%).
Then there exists y e H'(F; ® Z[(,],T/p*) such that
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1 - 01(x) = ¥y (»)
in H(F; ® Z[L,), T/p*(~1)) = H°(F1® Z[L,), T/ p°)

where (x) is obtained by the basis # of Z,(1). We regard () as identification.
Then 11y depends only on x (is independent of the choice of y). Define

ha(x) = u,(t19) € Am,a-

LEMMA 12.6. The image of tih, (which is an ideal of Am,,) kills the cokernel
of

1
. 1 - al _, 0 ay.
o0 1 (2]t | T/t ) = HOE 1@ 21001 T/

Proof. Let xe H'(Z[({,,1/Nr(w")],T/p%), and let y be as in 12.5. Since
v, (y) € 0(H (Z[{n,1/Nr(w")], T/p®), we have by Proposition 5.6 that 1h,(x)
= t3u,(y) kills the cokernel of 0;.

LemMa 12.7. There exists t€ A\p having the following property: Let
m,n,n'i,w,w’ be as in Proposition 12.2, let 1 <a <n', and assume p° kills
H?*(Z|{n,1/N],T). Let b be an element of A which kills the cokernel of

1

(1270) 0y H'(2[tm ] T/0°) = HOFs10 © ZEal (T/p)-1).

Then
tb mod a,, € n¢VA,,
where a,, = Ker(A — A,, = Or[Gal(Q({,,)/0)]).

Proof of Lemma 12.7. By Proposition 5.5, there exists ¢; € A\p which kills
the cokernel of v, : Ay, — HY(F, ® Z[(,], T/p*®) for any m,a > 1 and for any
good maximal ideal v for (o,m,a) lying over a prime number /. On the other
hand, let 7o € A\p be as in 11.11. We show that # = #p¢; (resp. ¢ = 2£yt;) has the
property stated in Lemma 12.7 if m >3 or p #2 (resp. if m <2 and p =2). (If
p =2, then 2 is not contained in p by Proposition 10.5 (4).)

Let be A and assume b kills the cokernel of (12.7.1). By the localizing
exact sequence

H' (z [C'"’Nr"(lw_/)} , T/p“> - j@zlalHO(F@f(,) ® Z[(w], T/p*(-1))

- H2<Z[cm,ﬂ,fr/p”),

we have
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bt (13 oy ® 2 T/ (1) = B2 (2 [t | 7107) )
- ilm(w HFa) @ 2l T/p)-1) — 12 (2]t | 757 ).
Hence by 7.6 (2), we have

1—1
(12.7.2) 14 - o (wiz)) = chan/(ujrj) for some ¢, € A in H? (Z [Cm,%] , T/p“)
J=1

with u; e U (

1 <j<i). Assume m>3 or p=2. Then by the fact p? Kills
H*(Z[(,, 1/N],T)

and by the first spectral sequence in 9.6, we have
= 1 = 1
2 2 = g0 2 = g2 a
H"/a,H" — H (Z[Cm,N],T) — H (Z[Cm,N],T/p )

Let M be the image of H? in Hﬁ, and let s; (1 < j<k) be the image of 7, in
M. Let ¢,=—t;b. Then from (12.7.2), we obtain

! k
ch(sj +2z)ea,M with z,e (Z J(A)sq) .

J=1 g=1

By Proposition 10.3 (note a, € ¥ by (11.3.3)), we have fyc; € a, + 7¢DA.  Since
toc, = —tot1 b, this implies tot;h mod a,, € 7°A,,. In the case m <2 and p = 2,
by the reduction to the case m > 3 by norm argument, we have 2¢y,b mod a,, €
A,

12.8. Now we prove the existence of the homomorphism g having the
property stated in 12.4 (this will prove Proposition 12.2 and hence 11.14 and
Theorem 0.8).

Assume n’ is sufficiently large. Then there exists an integer a such that n <
a<n', p*" kills H*(Z[{,n,1/N],T) (note H*(Z[(,,1/N]) is finite by 11.3.2),
p*"en‘®A,, and (mN,a,n’) has the properties (2.1.1)~(2.1.3) ((m,n,n’) in 2.1
is replaced here by (mN,a,n’); note H*(Q((mun), T ® (Q/Z)) is finite because
w# 0 by (11.3.1)).

Let #; be as in 12.5, and let #, be ¢ of Lemma 12.7. By Lemmas 12.6 and
12.7, the image of ¢ th, is contained in ne(i)Am,a. Define a homomorphism

/. 1 1 al) _,
ot (2l ] 700)
as follows. For xe HY(Z[{,,1/(Nr(w'))], T/p*), write

nty-h(x) =n¢® .y with yeApq
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and let
g'(x) = the image of y in A, n.
The image of y in A, , depends only on x because
Ker(n°® : Ay — Ama) < Ker(p®™ : Ama = Ama) = P"Ama.
This map g’ factors as

o (et 1) 1 (it )

for some Ay, ,-homomorphism g. To see this, since A, , is injective as a A, -
module and the sequence

(et ) £ e )
= 1 2]t g T17")

is exact, it is sufficient to show that g’ kills the image of the above map
“p"”. But this fact follows from the commutative diagram

(2] 717 5
pnl pnl
i (eegigfr) = o

Now we show that g has the property described in 12.4 for ¢ = £31,. From
Theorem 4.5, we obtain

01(Kr(wy,ma) = Wi1(Knw),ma(l)) (I =a'(D)).
This shows
ha(Kr(w’),m,a) = tlzluu(Kr(w),m,a(l))-
Hence
”e(i)g(Kr(w’),m,n) = t?tzﬂv("r(w),m,n(l))'
This proves Proposition 12.2.

§13. Selmer groups and finiteness theorems

In this section, we prove a finiteness theorem for the Selmer group of 7*(1)
(Theorem 13.2), a finiteness theorem for H? of T (Theorem 13.3) which is an
improvement of Theorem 8.1.
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13.1. Let T be a free Z,-module of finite rank on which Gal(Q/Q) acts
continuously. Let V =0, ®z T. The Selmer group Sel(T) of T is defined
as a subgroup of H'(Q, V/ T ) in the following way ([BK]). For each prime
number /, a Q,-subspace Hf(Q,, V) of HY(Q,,V) is defined in [BK, 3.7] as
follows. If I # p,

H{(Q), V) =Ker(H(Q, V) — H'(Qpur, V)

where @, is the maximal unramified extension of @;,. For /= p,

H}(Q,, V) = Ker(H'(Q,, V) = H'(Q,, Berys ®¢, V))
where By is the ring defined by Fontaine in [Fo]. Sel(T') is defined by

Sel(T) = Ker(H'(Q,V/T) — [[ H'(@,, V/T)/Im(H}(Q,, V)))
!

where [ ranges over all prime numbers.
For example, if T is the p-adic Tate module of an abelian variety 4 over Q,
Sel(T) coincides with the p-primary part of the classical Selmer group of A.
If N > 1, p|N, and the action of Gal(Q/Q) on T is unramified outside prime
divisors of N, we have

IIN

Sel(T) = Ker(Hl (z H V/T) - @H(Q,V/T)/Im(H}(Q, V))).

In this case,
Sel(T) = (Q,/Z,)" @ (finite group)

for some r > 0, because H'(Z[1/N],V/T) = (Q,/Z, ) @ (finite group) for some
r'>0.

THEOREM 13.2. Let (F,T,N,N’) be as in 0.1, let (z,,),, be an Euler system
for (F,T,N,N'), and let V =F @, T. Assume that the conditions (i), (ii), (iii)
in 0.6 are satisfied. Furthermore, assume that V is a de Rham representation as a
representation of Gal(Qp/Qp) over Q, ([Fol), that H'(Q, ,V)/Hf (Qp, V) is one
dimensional over F, and that the image of & (cf. 0.7) in H'(Q,, V) /Hf(Qp, V) is
not zero. Then Sel(T*(1)) is a finite group.

We will deduce Theorem 13.2 from the following finiteness Theorem 13.3.

THEOREM 13.3. Let (F,T,N,N') be as in 0.1, let (2,,),, be an Euler system
for (F,T,N,N'), and let V = F ®op, T. Assume that the conditions (i), (i), (i)
in 0.6 are satisfied, and that the image of & (cf. 0.7) in H'(Z[1/N], V) is not
zero. Then the kernel of

o (efr) g
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is a finite group, where j is the inclusion morphism from Spec(Z[1/N]) to
Spec(Z[1/p]).

13.4. Theorem 8.1 is a consequence of Theorem 13.3. In fact, since the
sequence

(ef}sa) - (afr) - grian

is exact, Ker(H?(Z[l/N],T) — @llN H?*(Q,,T)) is isomorphic to a quotient of
Ker(H*(Z[1/p),j.T) — H*(Q,,T)), and hence the finiteness of the former
follows from the finiteness of the latter.

13.5. The rest of §13 is devoted to the proofs of Theorem 13.2 and
Theorem 13.3. Let the notation and the assumption be as in Theorem 13.3.
Define A (cf. 0.4) by taking d =1. Let

. . 1l .
HG.T) = lim 126, ] T,
For a prime number /, let
H{ = lim H*(Q,; ® Q({»), T).
n
Let W = HomoF(mnHO(Q(Cpn),T*(l) ®o, F/OF),F/OF) which we regard as

a A-module in the natural way.
We will use often the spectral sequences

(13.5.1) Ey) = Tort\(F,H’(j,T)) = E. =H' <Z B] s V)
(1352  EY=TorA(F,H)) = E,=H (Z [%] V)
(13.5.3) Ey) =Tor(F,H]) = E.,=H'(Q,V)

where F is regarded as a A-module with respect to the Op-homomorphism
A — Op which sends all elements of Gal(Q({,~)/Q) to 1.
Let C = {/;/is a prime number, /|N,[ # p}.

Lemma 13.6. (1) H'(j,T) = H".
(2) We have an exact sequence of A-modules

0— H*(j,T)— H*— @ H}.
leC

(3) We have an exact sequence of A-modules

0——>Hg—>H2(j*T)—>H;—> W — 0.
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Proof. For n >0, we have an exact sequence

— H! | l- j — H! - _1_-
0—H (Z -Cpn,p_ ,j*T> H (Z _Cpn,NJ , T)
- @HO(FI ® Z[é’p"]’Hl(Ql,urv T))
leC
—>H2(ZFC . 1] j T) _>H2(Zrc . 1] T)
-papJv* -paN-a
—>1€-)CH2(Q1®Q(C,;"),T))-

Here in HY(F) ® Z[(,»], H'(Q; , T)), H'(Q, \, T) is regarded as a Gal(F,/F))-
module via the isomorphism Gal(F;/F;) = Gal(Q, ,/Q)), and regarded as an
etale sheaf on Spec(F; ® Z[{,»]). By taking the inverse limit of these exact
sequences, (1) and (2) are reduced to

(13.6.1) lim HO(F1 ® Z[(p), H' (@), T)) = 0

n

for/e C. Weprove (13.6.1). By taking Homo,( ,F/Or), (13.6.1)is equivalent to
(13.6.2) lim H' (F1 ® Z[(pr), H(Q)ur T*(1) ®0, F/OF)) = 0.
n

(13.6.2) follows from the fact that the degree of any finite extension of F;({,=) is
prime to p.
Next (3) follows from the duality exact sequences

H? (z [g,,n,ﬂ . T) L HAQ,® Q). T)
— Homo, (H(Q(L,), T*(1) ® F/Of), F/Or) — 0
(IMal).

LemMmA 13.7. Let p be the kernel of the Op-homomorphism A — Of which
sends all elements of Gal(Q({,~)/Q) to 1.

N If H; has a non-trivial torsion as a Ay-module, T = Or with the trivial

action of Gal(Q/Q). B
(2) If W, #0, then T = Op(1) as an Op-module with an action of Gal(Q/Q).

Proof. (1) The spectral sequence (13.5.2) shows
1
H°(Q,V)=H" (Z [ﬁ} V) = Tory" (F, H}).

If the A,-module H, has a non-trivial torsion, then Torf\" (F, H:,) # 0 (note A,
is a discrete valuation ring and F is the residue field of A,), and hence
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H°(Q,V) #0. By the simplicity of ¥ (the condition (i) in 0.6), we see that
dimp(¥) =1 and the action of Gal(Q/Q) on V is trivial.
(2) We have

W /pW = Homo,(H°(Q, T*(1) ®¢, F/OF),F/OF).

If W, #0, this shows that H°(Q, T*(1) ®¢, F/OF) is not a finite group, and
hence H°(Q,V*(1)) #0. By the simplicity of ¥, we see that dimg(V) =1
and the action of Gal(Q/Q) on V*(1) is trivial.

13.8. In the case T = Op (resp. Op(1)), the map H*(Z[1/p],j.V)—
H 2(Qp, V) is injective. In fact, by duality [Ma), the kernel of this map is dual of
F®g, Ker(h) (resp. F ®g Ker(ho)), where

wi'(2)1].0,0)) ~ 1@, 0,0) (re2)

hy is rewriten as Z[1/p]* ® 0, — Q; ® Q and hence is injective. Ay is injective
as is seen by class field theory.

13.9. Now we prove Theorem 13.3. By Lemma 13.7 and 13.8, we may
assume that H) is torsion free as a A,-module and W, = 0. We assume these.
By the spectral sequence (13.5.2), F ®,, H:, is embedded in H'(Z[1/N], V).
Hence the image of & in F @y, H:, is not zero. Since H,l) is torsion free, this
implies J(¢), = Ap. By Theorem 0.8, this implies H&p =0. By the exact
sequence in Lemma 13.6 (3) and by W, =0, we have
H*(j.T), — (H}),.

By the spectral sequences (13.5.1) and (13.5.3), F ®,, of this isomorphism gives
an isomorphism

1 =
H? (Z[—p} A V) — H*(Q,,V).
This completes the proof of Theorem 13.3.

13.10. Now we prove Theorem 13.2. Let the assumption be as in The-
orem 13.2. Let S = Homg,(Q,,Sel(T*(1))). Then

S Ker(Hl (z[lp] ,j*V*(l)) — H'(Q,, V*(1))/H}Q,, V*(l))).
Since  Sel(T*(1)) = (Q,/Z,)" @ (finite group) for some r>0 and

Homg,(Q,,(Q,/Z,)" ® (finite group)) = (@,)", it is sufficient to show S =0.
In the perfect pairing of Tate duality

HY(Q,,V)x H'(Q, V*(1)) - F,
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Hfl(Qp, V) and Hf’(Qp, V*(1)) are the annihilators of each other ([BK, 3.8]).
Hence, the duality exact sequence

w(ef) ) - (o)

L (z B] . V) ~ H(Q, V)

((Ma]) gives an exact sequence

w\(z[5]v) - 1@ G V) - 5

— H? (Z[lp],j* V) — H*(Q,, V)

(S* = Homp(S, F)). ByTheorem13.3, H*(Z[1/p], j.V) — H*(Q,, V) isinjective.
Hence, it is sufficient to prove that H'(Z[1/p],j,V) — H'(Q,,V)/H}(Q,, V) is
sutjective. But H'(Q,,V)/H;(Q,, V') is one-dimensional and the image of ¢ in
this space comes from H'(Z[1/p],j.V) because H'(j,T) = H' (Lemma 13.6

(1)-

Remark 13.11. We can apply the method in this paper to get the analogous

results for the Selmer group over K where K/Q is a finite abelian extension, and
for the second etale cohomology over Ok[l/p] of j T. See [Kaj].
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