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EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS

KAZUYA KATO*)

Introduction

Kolyvagin discovered the method of Euler system, and used it to analyze
ideal class groups of certain cyclotomic fields and Selmer groups of elliptic curves.
Rubin used the method of Euler system to obtain a new proof of Iwasawa main
conjecture and a proof of the main conjecture for imaginary quadratic fields
([Koi], [K02], [Rui], [RU2]). It is vaguely believed that once a nice Euler system
is discovered, we can analyze certain etale cohomology groups and "Selmer groups"
which are generalizations of ideal class groups and of Selmer groups of elliptic
curves. This paper is an attempt to prove the truth of this belief. In this_paper,
we show that once a nice Euler system of a /?-adic representation of Gal(β/β) is
given (see Proposition J . I for the meaning of "an Euler system for a />-adic
representation of Gal(β/β)") 5 then we can prove finiteness theorems for the
second etale cohomology H?t (Theorem 13.3) and for the Selmer group (Theorem
13.2) of the Galois representation, and can prove a part of an analogue of
Iwasawa main conjecture (Theorem 0.8) of the Galois representation.

During I was preparing this paper, I leaned that similar results were obtained
also by B. Perrin-Riou and by K. Rubin, independently ([Pe], [Ru4]). The results
of this paper will be used in [Ka2] to develop the Iwasawa theory of elliptic cusp
forms and Iwasawa theory of elliptic curves without complex multi-
plication. Results of this paper on H?t and Selmer groups are obtained under
the assumption that we are given a nice Euler system, and how to find an Euler
system is a difficult problem. In [Ka2], we actually find nice Euler systems for
two dimensional Galois representations associated to elliptic cusp forms. These
Euler systems come from Beilinson's elements in Ki of modular curves ([Be]).

I thank Prof. V. A. Kolyvagin for encouragement. I appreciate the hospital-
ity of Institute for Advanced Study at which some part of this paper was written.

§0. Main result

In this §0, we fix the meaning of "an Euler system for ^-adic representation
of Gal(β/β)" (cf. 0.1) in our sense, and state the main result Theorem 0.8 of this
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paper. The well known Euler system of cyclotomic units is reviewed in Ex-
amples 0.2, 0.5.1, 0.6.1, Remark 0.8.1, and the reader will see how our Euler
systems, if discovered, generalize this example.

0.1. Let p be a prime number, we use the following notation
F a finite extension of Qp,
OF the integer ring of F,
Q an algebraic closure of β,
T a free Of-module of finite rank endowed with a continuous OF-

linear action of Gal(β/β). _
Let N > 1 be a multiple of/?, and assume that the action of Gal(β/β) on T

is unramified at any prime number which does not divide N. Let Nf > 1 be an
integer which is prime to N.

By an Euler system for (i7, T, N, Nf) (or simply, an Euler system for T), we
mean a system of elements

(ζm denotes a primitive m-th root of 1 in β) defined for any integer m > 1 such
that N\m and (m,Nf) = 1, satisfying the conditions (0.1.1) below. Here for a
finite extension K of β with integer ring Oκ,

i \

(qeZ)

denotes the etale cohomology. (It is known that each Hq(Oκ[l/N], T/pnT) is a
finite group and Hq(0κ[l/N],T) is a finitely generated 6V-module.)

For a prime number / which does not divide TV, let

Pι(ή = detθ F(l - (ptt; T -> Γ) e OF[ί]

where ^ denotes the action of the arithmetic Frobenius substitution of / on T
(which is determined up to conjugacy but Pι{t) is well defined). (So, Pι{t)~ι is
the congruence zeta function of restriction to Spec(,F/)έt of the dual O^-sheaf
Γ* - Homθ F(Γ, OF) of the OF-sheaf T on Spec(Z[l/Λφέt. On the other hand,
for such / and for an integer m > 1 which is not divisible by /, let σ/w be the
arithmetic Frobenius substitution in Gal(β(£w)/β).

(0.1.1) For any integer m>\ such that N\m and (m,Nf) — 1, and for a
prime number I which does not divide N', the norm map

Hλ

sends
zmι to zm (resp. to Pι(l~ισJx

m) zm)

if I divides m (resp. / does not divide m).
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Here Pι{l~ισj]^) is regarded as an element of the group ring
OF[Gai(Q(ζm)/Q)] acting naturally on Hι(Z[ζm,l/N],T).

Example 0.2 (Classical example). Let F = Qp, T = ZP(1),N =p, and N' =
1. We have

(0.2.1) tf

if K is a finite extension of Q, where ( ) x is the multiplicative group of invertible
elements. (This isomoφhism comes from the connecting maps of the Kummer
exact sequence

0->Z/pnZ(l)^Gm£Gm^0 (n>0)

for etale topology.) Fix a primitive m-th root ζm of 1 in Q for each m > 1
satisfying (ζmn)

n — ζm for any m,n > 1. For a multiple m of p, let

be the image of 1 — ζm e {Z[ζm, l/p])x under the isomoφhism (0.2.1) for K =
Q(ζm). Then (zm)m is an Euler system for (Qp,Zp(l), p, 1) in the sense of 0.1.
Indeed, (0.1.1) follows from

< ) = 1 - σjl (since /»,(*) = 1 - It),

and from the fact that the norm map

Z[ζm"N
sends 1 — Cm/ to 1 — ζm if / divides m, and to

(1 - ίm)(l - σll(ζm)yι

if / does not divide m.

Example 0.3. In the forthcoming paper [Ka2], we will study an Euler
system in the case T comes from an elliptic cusp form of weight > 2 which is an
eigen form for all Hecke operators.

0.4. Fix a divisor d>\ of N. Let β(Cφ°°) = [jn β(Cφ-) and let

where for a proίinite group G and a ring Λ,Λ[[G]] denotes l im^ R[G/H] where

H ranges over all open subgroups of G. Then if Δ denotes the finite subgroup
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of Gal(β(ίφco)/β) consisting of all elements of finite orders, Λ is isomorphic to
the formal power series ring 6V[Δ][[/]] (t is an indeterminate). From this we
have (cf. 10.4):

(0.4.1) Let p be a prime ideal of Λ of height one which does not contain
p. Then Λp is a discrete valuation ring.

(0.4.2) If the order of Δ is prime to p (this happens for example, if d = 1 and
p φ 2), Λ is regular and Λp is a discrete valuation ring for any prime ideal of Λ
of height one.

0.5. Let

where the inverse limit is taken with respect to the norm maps. It is known that
Hq = 0 if q φ 1,2, and Hι and H2 are finitely generated Λ-modules. The Λ-
module H2 is especially important and are the main subject of our study. It is
closely related to ideal class groups of cyclotomic fields in the case of Example
0.2 (see Example 0.5.1 below) and to Selmer groups and Tate-Shafarevich groups
of elliptic curves over Q in some cases of Example 0.3 ([Ka3]). Let

H2 = Ker ( H2 -> © Jim H2{Qι ®Q Q(ζdpn),T) ).
\ l\N n )

Example 0.5.1. Let F = Qp, T = Zp(l), N =p as in Remark 1.2, and let
d= 1. Then

where Cl(β(C^»)) denotes the ideal class group of Q(ζpn) and {p} means the p-
primary part. (The Kummer exact sequence in Example 0.2 gives

and induces the above isomorphism.) In this case, we have

where the limit is taken with respect to norm maps.

Remark 0.5.2. For a prime number /, the group lim H2(Qι ® Q(ζdP

n) >T)

is well understood. In fact, by local Tate duality ([S2, Chapter II §5]),

lim H2{Qι ® Q{ζdpn), T) * Hom(H°(Qι ® β(fφco), Γ*(l) (x) β/Z), β/Z)

where Γ* = HomθF(T, OF) with the dual action of G a l ( β / β ) .
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Qi®Q(Cdp°°) is a finite product of fields, and hence H°(Qι ® Q(ζdP^) >
T*{\)® Q/Z) is a subgroup of finite product of copies of Γ*(l) <g> Q/Z. By
duality, this shows that lim H2(Qι® Q(ζdpn),T) is a finitely generated OF-
module, and is a torsion Λ-module (that is, it is killed by a non-zero-divisor of Λ).

0.6. We consider the following conditions on (F,T,N,Nf).
In the following, let mF be the jnaximal ideal of OF, and let β a b be the

maximal abelian extension of Q in β.

(i) v = F ®oF T is irreducible as a representation of Gal(β/β) over F.
(istr) Op jnip ®OF T is irreducible as a representation of Gal(β/β) over

OF/mF.
(ii) There exists an element σ of Gal(β/β a b) such that dimir(Ker(l - σ;

V-^V)) = \.
(iistr) There exists an element σ of Gal(β/β ) such that Coker( l-σ:

T —• T) is a free Op-module of rank one.
(We see easily that (istΓ) is stronger than (i) (that is, (istΓ) implies (i)) and that

(iistΓ) is stronger than (ii)).
(iii) There exists an integer w such that for any prime number I which does not

divide NN', the roots of Pι(t) are algebraic numbers whose all conjugates have
absolute value lwl2 in C. (In other words, V is "pure".)

To state the condition (ivp), we need some preliminary.
For a prime ideal p of Λ such that Λp is a discrete valuation ring, let

sgn(p) G {1, — 1} be the image of the complex conjugation in Gal(β(£φ°c)/β)
under Gal(β(ίφoo)/β) c Λ ^ Λ ,

Fix an embedding Q —> C, and let i e Gal(β/β) be the complex conjugation.
Let

n(V,p) = dimF({xG V ι(x) = -sgn(p)x}).

Then n(V,p) is independent of the choice of β —» C, and

rankΛp(JϊJ) - rankΛ p(^2) = Λ(K, p).

This follows from Tate ([Ta, Theorem 2.2]). Now the condition (ivp) is as
follows.

(ivp) For a prime ideal p of Λ such that Λp is a discrete valuation ring,

Example 0.6.1. Let F=Qp1T = ZP(1),N = p,N' = 1, and let d = 1. Then
the conditions (istΓ), (ϋstr)5 (iϋ) are satisfied. (In (iistr), take σ = 1. In (iii), w =
—2.) (ivp) is satisfied if sgn(p) = 1.

Example 0.6.2. Let E be an elliptic curve over Q, and consider the case
F = Qp,T is the />-adic Tate module limn Ker(^w : E(Q) -* E(β)), and N is the
conductor of E, N' = 1. Then the conditions (i), (iii) are satisfied (the integer w
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in the condition (iii) is —1), and the condition (ivp) is satisfied for any prime ideal
p of Λ such that Λp is a discrete valuation ring. If E ® β does not have a
complex multiplication, the condition (ii) is satisfied, for the image of
G a l ( β / β a b ) in AutZp(T) ^ GL2(ZP) contains an open subgroup of SL2(ZP)
(Serre [S4, Chapter IV]) and hence contains an element of the form σ = [ι

0

 c

γ)
with c # 0 which satisfies dim/r(Ker(l —σ:V-+V)) = l.

Remark 0.6.3. The condition (iii) is satisfied if there exist a proper smooth
scheme X over Z[l/7V]_and qeZ such that V is a subquotient of the represen-
tation F ®Qp H*{X <g> β, Qp) of Gal (β/β) over F. The integer w in (iii) in this
case is q. This is by Deligne [De].

0.7. Let

ξeH1

be the image of (zjVp«)M>oe lim Hι(Z[ζNpn,l/N],T) under the norm map.

(Note (zNpn)n>o belongs to the above inverse limit by virtue of (0.1.1).) Define

the ideal J(ξ) of Λ by

J(ξ) — {h(ξ);h is a Λ-homomorphism Hι —> Λ}.

Now the main result of this paper is the following.

THEOREM 0.8. Let (F,T,N,Nf) be as in 0.1 and let (zm)m be an Euler
system for (F, T,N,Nr). Let d and A be as in 0.4, and let p be a prime ideal of
A such that Λp is a discrete valuation ring. Assume p does not contain p (resp. p
contains p). Assume that the image ξv e Hx

v = Λp ®AH
ι of the element ξeH1

(cf 0.7) is not a Av-torsion element, and that the conditions (i), (ii), (iii) (resp. (istΓ),
(iistr), (iii)) are satisfied. Then H^ is a torsion Av-module and

lengthΛ p(# 0

2

 p) < lengthy(Λ P //(O P )

If furthermore the condition (ivp) is satisfied, H^/Avξv is a torsion Ap-module and

lengthΛp(£Γo,p) ^ lengthΛp(JEΓp/Λp<ίφ)).

Remark 0.8.1. Let F = Qp, T = ZP(\),N = p,N' = 1, and let rf=l.
Assume p φ 2. Let p be a prime ideal of Λ of height one such that sgn(p) = 1.
Then the image ξv of (1 -C/>«)«>i (cf. 0.2) in Hλ

v is not a Λp-torsion element.
Theorem 0.8 says

(*) lengthy(H2

p) < l e n g t h Λ p ( ^ / Λ p ί p ) .

Iwasawa main conjecture, which says

length* (H2

p) = length* (ffί/Λpίp),
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follows from (*) by the analytic class number formula (see [Rui]). Iwasawa
main conjecture was proved by Mazur-Wiles ([MW]) and a new proof of it by
using the method of Euler system was found by Rubin ([Rui]). In fact Rubin
proves (*) in [Rui], and our proof of Theorem 0.8 is a natural generalization of
the proof of (*) by Rubin given in [Rui].

Remark 0.8.2. Let (F, T,N) be as in 0.1, let d, A be as in 0.4, and let p be
a prime ideal of Λ such that Λp is a discrete valuation ring. Then the conjecture
in [Kai, Chapter I, 3.2.2] on "/?-adic zeta elements" predicts that, if Hι

v is torsion
free as a Λp-module (e.g. if H°(Q(ζdpoo), V) = 0) and if the condition (iv)p is
satisfied, there is an Euler system (zm)m for (F,T,N,1) such that

lengthy ( J φ = lengthΛp(tf /Λpίp).

If V comes from a motif M, this Euler system should be related to special values
of complex zeta functions of M ® χ for Dirichlet characters χ.

0.9. We sketch the main idea of the proof of Theorem 0.8 and the plan of
this paper.

For an integer m > 1 which divides dp1 for some /, and for n > 1, consider
the localization sequence of etale cohomology

(0.9.1) H\Q{ζm),T/p"T) ^®H\Fι

where / ranges over all prime numbers which do not divide N. The image of the
map / "nearly" coincides with the kernel H2(Z[ζm,l/N],T/pnT)0 of

H2(z[ζm,j^ , T/pnT^j -> ©i/ 2 (& (x) Q(ζm), T/pnT)

where / ranges over all prime divisors of N. That is, H2(Z[ζm, l/N], T/pnT)0 is
nearly the cokernel of d. To have the inequalities in Theorem 0.8, we have to
show that H2(Z[ζm, l/N], T/pnT)0 is small enough, that is, the image of d is big
enough. To show this, we define in §2 certain elements κr in Hι(Q(ζm), T/pnT)
(following the definition of the "derivatives" of the Euler system by Kolyvagin)
and we compute the images of κr under d (Theorem 4.5). From this com-
putation, we can conclude that the image of d is big enough. This is a rough
idea of the proof of Theorem 0.8.

The following point is technically important. In the direct sum ©/ in (0.9.1),
we consider exclusively the /-components for "good prime numbers" / in the sense
of §5. In fact, the /-components for good prime numbers / have simple structures
(they are almost isomorphic to the group ring (OF/pnOF)[Ga\(Q(ζm)/Q)]) and
can be analyzed well (Proposition 5.5, here the condition (ii) in 0.6 plays an
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essential role). It is sufficient to consider the /-components only for good prime
numbers /, because the images of /-components for good prime numbers / under i
nearly generates H2(Z[ζm, l/N], T/pnT)0 (cf. 11.11). To show the last fact, we
need results on Galois cohomology proved in §6 and §7.

§§8-12 are final steps of the proof of Theorem 0.8. In §8 (resp. §9), we show
that Q ® H2(Z[1/N], V) = 0 (resp. the localization of H2 at some prime ideal of
Λ of height zero is zero) under a certain assumption on (F, T, N, Nf) and the
Euler system (zm)m. After a module theoretic preliminary in §10, we complete
the proof of Theorem 0.8 in §11 and §12.

In §13, we prove a ίiniteness theorem for Selmer groups (Theorem 13.2) and
a ίiniteness theorem for H2 (Theorem 13.3) as applications of Theorem 0.8.

§1. A local property of Euler system

The aim of §1 is to prove

PROPOSITION 1.1. Let (F,T,N,N') be as in 0.1, and let {zm)m be an Euler
system for (F, T,N,N'). Then for an integer m such that N\m and (m,Nf) = 1,
of N and for a prime number I which does not divide mNf, the image of zmι in
Hι(Qι(ζmι),T) coincides with the image of

στX) - PiiσjX))} -zmeHι (z\ίm,^ , TJ.

Note that Pi{l~λσJλ

m) = Pι{σ^m) mod ( / - 1), and hence

σTχ) - P,(σlιJ) e OF[Gid(Q(ζm)/Q)]

is denned.
This Proposition 1.1 will play an important role in §4 (Proposition 1.1 is not

used in §2, §3).

Remark 1.2. In the case of the Euler system of cyclotomic units in Example
0.2,

and the statement of Proposition 1.1 is the fact that 1 - ζmj and 1 — σz~^(Cm) has
the same image in

H\Z,[ζmllZp{\)) s H\F,{ζm),Zp{\)) s F,(ζm)x{p}

where {/?} denotes the /7-primary component of Fι(ζm)x. This property of the
system of cyclotomic units is called the "congruence property", and the property
(0.1.1) of the system of cyclotomic units is called the norm property. It is
proved in [RU3] that the congruence property of any Euler system of units is
deduced from its norm property, by a different method.

In the rest of §1, we prove Proposition 1.2.
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1.3. The map H\Z[ζmh l/N], T) -» H\Q,{ζml), T) factors through

and

Hι (zι ® z L / , ^ 1 , τ\ ^ Hι(Ft ® Z[£m/], T) έ- Hι(Fι ® Z[ζm], Γ).

We consider the inverse limit lim Hι(Fι ® Z[ζmpn], T) with respect to norm

maps, and prove that the image of (zmιpn)n>0 in this inverse limit coincides with

the image of

LEMMA 1.4. lim Hx(Fι® Z[ζmpn,\/N],T) is a torsion free Op-module.

Proof. By the duality of Galois cohomology of a finite field,

lim H\Fι ® Z{ζmpn], T) ̂  HomoF(// 0(F/ ® Z[ζmp^ Γ* ®oF F/OF),F/OF).

It is sufficient to show that H°(Fι ® Z[ζmpoo], T* ®OF F/OF) is /7-divisible.
Since the degree of any finite extension of Fι(ζmpOo) is prime to p, we have

ιζmpoo],T*/pT*) = 0. By the long

Z[Cmp°°]i ) associated to the exact sequence

p

Hι(Fι(g)Z[ζmpoo],T*/pT*) = 0. By the long exact sequence of H'{Fι

0 -> T*/pT* -+ T* ®OF F/OF Λ Γ* ®OF F/OF -+ 0,

this implies that H°(Fι ® Z[ζmp*},T* ®OpF/OF) is /7-divisible.

1.5. By Lemma 1.4, it is sufficient to prove that the image of (/ - 1) zmιpn
in H\Fι®Z[ζmpn],T) coincides with the image of (Pi^σj^) - Pι(σJx

mpn))
zmpn for any n. By replacing mpn by m, we are reduced to

LEMMA 1.6. (1) The image of (/ - 1) zm/ in Hι(Fι ® Z[ζm],T) coincides
with the image of Pι{l~ισJx

m) zm.
(2) The image of Pι(σJι

m) zm in H\Ft® Z[ζm],T) is zero.

Proof (1) follows from (0.1.1) by the commutative diagram

H\F,®Z[ζm],T).
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To prove (2), let

Φm = Am ®OF T where Am = OF[Gal(Q(ζm)/Q)]

on which Gal(β/β) acts as follows. For σ e Gal(β/β), the action of σ on Φm

is (σ)~ι ®σ, where σ denotes the image of σ in Gal(β(£ w )/β) c= Λw. Then

, T) 2ί Hι(FhΦm) ^ Φ w /(1 - φt)Φm

as Aw-modules (for explanations of these isomoφhisms, see 3.4 and 4.2), and

Pi(σJι

m) = deU w (l - #?/ : Φ m —• Φ m ) .

This shows that Pι(σJι

m) kills Hx(Fι ® Z[ζm], T).

§2. Derivatives of an Euler systems

2.1. Let {F,T,N,N') be as in 0.1, and let (zm)m be an Euler system for
(F,T,N,Nf). Fix an integer m such that N\m and (m,Nf) = 1, and integers
«,«' such that n' > n > 1. Assume

(2.1.1) there exists an integer c > 0 such that /?c kills H°(Q(ζm),T <g) (β/Z)) and
^ > Λ + 2c.

The aim of §2 is to define important elements

for integers r > l satisfying the following conditions (2.1.2) and (2.1.3). Our
definition of κr here follows the definition of the derivative of an Euler system in
[Koi], [Ko2].

(2.1.2) r is square free, and is prime to m.

(2.1.3) Pι{l-χσjι

m) e pn'θF[Gίύ(Q(ζm)/Q)} and / - 1 e pn'Z for any prime divisor
/ of r.

(In fact κr is defined canonically only after we fix generators of some cyclic
Galois groups over β. See Remark 2.9.)

2.2. Assume r satisfies the conditions (2.1.2) and (2.1.3).
For a prime divisor / of r, let L^/Q(ζm) be the unique subextension

°f Q(Cmi)/Q(Cm) of degree pn>. For a divisor s of r, let L^ be the composite of
L^ where / ranges over all prime divisors of s, and let R^ be the integral closure
of Z[l/Nr] in L « .

In this 2.2, we define an element ωr E Hι {R^r\T / pn> T). As a preliminary
for the definition of ωr, we define
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as follows. Let v̂  be the image of zms under the norm map

n o r m πi

Let vr,s be the image of

under the canonical map Hι(R^s\T) -> Hι(R^r\T) associated to the inclusion
map RW-Ξ+RW. Here, μ(s) denotes Mobius function (that is, μ(s) = (-l)k

where k is the number of prime divisors of s), Π/|(r/ί) m e a n s the product over all
prime divisors / of r/s, and σjλ

m x 1 means the element of Gal(Q(ζms)/Q) (acting
on Hι(R(s\T)) whose restriction to Q(ζm) coincides with σjx

m and whose
restriction to Q(ζs) is the identity map. Let

cor =

where Σs means the sum over all divisors s of r.

2.3. For a divisor s of r, let G^ = Gal(L^/β(Cm)) Then for a prime
divisor / of r,G^ is a cyclic groups of order pn\ and G^ -̂ -> Π/ | r^^ ^ x a

generator α/ of G^7^ for each /, and regard α/ as an element of G^ via this
isomorphism.

For a (j(r)-module M killed by /?"', and for a divisor s of r, let

be the composite Π / ^ ^ where / ranges over all prime divisors of s and D^ is a
homomorphism M -> M defined as follows (D^ commutes with each other);

/>*')(*)= 5 S (α/)'(*)
Ϊ=0

LEMMA 2.4. TTze mop

i ) ( r ) : Hι{R{r\ T/pn'T) -> ^ ^ ϋ

ω r ίwto ίAβ G&-fixed part of Hι(R^r\T/pn'T).

For the proof of Lemma 2.4, we use

LEMMA 2.5. /far α /7πm^ divisor I of r, the norm map
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sends ωr [cf 2.2) to

(Pι(Γl • (σll x 1)) - P,{l-λσllμ)) • ωr/ι.

Proof. Let s be a divisor of r/l. Then by simple computation we have

JV<'>(vr,,) = />,(/"' (σlι

m x 1)) vr//,,.

By using (0.1.1), we have also

By taking the sum of these equations for all s, we obtain Lemma 2.5.

2.6. We prove Lemma 2.4 by induction on the number of prime divisors
of r.

It is sufficient to prove (1 — α/)(D^(cor)) = 0 for each prime divisor / of r.
We have

( l - α / ) o / ) ( ' ) = Σ τ.
τeG(')

Hence

By Lemma 2.5, N^(ωr) is generated by elements of the form (1 — τ)(ωr//) with
r e G^/7). Hence we are reduced to proving

but this follows by induction.

LEMMA 2.7. Let c be as in 2.1. Then for any a>0 and ar > a + c, the

canonical map

H°(R{r\ T/pa> T) -> H\R{r\ T/paT)

is the zero map.

Proof We have a commutative diagram

H°(RU,T/p°'T) - ^ H°(Q(ζmr),T®(Q/Z))

) -Ξ-^ H\Q{ζmr),T®{Q/Z))

with injective horizontal arrows. Since a' - a > c, it is sufficient to prove that pc

kills H°(Q(ζmr),T<g)(Q/Z)). For this it is enough to show that the inclusion

H°(Q(ζm), T ® (β/Z)) cz H\Q(ζmr), T ® (β/Z))
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is in factjm equality. This follows from the fact that Gal(Q/Q(ζm)) is generated
by Ga\(Q/Q(ζmr)) and the inertia subgroups at prime divisors of r which act
trivially on T.

2.8. Now we define κr. Consider the exact sequences

0 -* H\G<r\H\BSr\ T/paT)) -+ Hι UlCmM , T/paτ\

-» H°{G{r\Hι{Rir\ T/paT)) -> H2(G{r\H\R{r\ T/paT))

for a>\.
By Lemma 2.4, £>M(ωr) belongs to H°(G^r\Hι(R^\ T/pn'T)). By Lemma

2.7 and by the above exact sequences for a — n + c and a = n', we see that the
image of Z)W(ωΓ) in H°(G^\Hι(R^r\ T/pn+cT)) is the image of an element x of
Hι{Z[ζm,\/Nr],T/pn+cT). By Lemma 2.7 and by the above exact sequences
for a = n and for a = « + c, the image of x in Hι(Z[ζm,l/Nr],T/pnT) is in-
dependent of the choice of x. We define κr e i / ^ ^ t L , 1/^], T/pnT) to be the
image of Λ\

Remark 2.9. The element

(2.9.1) ίφα/JΦKreWz^

is independent of the choices of the generators α/ of G ^ .

§3. Local study

In this section, we review some basic facts about Galois cohomology of a
local field, and prove Proposition 3.6 which will play a key role in the proof of a
local property Theorem 4.5 of derivatives of an Euler system.

3.1. In this section, let AT be a complete discrete valuation field with residue
field k. Let AT be a separable closure of K, and let K^v be the maximal un-
ramified extension of K in K. Then the residue field k of Km is a separable
closure of k, and _

G&\(KUT/K) -^* G<ύ(k/k).

To make arguments about inverse limits of Galois cohomology simple, we
assume that K has the following property: If T is a discrete finite abelian group
endowed with a continuous action of Gal(K/K), and if the order of T is in-
vertible in k,Hq(K,T) is a finite group for any q. For example, K has this
property if A: is a finite field (and this case is sufficient for this paper). For a
prime number p which is invertible in k and for a finitely generated Zp -module T
endowed with a continuous action of Gdλ{K/K), let

, T) = lim Hq(K, T/pnT).
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3.2. We review some general fact on Galois cohomology of K.
Let p be a prime number which is invertible in k, and let T be a finitely

generated Zp-module endowed with a continuous action of Ga\(Km/K). Then
we have an exact sequence

(3.2.1) 0 -> Hq(k, T) -> #*(Λ:, Γ) Λ i/*" 1 ^, Γ(- l ) ) -> 0

where (—1) means the Tate twist by —1. The second arrow in_ (3.2.1) is the
inflation map for the surjection Gdλ(K/K) -> Gdλ(Kuτ/K) ^ Gal(fc/fc), and d is
defined as follows. Consider the isomorphisms

(3.2.2) H\KW, Z/n{\)) έ- K*/{K*)n - ^ Z/n

where the first arrow is by Kummer theory and the second arrow is the valuation
of Km. By tensoring (3.2.2) with T{—\), we obtain

(3.2.3) Hι(Km,T)^T(-l).

The map d is defined to be the composite

H\K, T) - H°(Ga\(Kur/K),Hι(Km, T)) = H\k,Hλ{Km, T))

3.3. Let L be a totally ramified Galois extension of ̂  and assume that n —
[L : K] is invetible in k. Then iΓ contains a primitive n-th root of 1, L is a cyclic
extension of K,L = K(πι/n) for some prime element π of AT, and we have an
isomorphism

Gal(L//η - ^ Z/Λ(1); σ ̂  σ(α)α- ! where α - π 1 / w .

(Cf. [Sei, Chapter IV §2, Corollary 1].)

3.4. We give general comments on Galois representations.
Let A be a field and let A' be a subring of 4̂ which is normal Noetherian

and whose field of fractions is A. Let A be a separable closure of ̂ 4, 5 a finite
Galois extension of 4̂ in A with Galois group G, and let i?' be the integral
closure of A' in B. Assume Bf is unramified over A'. Let /? be a prime number
and let T be a finitely generated Zp -module endowed with a continuous action of
Gal(A/A) which is unramified at any prime ideal of A'. Let

R = ZP[G], M = R®ZpT,

and endow M with the following iMinear action of Gal(^4/^4): For σe
Gal(A/A), the action of σ on M is (σ)~ι ® σ where σ denotes the canonical
image of σ in G cz R. If we identify T (resp. M) with the corresponding Zp

(resp. i^)-sheaf on Sρec(^/)έt,

(3.4.1) M = fJ*T
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as an i^-sheaf, where/is the canonical morphism Spec(2?') —> SpQc(A'). So we
have

(3.4.2) Hq(A', M) = Hq(B', T) for any q > 0

a s a n ^ - m o d u l e , w h e r e H«( , M ) - l i m Hq( , M / p n M ) , H q ( , T ) =
limnH

q{ ,T/pnT). *~~n

* "The norm map Hq(B'\T) -> Hq(A'\T) is identified with H«(A',M)-+
Hq(Af, T) induced by M —> T; σ ® x ι-> x (σ e G), and the canonical morphism
H<t(A\T)->H(*{B',T) is identified with Hq(Af,T)^Hq(Af,M) induced by

3.5. Let the situation be as in 3.4. Let 1Q be the kernel of the homo-
morphism Z[G]^Z; <7i->l ( σ e G ) and let G a b = G/[G,G]. We define a
homomorphism

(3.5.1) D:IGM->Gab®T

to be the composite map

IGM-*IGM/I2

GM ^ - /σ//2 ® Z M / / G M - ^ /G//2 ® Γ ^ Ga b ® T

where the last isomorphism comes from

If G is a cyclic group of order n and α is a generator of G, we regard D as a
homomorphism 7GM -> Γ/wΓ (G a b in (3.5.1) is identified with Z / Λ Z b y α ^ 1).
In this case, the diagram

IGM —^-> Λf

_L_> M//iAf

is commutative (thus D is related to the homomorphism D^ in §2), and hence we
have a commutative diagram

H«(A', IGM) > H«(Af, M) = H«(B', T)

H«(A',T) > H«(B\T/nT)

for any /.

PROPOSITION 3.6. In 3.4, consider the case A = Af = K, B = Bf = L where L
is a totally ramified cyclic extension of K of degree pn for a prime number p which
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is invertible in k and for some n>0. Assume that T is p-torsion free, and the
action of Gal(K/K) on T factors through Gal(Kur/K). Then the map

(3.6.1) H\KJGM)-*H\K,M) = H\L,T)
(3.4.2)

coincides with the minus of the composite

(3.6.2) H\K,IGM) ^ H\K,G®T) Ξ Hι{K, T/pnT{\))

Λ H°(k, T/pnT) = H°(K, T/pnT) Λ H\K, T) -• Hλ(L, T)

where δ denotes the connecting map of the exact sequence

0 —> T ̂  T -> T/pn —> 0.

The rest of §3 is devoted to the proof of Proposition 3.6.

LEMMA 3.7. Let f : H°(K, T/pnT) -> HX(KJGM) be the following homo-
morphism. For aeT such that a mod pn e H°(K, T/pnT), let f(a mod pn) be
the class of the l-cocycle

ga : Gal(K/K) -* IGM; σ ̂  (1 - (σ)"1) ® σ(ά) - ( J^(l - α) ) (x) p~n{σ{a) - a).

(ga is a l-cocycle because

ί _ 1
0fl(σ) = (1 — σ)< Y^(l — α) ® p~na > m Q®IGM.)

[<xeG J

(1) 7%e diagram

H°(K,T) > H°{K,T/pnT) • Hι{K,T) —^-> HX(K,T)

λ
H°(K,T) > H\KJGM) > H\K,M) — ^ H\K,T)

is commutative, where the upper horizontal sequence is the exact sequence obtained
from the exact sequence 0 —> T —> T —> T/pn —> 0 and the lower horizontal se-
quence is the exact sequence obtained from the exact sequence 0 —> IGM —> M —>

(2) / is surjective.

Proof. (1) is checked directly. To prove (2), by the commutativity of the
diagram in (1), it is sufficient to prove that

(3.7.1) KQT(H1(K, T) £ H\K, T)) -> K e r ^ 1 ^ , M ) -> Hι(K, T))
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is surjective. Note that Hι(L,T) = Hι(K,M) -> Hι(K,T) is the norm map.
The surjectivity of (3.7.1) follows from the commutative diagram of exact
sequences

0 > Hι(k,T) > Hι(L,T) • H°(k,T(-l)) > 0

id.

r\ ff^ίlc T} Ί-f^iK T\ J-ί^CIc T( λλ\ 0

Now by Lemma 3.7 (2), for the proof of Proposition 3.6, it is sufficient to
show that the compositions (3.6.1) of and (3.6.2) of are equal.

LEMMA 3.8. The composite

H°(K, T/pnT) ^ H\KJGM) -^ H\K,G®T) Λ H°(k, T/pnT)

= H°(K,T/pnT)

coincides with the multiplication by —1.

Proof Let a be an element of T such that a mod pn e H°(K, T/pnT).
Then Do f (amodpn) is the class of the 1-cocycle

Gal(K/K) -• G ® Γ; σ •-> - σ ® α - ^ { α ® p'n(σ(a) - a)}.
aeG

Since σ(α) — β = 0 if σ belongs to Gal(K/Kur), we see that d kills the class of the
1-cocycle σ π ^ α e G { α ® P ~ n ( σ ( a ) ~a)}- It remains to show that Hι(K,G) ^

H\K,Z/pn(\)) ^H°(K,Z/pnZ) sends the class of the 1-cocycle σ ^ ά to 1.
But this follows from the definitions of the isomorphism G ^ Z/pn{\) and d.

3.9. Now we complete the proof of Proposition 3.6. Consider the com-
mutative diagram

H°(K,T/pnT) > Hι(K,T)

f\

Hι (*:, 7GM) • Hι(K, M) = Hι (L, Γ)

(Lemma 3.7 (1)). The composite H°(K, T/pnT) ^ HX{KJGM -> Hι(L, T) in
this diagram coincides with (3.6.1) of. On the other hand, by Lemma 3.8, the
composite H°(K,T/pnT) -• Hι{K,T) -> Hι(L,T) in this diagram coincides
with — (3.6.2) of. This shows that

(3.6.1) o/=-(3.6.2) o/.
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§4. Local property of derivatives of an Euler system

We prove a formula Theorem 4.5 concerning a local property of derivatives
of an Euler system.

4.1. We first give a preliminary on "cofactor homomorphism".
Let R be a commutative ring, let M be a free iΐ-module of finite rank r, and

let / : M —> M be an i^-homomorphism. Then the cofactor homomorphism
Cf : M —> M is defined to be the unique /Miomomorphism which makes the
following diagram commutative.

(r~\ r \

M ^ HomJ /\RM,/\RM

cf >(λ7)
f r-\

M -^ Horn*! f\RM,/\RM\

Here the horizontal arrows are X ^ ( J ^ X Λ J ).

If / is expressed by a matrix A, c/ is expresed as the matrix of cofactors
of A.

We have

f o Cf = Cf o f = multiplication by det(/).

4.2. Let / be a prime number, and let φι e Gal(Fι/Fι) be the arithmetic
Frobenius F/ —• Fι\ x \-> xι. Let R be a pro-finite commutative ring, and let M
a free î -module of finite rank endowed with an iMinear continuous action of
Gal(F//F/). Assume

We define an important homomorphism

φι:H
ι(FhM)^H°(FhM)

as follows.
Recall that Hq(Fι,M) = 0 for q Φ 0, 1 and there are canonical iso-

morphisms

H°(Fh M) ^ Ker(l - ψι : M -* Af),

H\FUM) ^ Coker(l -Ψι:M-^M).

(In the latter isomorphism, an element of Hι(Fι,M) represented by a continuous
1-cocycle c : Gal(F//F/) —>• M corresponds to the element c(^z) mod (1 - ψι)M.
Cf. [Sei, Chapter XIII §1].



EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS 331

Let / = 1 — φι : M —> M, and consider the cofactor homomorphism Cf.
Since / o Cf and Cf o / induce the zero map det^(/ : M —> M) on M,

induces

Coker(/ : M -> M) -> Ker(/ : M -• Af),

that is,

7/1 (f/, Af) —» H°(Fι, M)

which we denote by t/̂ .

4.3. Now let (F,T,N,Nf) be as in 0.1. In 4.3 and 4.4, we fix some
notations.

For m> I, let

Am = <MGal(β(Cm)/β)], Λm,w = Am/pnAm for * > 0.

Define a Λm-module Φ m endowed with a Λm-linear continuous action of
Gal(β/β) as follows. As a Am-module, let

Φm = Am ®OF T.

Define the action of σ e Gal(β/β) on Φm to be (σ)~ι (x) σ where σ denotes the
canonical image of σ in Gal(β(£ w )/β) <= Am. (Cf. 3.4.) Then, if / is a prime
number which does not divide Nm, we have

P/O/~m) = d e t Λ w (l - Ψl ' Φm -> Φm),
(4.3.1)

Let

Φm,« = Φm/^"Φm for 71 > 0.

If

detΛwiM(l - ψι : Φm,« -^ Φ«,») = 0

(i.e. if P / ( ^ ) = 0 m o d / 7 r t ) ,

^ : J ϊ 1 ^ / ® Z[Cm], T/pnT) -+ H°(Fι ® Z[ζm], T/pnT)

is defined by identifying H«(Fι ® Z[ζm],T/pnT) with H«{FhΦm,n) (tf = 0,l)
(cf. 3.4) and by taking Am,n and Φmn as R and M in 4.2, respectively.

4.4. Let (F,T,N,N') be as in 0.1 and let (zm)m be an Euler system for
(F,Γ,ΛΓ,JV').

Let m,nyn
f,r be as in 2.1 assuming (2.1.1)—(2.1.3) are satisfied. Let / be a

prime divisor of r.
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By fixing generators of G ( / ) (cf. 2.3) for any prime divisor /' of r/l, we
denote the element (2.9.1) of Hι(Z[ζm, l/Nή,G^ ® T/p"T) by κr. We have
also an element κrμ e Hi(Z[ζm,l/(Nr/l)},T/p"T).

Let

3, : Hι (z\ζm,~], G(/) ® T/pnτ\ -> H°(F, ® Z[fm], T/p«T)

be the composite map

Hι (z\ζm,-^\ , G<'> ® T/p*τ\ - H\Q, ® β(CM),

S //'(ft ® β(Cm), Γ/^Γ(l)) Λ ^°(F/ ® Z[Cm],

(See 3.2 for the homomorphism d.)
Note that

detΛm.M(l - ψι : Φm,n -> Φm,«) = 0

because

d e t Λ w , w ( l - Γ V / : Φ m , « ^ Φ m , « ) = O and / = 1 mod pn

by (2.1.3) and (4.3.1). Hence

φι : Hι(Fι ® Z[fJ, Γ//7«Γ) -, H\Ft ® Z[ζm), T/pnT)

is defined.

THEOREM 4.5. Let m,n,n'yr,l be as in 4.4. Assume

assume that

I = 1 mod r//.

the image of κrμ under

Hι (z[cm,j±j^ , T/P"T^) -, H\Fl ® Z[CW],

coincides with dι(κr).

To prove Theorem 4.5, we use the following Lemmas 4.6-4.8.

LEMMA 4.6. Let R be a pro finite commutative ring and let M be a free R-
module of finite rank endowed with an R-linear continuous action of Gdλ{Fι/Fι).
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Let n>\ and assume

detΛ(l - p7 : M -> Af) = 0 mod pn.
Assume R is p-torsion free. Let δ: H°(FhM/pnM) -> HX(FUM) be the
connecting map of the exact sequence 0 —> M —> M —> MjpnM —> 0. 7%e« ίλe
composite map

Hx(FhM) ^ Hx(FhM/pnM) ^ H°(FhM/pnM) ^ Hx(FhM)

coincides with the map induced by

-/ΓΛ detΛ(l -φι:M^>M):M->M.

Proof Let ueM, and consider the class w of u in Hι(Fι,M) —
M/Im(l-φι:M->M). Then φ^u) e H°{FhM/pnM) cz M/pnM is c/κ
mod / M where c/ is the cofactor homomorphism of / = 1 - φt. Hence
δoψι(u) is represented by the 1-cocycle Gal(F//F/) —> M which sends φι to
^ " " ( ^ - l)c/w = -p~n detΛ(l - /̂) M.

LEMMA 4.7. Lei the notation be as in 2.2. Then the image of ωr in
Hx {Qι ® L ( r ), T/pn> T) coincides with the image of

Here, Pι(σjx

mrn) = 1 mod pn> because Pι{σJx

m) = 1 mod pn> and σ^rμ = id.
(The last equation follows from the fact / = 1 mod r/l.)

Proof of Lemma 4.7. Let ί be a divisor of r/l. By Proposition 1.1, the
image of zmsι in Hι(Qι ® Q{ζmsι),T) coincides with the image of

(4.7.1) {(/ - \γ\P,(ΓισZlrjι) - Pfall,,)} • zms.

From this we see that the image of vsι in Hλ(Qι® L^sl\T) coincides with the
image of

{p-"'(P,(ΓισTχr/l) - P^l,,)} • v, e Hι(R^, T).

This shows

CLAIM 4.7.2. The image of vr,si in HX[Q{ ® L(r), T) is equal to the image of

-{p-n\Pι{ΓλσT

x

mr/ι) - Pι{σjx

mr/ι)} vr//|J e H\RW\ T).

On the other hand, by definition,

CLAIM 4.7.3. vr)iS coincides with the image of

{p-nlP,{rι • (σjt

ι

m x 1))} vr//iJ = {p-n'Pι{rlσllr/l)} • vr/l<s.

When we take the sum of Claims 4.7.2 and 4.7.3 in Hι (Q, ® L^, Γ), we obtain
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CLAIM 4.7.4. The image of vΓjiS/ + vr>J in Hλ{Qι ® £ ( r ) , T) coincides with the
image of {p~n>Pι(σJx

mr/ι)} vr//>J.

We obtain Lemma 4.7 by taking the sum of Claim 4.7.4 for all s.

LEMMA 4.8. ωr belongs to

Ker(norm : Hι{R^r\ T) -> Hι{R^ι\ T)).

This follows from Lemma 2.5 and σ/>r// = id.

4.9. Now we prove Theorem 4.5.
Let G= GV\ and consider the Gal^/L^'^-module

M = Z[G] ®z T

by (σ)~ι ®
σ in G. Consider the commutative diagram
on which σ e Gal(β/L^/^) acts by (σ)~ι ®σ, where σ is the canonical image of

\G®T)

dι\

Here D is the map defined in 3.5 (we are considering the case A = L^r/ι\
A' = RW\ B = LW, B' = RW).

The composite of the two upper horizontal arrows sends

ωr e H1(RW\IGM) = Ker(norm : Hι(R^r\ T) -> Hι{R{r/ι\ T))

(cf. Lemma 4.8) to D^(ωr). To prove Theorem 4.5, it is sufficient to show that
δ/(Z>W(ωr))e H°(Fι ® R^ι\T/pn>) coincides with the image of -D^ι\ωr/ί)
under φh Hence by the above diagram, it is sufficient to prove that

α = dt(D(ωr)) e /fo(Fz ® R^ι\ T/pn'T)
def

coincides with the image β of ωrμ under φt.
The connecting map

δ : H°(Fι ® R{r/ι\ T/pn

f'T) -> Hι(Fι ® R{r/ι\ T)

of the exact sequence 0 —» T P-+ T -> T/pn'T ^ 0 is injective since
H°(Fι ® R(r/ι\ T) = 0. By Proposition 3.6 (which we apply by taking n' as n in
Proposition 3.6), δ sends α to the image of — ωr under the canonical map

Hι(R('\ T) -> H\Fι ® R^r\ T) ^- H\Fι ® RW\ T).



EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS 335

On the other hand, by Lemma 4.6 (which we apply by taking n' as n in Lemma
4.6), δ sends β to

-{^>/KL//)l ωr/ι e H\RW\ T).

Hence by Lemma 4.7, δ sends α and β to the same element of Hι(Fι ® Λ^ 7 ), Γ).
Since δ is injective, we have oc = β.

§5. The condition (ii)

We consider effects of the condition (ii) in 0.6.
Let (F,T,N,Nf) be as in 0.1 and fix a divisor d > 1 of TV. Let V =

In §5, we assume that the condition (ii) in 0.6 is satisfied. That is, we
assume that there exists an element σ of Gal(β/(? a b ) such that dim/r(Ker(l — σ :
K-> V)) = 1. We fix such σ.

The aim of this section is to prove Proposition 5.5 which says that for a
prime number / which is "good for (σ,m,«)" in the sense of 5.2, the map

ψι : H\Ft ® Z[ζml T/pnT) -+ H\Ft ® Z[ζm], T/p"T)

(cf. 4.4) is defined and is nearly an isomorphism, and the Λmw-modules
Hq{Fι®Z[ζm],T/pnT) for # = 0,1 are nearly isomorphic to Λm,«.

5.1. We define some fields Ω,Ω r, etc.
Let Ω be the extension of Qab corresponding to the kernel of Gal(Q/Qab) ->

AutθF(T). Let Ω' be the fixed subfield of Ω by σ.
For m,n > 1, let Ωm>/ί be the extension of Q(ζm) corresponding to the kernel

of G a l ( β / g ( ί w ) ) -> AutθF(T/pnT), and let Ωf

mn be the fixed subfield of Ωm?M

by σ.

5.2. By a "good maximal ideal for (σ,w,«)", we mean a maximal ideal v
of 0Q'mn[l/(mNf)} (Oςι>mn denotes the integer ring of Ωf

m n) satisfying the following
conditions (5.2.1) andWf5.2.2).

(5.2.1) The Frobenius substitution of v in Gal(Ωmin(ζp»)/Ω'mjn) coincides with the
image of σ.

(5.2.2) v is of degree one over Q. (That is, the local field of v is isomorphic to
Qι for some prime number /.)

By Chebotarev's density theorem, there are infinitely many good maximal
ideals for (σ,m,n).

By a "good prime number for (σ,m,ή)", we mean a prime number which
lies under a good maximal ideal for (σ,w,«).

A good prime number / for (σ,m,«) satisfies / = l m o d ^ w because the
Frobenius of / in Gal(Q(ζpn)/Q) coincides with the image of σ which is the
identity element.
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LEMMA 5.3. If I is a good prime number for (σ,ra,«),

d e t Λ m ) W ( l - Ψι : Φm,« -> Φm,«) = 0

where Am,n and Φmn are as in 4.3.

By Lemma 5.3 and 4.2, for a good prime number / for (σ,m,ή),

ψt : Hl(Fl ® Z[£m], W Γ ) - i/°(F/ ® Z[fm], W Γ )

is defined.

Lemma 5.3 and (4.3.1) show that if (m,n,n') has the property (2.1.1) and if
r>\ is a square free integer whose all prime divisors are good prime numbers
for (σ,m,nf), then the conditions (2.1.2) and (2.1.3) are satisfied and hence κr e
Hι(Z[ζm,l/Nr],T/p") is defined.

Proof of Lemma 5.3. Since / splits completely in Q(ζm)/Q by (5.2.2), we
have the first equation in

θF^ ~ Ψi T/pnT - T/pnT)

l ~ * T/pnT - T/pnT)

= detoF(l -σ:T ->T) mod pn.

But
detθ F(l - σ : T -+ T) = detF(l - σ : V -> F) = 0

since 1 — σ : K —> F has a non-trivial kernel.

5.4. Take OF-homomorphisms

such that μ o (1 — σ) = 0, μ is surjective, and v induces an isomorphism from Op
to Ker( l -σ\T-+T).

For a good maximal ideal v for (σ,m,ή) lying over a prime number /, we
have Λmλ2-homomorphisms

μv: H\Fl® Z[ζm],T/p»T) -> Λm,n

defined as follows. Let u be the maximal ideal of Z[ζm, l/N] lying under υ.
Since / splits completely in Q{ζm)/Q and the residue field Fυ of v coincides with
F/, we have canonical AmiB-isomorphisms

Z[ζm], T/p"T) έ- Λm,« ® H"(FU, T/p"T)

-=* Λm>n(g) H"(Fv,T/p"T)
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for any q. The map μ induces Hx(Fv,T/pnT) -> OF/pnOF and the map v
induces OF/pnOF —• H°(Fv,T/pnT). These maps and the composite isomor-
phism in (*) give the Am^-homomorphisms μv and vυ. As is easily seen, the map
μυ is surjective and the map vυ is injective.

PROPOSITION 5.5. (1) There exists a non-zero integer t having the following
property. For any m,n > 1, and for any good maximal ideal υ for (σ,m,n) lying
over a prime number I, t kills the kernels and the cokernels of the maps

ψ, : H\F, ® Z[ζm], T/p"T) -+ H\F, ® Z[ζm], T/p"T)

μtt:H\Fι®Z[ζm\,T/pnT)^Amtn

vv : Λm,n -» H°(F, ® Z[ζm], T/p"T).

(2) Assume that the condition (iistr) in 0.6 is satisfied, and assume that μ

is choosen so that μ induces T/{\ — σ)T-^ OF. Then for v and I as in (1),

Φι,μv, and vv are bijective.

PROPOSITION 5.6. Let v be a good maximal ideal for (σ,m,n) lying over a
prime number I Let t\,t2£ λm,n, a e Hι{Fι (x) Z[ζm],T/pnT), and r a multiple
of I Assume that t\ kills the cokernel of fa : Hι(Fι ® Z[ζm],T/pnT) ->
H°(F! ® Z[ζm], T/pnT), and t2 kills the kernel of μv : Hι(Fι ® Z[ζm], T/pnT) -+
ΛW;W. Assume also that if we identify H°(Fι ® Z[ζm],T/pnT) with
H°'(Fι® Z[ζm],TI'pnT(-l)) by using a Z/pnZ-basίs of H°(FhZ/pnZ(l)), then
ψι(a) belongs to dι(Hι(Z[ζmi 1/Λfir], T/pnT). Then t\t2μv(a) kills the cokernel of
dt : Hι(Z[ζm, 1/JVr], T/pnT) - H°(Fι ® Z[ζm], T/p"T(-l)).

{Note that if I is a good prime number for (σ,m,w), then F\ has a primitive
pn-th root of 1.)

We prove Proposition 5.5 in Lemmas 5.7, 5.8 and section 5.9 below, and
prove Proposition 5.6 in 5.10 below.

LEMMA 5.7. Let φ : T -^ T be the cofactor homomorphίsm of\—σ:T-*T.
Then

φ = a - v o μ

for some element a of OF such that

(5.7.1) lcngthθF(OF/(a)) = lengthy(Ker(Γ/(l - σ)T A OF)).

Proof Ker(l - σ : T -> T) is an 6V-direct summand of T, for the quotient
Γ/Ker(l - σ : T —• T) is embedded in T via 1 - σ and hence torsion free. Hence
there exists an O/r-basis (eϊ)ι^ι^r of T such that e\ = v(l). On the other hand,

there exists an O^-basis (^)i<z<r °̂  τ s u c n t n a t Keι) = 1 a n ( ^ s u c n t n a t (eΊ)i<ι<r
is an (9/r-basis of Ker(μ). From the definition of the cofactor homomorphism,
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we have

(5.7.2) φ{e[) = 0 for 2 < i < r,

(5.7.3) φ(e[) =ae\ where a is the element of OF satisfying

e[ A (1 — σ)β2 Λ Λ (1 — σ)er = a e\ A Λ er.

Let fe be the element of Op such that

(5.7.4) (1 - σ)eι A Λ (1 - σ)er = b e'2 A Λ e'r

Then

lengthθ F(OF/(ό)) = lengthθ F(Ker(Γ/(l - σ)T Λ OF)).

By taking ^ Λ o f (5.7.4), we have by (5.7.3)

a e\ A Λ er = & ej Λ Λ e'r.

Hence a — b- (unit of Op).

LEMMA 5.8. Let ψ : T —> Γ fee α^ /« 5.2. Lei α fee α« element of OF

satisfying the equation (5.7.1), and let c be an element of Of which kills
Ker(7 7 /(1 — σ)T —> O^). 77ze« ybr α«^ n > 1, v̂

(1)

Coker(l - σ : T/pn

/51 surjectίve, and its kernel is killed by c.

(2) The kernel and the cokernel of

φ : Coker(l - σ : T/pn -> T/pn) -+ Ker(l - σ :

are killed by ac.

(3) The map

OF/p" A Ker(l - σ : Γ / ^ - T/p")

is injective, and its cokernel is killed by c.

Proof (1) and (3) are shown easily, and (2) is deduced from Lemma 5.7.

5.9. Now we can prove Proposition 5.5. By Lemma 5.8, the kernel and
the cokernel of ψ[ are killed by ac, and the kernels of μυ and vv and the cokernels
of μv and vv are killed by c. Under the assumption of (ii), we can take
a = c — 1.

5.10. We prove Proposition 5.6. Let x e H°(Fι ® Z[ζm],T/pnT). Then
tχX= φ^y) for some y e Hx{Ft ® Z[ζm),T / pnT). Since

μv(Mυ(a)y) = Mv(a)Mv(y) = vv(Mv(y)<*)> w e h a v e

hμυ[μ)y = t2μv{y)a.
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By applying φj to the last equation, we obtain

tit2μv(Φ = *2A,(j#/(«) 6 d,

§6. Preliminary on Galois cohomology I

The aim of §6 is to prove Proposition 6.1 concerning Galois cohomology of
a Galois representation of G a l ( β / β ) .

PROPOSITION 6.1. Let (F, T,N) be as in 0.1, and let V =Q®T. Assume
either one of the following (i) (ii) is satisfied.

(i) V is semi-simple and i / ° ( β a b , V) = 0.
(ii) # ° ( β a b , V) = V.
Fix a subfield Ξ of Q such that Gal(β/Ξ) is an open subgroup of

Ker(Gal(β/β a b ) -> Aut(Γ)) {the arrow is the action on T) and such that Ξ is
Galois over β. Let

Λ = <M[Gal(ρab/β)]],

and let a a A be the annihilator of the A-module 7/°(β a b, T) (so a is A in the case
(i)). Then there exists a finite number of open ideals b i , . . . ,b r of A such that the
product ideal αbi b r annihilates the kernel of

H\K, T/pnT) -> Hι(Ξ, T/pnT)

for any subfield K of β a b and for any n>\.

Here Hι(K,T/pnT) is regarded as a Λ-module in the natural way. The

kernel in problem is a Λ-submodule of Hι(K,T/pnT).
We prove Proposition 6.1.
The image of Gal(β/β) in Aut(Γ) is a Lie group over Qp ([Bo, Chapter III]).

Let g be the Lie algebra of this Lie group (loc. cit. §3), and let ί) = [g,g].
For a sufficiently large finite Galois extension L of Q in β, the Lie algebra of

the image of Gal(β/L a b ) in Aut(Γ) coincides with ί). In the case (i), fix any
such L. In the case (ii) (ί) = 0 in this case), take L = β. We prove the fol-
lowing two lemmas.

LEMMA 6.2. //*(Gal(ΞL a b /L a b ), T) is a finite group for any q>\.

LEMMA 6.3. Let Λ' = OF[[Gal(Lab/L)]], and let a' a A' be the annihilator of
the A!-module H°(Lab, T). Then in the case (i), the ideal α'Λ of A generated by
the image of a' is open.

We prove Proposition 6.1 assuming Lemmas 6.2 and 6.3.
By Lemma 6.2, for each q > 1, there exists an open ideal cf

q of A' which
annihilates /ί^(Gal(ΞL a b /L a b ), T). Since Λ ; -> A is a finite morphism, the ideal
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c'Λ of A generated by the image of c'q is an open ideal of A. On the other hand,
since Gal(β a bL/g a b) is a finite group, for each q > 1, there exists an open ideal
cq of A which annihilates Hq{G?A(QabL/Qab),T). Let α' be as in Lemma
6.3. Note α = α' in the case (ii). We show that the ideal (ct'A)(cjA)2(c2A)c2C2
annihilates the kernel of the map Hι(K,T/pnT) -> Hι(ΞLab,T/p"T) for any
subfield K of β a b and for any n>\. This implies Proposition 6.1 (by virtue of
Lemma 6.3 in the case (i)). This map factors as

H\K, T/pnT) - ^ Hι{KL, T/pnT) - ^ Hι(ΞLab, T/pnT).

We show that cfe kills the kernel of (a), and α^cί) 2^ kills the kernel of (b).
We consider the kernel of (a). In the case (ii), (a) is the identity map and

there is nothing to prove. So consider the case ίi). The kernel of (a) is
contained in the kernel of Hx{K,T/pnT) -> Hι(Qa^L,T/pnT) which is iso-
morphic to Hι(Gal(QabL/K),T/pnT). There is an exact sequence

0 -> /ί 1(Gal(β a b/^:),//' 0(β a b, T/pnT)) -> Hι(Gal{QabL/K), T/pnT)

-> Hι(Gal(QabL/Qab), T/pnT).

By the exact sequence

^C Hι(Gzl{QabL/Qab), T)—>Hι(Gίύ(QabL/Qab), T/pnT)

and by the assumption H°(QΆb,T) = 0, q kills H°(Qab,T/pnT) and c ^ kills

Hι(Gid(QΛhL/QΛh),T/pnT). Hence cfc2 kills Hι{G?l(LQ*b/K), T/pnT).
Next we consider the kernel of (b). It is isomorphic to

Hι(Gal(ΞLab/KL),T/pnT). There is an exact sequence

0 -> Hι(Gal(Lab/KL),H°(Lab, T/pnT)) -> Hι(Gsd(ΞLab/KL), T/pnT)

-> Hι(GeΛ(ΞLab/Lab), T/pnT).

We have an exact sequence

^°(L a b, T) ^ 7 / ° ( L a b , T/pnT)

^Hι(Ga\(ΞLab/LΆb), T) -^ Hι(GsΛ{ΞLab/Lab), T)

—>Λr l(Gal(ΞLab/Lab), T/pnT) ^ i / 2 (Gal(ΞL a b /L a b ) , Γ)

where ^^(Gal(ΞLa b/La b), Γ) denotes l im,^(Gal(ΞL a b /L a b ), T/pιT). (Since
Gal(ΞLab/Lab) -> Aut(Γ) has finite kernel, Gal(ΞLab/Lab) is a Lie group over
Qp. Hence ^^(Gal(ΞLa b/La b), Γ/^ fΓ) are finite groups for all q and i by [La].
The above sequence is exact because the inverse limits for filtered inverse systems
of finite sets preserve exactness.) Hence α't[ kills 7/°(Lab, T/pnT) and c[cf

2 kills
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Hl(G<a(ZL*h/L*h),T/pnT). Hence α'(c{)2c£ kills

Hι{Ga\{ΞL*h/KL), T/pnT).

It remains to prove Lemmas 6.2 and 6.3.

6.4. We prove Lemma 6.2. Let q>\. Since # * ( G a l ( Ξ L a b / £ a b ) , Γ)
is a finitely generated <9F-module, it is sufficient to prove that
77*(Gal(ΞL a b/L a b), F) = ρ ® i/*(Gal(ΞL a b /L a b ), Γ) is zero. Since the Lie
algebra of Gal(ΞL a b /L a b ) coincides with ϊ), #?(Gal(ΞL a b /L a b ) , F) is embedded
in //^(ί), F) by [La, Chapter 5, Theorem 2.4.10]. As we will see below, ϊ) is a
semi-simple Lie algebra, and this implies Hq(ί), V) = 0 ([CE]).

The semi-simplicity of ί) can be proved as follows. In the case (ii), we have
ί) = 0 and hence is semi-simple. Consider the case (i). V is regarded as a g-
module and is a semi-simple representation of g. (The last fact follows from

{g-submodules of F}

= {βp-submodules of V which are stable under the action of some

open subgroup of Gal(β/β)}

([La]) and from the fact that V is semi-simple as a representation of any open
subgroup of Gal(Q/Q) over Qp.) Since g has a semi-simple faithful represen-
tation, ί) = [g, g] is a semi-simple Lie algebra ([Bo, Chapter I, §6 Proposition 5]).

6.5. We prove Lemma 6.3. Assume we are in the case (i). Let / be the
kernel of Ά' —• A. It is enough to show that A'/(a' -f /) is a finite group. The
ring Λ'/α' is finitely generated as an Op-module since it is embedded in
EndoF(/7°(£ a b, T)). Since V is semi-simple, Q®A'/a is a product of fields.
Since the Q® A'/V-module Q®A'/(a' + I) has no non-trivial homomorphism
into the faithful Q (x) A'/a'-module V as is seen by

we have Q®A!/(a' + I) = 0 . This proves the finiteness of A//(α/ + /) .

Remark 6.6. I learned the method to use the cohomology theory of Lie
algebras as above for the study of Galois cohomology, from Serre [Se3], and also
from Jannsen [Ja] in which (§4, Theorem 3) Serre's results in [Sβ3] are applied to
obtain results on Galois cohomology.

§7. Preliminary on Galois cohomology II

In this §7, we review the duality theory (cf. 7.1) for etale cohomology in
number theory and the localizing exact sequence (cf. 7.2), and relate them in
Proposition 7.7 to Proposition 6.2.

Let (F,T,N,Nf) be as in 0.1.
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7.1. We review a duality theory of Tate, Poitou, Artin, Verdier, Mazur
([AV], [Ma], [Se2, Chapter II, §6]).

Let K be a finite extension of Q, M > 1 a multiple of TV, and let P =
P(K, M) be the set of all places of K which are either archimedean or finite
places dividing M. Then there exists an exact sequence

/Ml
O v t/O/ SΛ \

-+ ti I <JK —-
\ lM\ ) veP

OK [ ^ ] , Γ*(!)//>"), OF/p

, 0.

H e r e Γ * denotes HomoF(Γ, OF) which is endowed with the dual action of
Gal(β/β) , A; denotes the completion of K at r, ^(A,, , ) = H°(Kυ, ) if ϋ is a
finite place, H°(KV, ) = 0 if v is a complex place, and H°(KV, ) is the cokernel
of the norm: i / ° ( ^ , ) -+H°(KV, ) if t; is a real place.

7.2. For a finite extension A of Q and for a multiple M of TV, the exact
sequence of etale cohomology for Spec(^Γ) —> Spec(O^[l/M]) (the localizing
exact sequence) has the form

where v ranges over all finite places of K which do not divide M, and Fv denotes
the residue field of v for each υ. The map dv is defined by 3.2.

Concerning the relation of the localizing exact sequence with the duality in
7.1, the map ιv coincides with the composite

^ HomOf(nl(Fv, T\\)lp% OF/pn)

( , / Γ l"
—>lAomoF\Hx\0K\ —
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where the first arrow is induced by the cup product to Hι(Fv, OF/pn) = OF/pn,
the second arrow is induced by Hι(Oκ[l/M], T/pn) -> Hι(Fv, T/pn), and the
third arrow is the map in 7.1.

7.3. Let n > 1, M a multiple of N, K a finite extension of Q in Q, L an
extension of K in Q, and let γ e H°{L,T* /' pn) (resp. γ e H°(L,T/pn)). We
define homomorphisms

(1 (θκ [JLJ,

resp. ^ M (L/^,Γ,y) :Gal(L a b /L)

( ( [ J ] ) H2(Kv,T/p")( ( [ J ] ( ) / ^ ) ©
V V L^J J veP(K,M)

as the map induced by the composite map

Λ Hι(L, OF/p") s Homc o n t(Gal(La b/i), O^//»").

(resp. as the composite of an^M(L/K,T*(l),γ) with the map

ή (cf. 7.1).

By the definitions, the map 0Ln,M{L/K,T,y) (resp. βnM(L/K,T,y)) factors
through the canonical surjection

Gal(Lab/L) -+ ΠM(L) =f Hom^i/1 (̂ OL U , β / z ) , β/Z^ - Gal(L/L)

where Z is the maximal abelian extension of L which is unramified outside prime
divisors of M.

7.4. We give a preliminary argument. For a finite group G, a ring R, and
an Λ[G] -module X, there exists a canonical isomorphism

HomR(X,R) * HomR[G](X,R[G})

which sends heHom^X.R) to x ι-> J ] α G G Λ(α~1x)α.

7.5. Assume that the conditions (i), (ii) in 0.6 are satisfied.
Let σ be an element of Gal(β/β a b) such that dimF(Ker(l - σ : V -» V)) =

1. Take O^ -homomorphisms μ .T^Op and v : OF ^ T satisfying the con-
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ditions in 5.4. Fix a Z^-basis η of Zp(\). Let the notations Ω,Ω' ,Ω m w ,
Ω'mJm,n > 1) be as in 5.1. Let Am,n = (OF/p")[Gίύ(Q(ζm)/Q)] as before. '

The following maps will be important in later sections:

(7.5.1) an,M(Ω'm

(7.5.2) Λ.

®H2(Q(ζm)v,

(M is a multiple of TV, P = P(Q(ζm),M)). Here we identify the target group
HomAmn(Hι(Z[ζmil/M],T/p"),Λm,n) of (7.5.1) with the target group
HomθF{Hι(Z[ζm,l/M},T/pn),OF/pn) in 7.3 via the isomorphism in 7.4.

We give statements 7.6 and 7.7 concerning thejnaps (7.5.1) and (7.5.2). In
Proposition 7.7, let <μ> (resp. <v» be the 6V[Gal((>/β)]-submodule of Γ* (resp.
T) generated by μ (resp. by the image of v). By the condition (i), there exists a
non-zero integer which kills Γ*/<μ> and

LEMMA 7.6. Let v be a good maximal ideal for (σ,m,n) which does not divide
M, and let I be the prime number lying under v. Then:

(1) The map (7.5.1) sends the Frobenius of v in Π J I / ( Ω ^ J to the composite
homomorphίsm

[ ^ ] ή H\F, ® Z[ζm], T/p") -^ Am,n.

(2) The map (7.5.2) sends the Frobenius of v in Π M ( Ω ^ n) to the image of
1 e Am,n under

Am,n

 V^C H\F, ® Z[ζm], T/p*(-\))

where δι is the sum of du for prime divisors u of I in Q(ζm).

Lemma 7.6 (1) is easily shown, and Lemma 7.6 (2) follows from the de-
scription of dv in 7.2.

PROPOSITION 7.7. Let the assumptions and the notations be as in 7.5. Let c
be a non-zero integer which kills Γ*/<μ> and Γ/<v>. Fix a finite extension Ξ of
Ω such that Ξ is Galois over Q, and consider the Am,n-homomorphisms

(7.7.1) Am,n ® Gal(Ξ a b/Ξ) -+ Hom Λ w
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(7.7.2) Λm,w(χ)Gal(Ξ a b/Ξ)

(P = P(Q(ζm),M)

induced by (7.5.1) and (7.5.2), respectively. Let Λ = 0/r[[Gal(βab/'Q)]]9 and let
Q c λ f e the annihilator of the A-module 77°(β a b, T) {resp.H°(Qab, Γ*(l)). Then
there exists a finite number of open ideals b i , . . . , br of A such that the product
ideal cαbi br kills the cokernels of {1.1 Λ) (resp. (7.7.2)) for any m,n> 1 and for
any multiple M of N.

Remark 7.8. In Proposition 7.7, since we assumed that V is simple (the
condition (i) in 0.6), 7/°(β a b, T) is either zero or T itself. If # ° ( β a b , T) = 0,
then α — A.

7.9. We prove Proposition 7.7. We consider the statement for (7.7.1).
We apply Proposition 6.1. Let b i , . . . , b r be open ideals of Λ having the
property stated in Proposition 6.1. We prove below that cαbi br kills the
cokernel of (7.7.1).

For the statement for (7.7.2), if we take b i , . . . , b r for Γ*(l), the same
argument shows that cαbi b r kills the cokernel of the Λm r t-homomoφhism

Λm,rt <g> Gal(Ξ a b/Ξ) -+ H o m Λ _ (H1 (Z\^^\ , T*(l)/pnλ ,

induced by ocn^M(Ωf

m n/Q(Cm), 3Π*(1), v^"1), and this implies that cαbi b r kills
the cokernel of (7.7.2).

Now consider the homomorphism (7.7.1). By Proposition 6.1 and the
injectivity of Hι(Z[ζm, 1/M], T/p") -+ Hι(Q(ζm), T/p") and by duality, αbi br

kills the cokernel of

(7.9.1) Λm,w ® Γ* ® Gal(Ξ a b/Ξ) - Hom Λ w

For τ e Gal (β/β) , let τ be the canonical image of τ in Gal(β(C w )/β) <= Λmjrt.
Then we see easily that for any x e Am^n, yeT*, z e Gal(Ξ a b/Ξ), and τ e
Gal(β/β) , the image of τ~ιx®τy ®τzτ~x under (7.9.1) coincides with that of
x ® y ® z. Let x e Λm,w, j e Γ , z e Gal(Ξ a b/Ξ). _ Then we have cy = Στ

aτ
τμ for some finite family (τ) of elements of Gal(β/β) and for some aτ e OF.
The image of c (x® y ® z) under (7.9.1) coincides with that of ^ τ a τ τ x ® μ®
τ~ιzτ, i.e. with the image of Στaττx®τ~xzτ under (7.7.1).

§8. A ίiniteness result

The aim of §8 is to prove the following finiteness result Theorem 8.1 under a
certain additional assumption "w φ 0,-2". A complete proof of Theorem 8.1
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will be given in §13. In fact, in §13, we prove a finiteness result Theorem 13.3
which is a little stronger than Theorem 8.1.

THEOREM 8.1. Let (F,T,N,Nf) be as in 0.1, and let (zm)m be an Euler
system for (F, T,N). Assume that the conditions (i), (ii), (iii), in 0.6 are satisfied,
and that the image of ξ (cf 0.7) in Hι(Z[l/N], T) is not a torsion element. Then
the kernel of

is finite.

COROLLARY 8.2. Under the assumption in Theorem 8.1, ifH°(Qh V*(l)) = 0
for any prime divisor I of N, then H2(Z[\/N), T) is a finite group. _

(Here F* =HomF(V,F) endowed with the dual action of Gal(β/β).)

Corollary 8.2 follows from Theorem 8.1 and from the local Tate duality
which says that Q®H2(QhT) is the dual F-vector space of H°(Qh F*(l)).

In this §8, we prove Theorem 8.1 under the assumption that the integer w in
the condition (iii) in 0.6 for F satisfies w φ 0,-2.

8.3. Assuming that the condition (ii) in 0.6 is satisfied, we fix σ e
G a l ( β / β a b ) such that dim/r(Ker(<τ-1; K-> F)) = 1 and <9F-homomorphisms
μ : T —> OF and v : OF —• T satisfying the conditions in 5.4. Fix a basis η of
Zp(\). Let

α : Gal(Ωab/Ω) - Hom^ (H1 (Z fij ,τ\θF

β : Gal(Ωab/Ω) -> Kerf//2 (z\^\ , T) -+ ®H2(Qh T) )
\ \ L̂VJ / ι\N )

be the homomorphism induced by the case m— 1, M — N of (7.5.1) and (7.5.2),
respectively.

LEMMA 8.4. Assume that the conditions (i) and (ii) with w φ 0, — 2 in 0.6 are
satisfied. Then Coker(α) and Coker(/?) are finite groups.

Proof If i / ° ( β a b , T) = 0, this follows from Proposition 7.7.
_ Assume /Γ°(β a b, T) φ 0. Then G a l ( β / β a b ) acts trivially on T (cf. 7.8). Let

ε : A —» OF be the unique continuous OF -homomorphism which sends all ele-
ments of G a l ( β a b / β ) in A to 1 e OF. If the annihilator / c λ o f the A-module
Γ 0 Γ ( 1 ) satisfies ε(I) Φ 0, then Lemma 8.4 followsfrom Proposition 7.7. If
ε(I) = 0, then T = OF (with the trivial action of Gal(β/β)) or T = OF(\). But
this contradicts the assumption w Φ 0, —2.
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PROPOSITION 8.5. Let (F,T,N,Nf) be as in 0.1, and let {zm)m be an Euler
system for (F, T,N,Nf). Assume that the conditions (ii) and (iii) with w φ 0, -2
in 0.6 are satisifed. Let ξ be the image of ξ in Hι(Z[l/N],T). Then:

(1) α(x)(ί) β(x) e H2 (z [1], r ) for any x e Gal(Ωab/Ω)

where oc(x)(ξ) e 0^ means the image of ξ under the homomorphism oc(x), and
H2(Z[l/N],T)iOΐ denotes the torsion part of H2(Z[\/N],T).

(2) α(*)(£) β(y) + a(y)(ξ) /?(*) e # 2 (z [1], r ) /or αnj x, j e Gal(Ωab/Ω).

8.6. We deduce the case w φ 0, -2 of Theorem 8.1 from Proposition 8.5.
Since Cokerία) is finite (cf. Lemma 8.4) and ξ is not a torsion element, there

exists x e Gal(Ωa*7Ω) such that oc(x)(ξ) Φ 0. By Proposition 8.5 (1), this shows
β{x) e H2(Z[\/N], Γ) t o r. Let y be any element of Gal(Ωab/Ω). By Proposition
8.5 (2) and by β(x) e H2(Z[l/N], T\Oΐ, we have φ)(ξ) β(y) e H2(Z[l/N], Γ) t o r.
Since oi(x)(ξ) φ 0, this shows β{y) e H2(Z[l/N], T)tor Thus the image of β is
contained in the finite group H2(Z[l/N], Γ) t o r. Since Coker(/?) is a finite group
(cf. Lemma 8.4), this shows that Ker(i/2(Z[l/iV], T) -> ®ι\NH2(Qb T)) is a
finite group.

We deduce Proposition 8.5 from

PROPOSITION 8.7. Let Ω7 be as in 5.1, and let

a' : Gal((Ω')ab/Ω') - HomOf

be the homomorphisms induced by the case m = 1, M — N of (7.5.1) and (7.5.2),
respectively. Then for any x e Gal((Ω/)ab/Ω/) whose image in Gal(Ω/Ω') coin-
cides with the image of σ, we have

8.8. We prove Proposition 8.5 assuming Proposition 8.7. It is sufficient to
prove Proposition 8.5 (1). Fix an element τ of Gal((Ω/)ab/Ω/) whose image in
Gal(Ω/Ω') coincides with that of σ. Let x e Gal(Ωab/Ω) and let x' be the image
of x in Gal((Ω ;)ab/Ω ;). Then for any neZ, the image of the product τ(x')n in
Gal(Ω/Ω') is the image of σ. Hence

by Proposition 8.7. This implies
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a'(τ)(ξ) β'(τ)+n{*'(τ){ξ) • β(x) + a(x)(ξ) -β'(

By making n vary, we obtain Proposition 8.5 (1).
To prove Proposition 8.7, we prove first

LEMMA 8.9. Let n1 >n>\, and assume that the condition (2.1.1) for m = N
is satisfied. Let I be a good prime number for (σ,N,nf), and let ζ(l)n be the
image of ξe Hι(Z[l/N], T) in Hι{FhT/pn). Then Φι(ξ(l)n) belongs to

Proof By the remark after Lemma 5.3, κι e H\Z[ζN,\/N],T / pnT) is
defined. Consider the commutative diagram

s,\ s,

H°(F,®Z[ζN},T/p") - ^ H°(FhT/p")

Ϊ '

H\FhT/p»).

By Theorem 4.5, κ\ is sent by 3/ (on the left hand side) to Ψι(zN(l)n), where
zN{l)n denotes the image of zN in Hι(Fι <g> Z[ζN],T/pn). Since ξ(l)n is the
image of zN(l)n in Hι(Fι,T/pn) under the norm map, the diagram shows that
the image of κι in Hι(Z[l/N], T/pn) under the norm map is sent by <3/ (on the
right hand side) to Ψι(ξ(l)n).

8.10. We prove Proposition 8.7.
Take a non-zero integer t having the property described in Proposition 5.5.

We show that for any x e Gal((Ω/)ab/Ω/) whose image in Ga^Ω/Ω7) coincides
with that of σ and for any n > 1, the image of t2 <x(x)(ξ) - β{x) in H2(Z[l/N],
T/pnT) is zero. This implies t2 - oc(x)(ξ) - β(x) - 0 in H2(Z[l/N], T).

Since w φ 0, H°(Q(ζN), T®Q/Z) is a finite group. Hence there exists
n1 >n satisfying (2.1.1) for m — N.

The group Πγ(Ω^ n,)/pn> (cf. 7.3) is finite, for it is the Pontragin dual of the
finite group Hι(OΩ> \\/N],Z/pn>). Hence by Chevotarev's density theorem,

there is a maximal ideal v of OΩ> [1/ΛW] whose Frobenius substitutions in the
Galois groups

> and
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coincide with the images of x, respectively, and which is of degree one over
β. Then, υ is a good maximal ideal for (σ,N,ri) in the sense of 5.2. Let / be
the prime ideal lying under v1 Then by Lemma 7.6 (1), the element OL(X) (ζ) mod pn e
OF/pn coincides with μv(ξ(l)n) where μv : Hι(FhT/pn) -* OF/pn is as in 5.4,
and by Lemma 7.6 (2), the element β(x) mod pn e H2(Z[l/N], T/pn) belongs to
the image of η : H°(Fh (T/pn)(-\)) -> H2(Z[l/N], T/pn). Thus it is sufficient
to prove that t2 - μΌ(ξ(l)n) kills the image of the last map i\. Since // kills the
image of dι : Hι(Z[l/Nl], T/pn) -> H°(Fh (T/pn)(-l)) (cf. 7.2), it is sufficient to
prove that the cokernel of this map <9/ is killed by t2 μv{ξ{l)n). But this follows
from Proposition 5.6 and Lemma 8.9.

§9. Torsion property of H2

Let (F, Γ, N) be as in 0.1. For d and Λ as in 0.4, it is conjectured by many
people (Schneider, Greenberg, Jannsen, Perrin-Riou, ) that the Λ-module

H2 = H2(T) = Kmh
n

is a torsion module, i.e., killed by a non-zero-divisor of Λ (at least in the case T
comes from a motif). (See for example, [Ja, §4]).

The aim of §9 is to prove the following Theorem 9.1 concerning this
conjecture.

THEOREM 9.1. Let (F, T,N,N') be as in 0.1, let d, A be as in 0.4, and let

(zm)m be an Euler system for (F,T,N,Nf). Assume that the conditions (i), (ii),
(iii) in 0.6 are satisfied. Let q be a prime ideal of A of height zero (i.e. a prime
ideal of A such that Λq is afield), and assume that the image ξq of ξ (cf 0.7) in
Hι

q is not zero. Then

Hi = (0).

We give some preliminaries for the proof of Theorem 9.1, in 9.2-9.7.

9.2. We discuss the notion "the twist of an Euler system by a character".
Let F' be a finite extension of F, let χ : Gal(β(Cφco)/β) -+ (OF>)X be a

continuous homomorphism, and let T' be the^ following OF> -module endowed
with a continuous 6V'-linear action of Gal(β/β). As an 6V/-module, T' =
OF< ®OF T. An element σ of Gal(β/β) acts on V by χ(σ)~x ®σ.

We obtain an Euler system (z'm)m for (Ff,T',N,Nf), called the twist of
the Euler system (zm)m by the character /, in the following way. For an
integer m>\ such that N\m and (m,Nf) = 1, we define the element z'm of
Hι{Z[ζm,l/N],Γ) by
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where z'mn is the following element of Hι(Z[ζm,l/N],T^'/pn). For an integer
0 h i 1 h h h h h i Gl(Q/Q(ζ)) (O/n)xn > 0, there is i > 1 such that the homomorphism Gal(Q/Q(ζmpl)) -> (OF/pn)x

induced by χ is trivial. We define z'm n to be the image of zmpl e
Hι(Z[ζmpl,l/N],T) under

ττ\ ( τ\ r * TT / «\ rrl / r#- \ r ^ >τ f / «\

# ( z [^ ' 'ΛrJ ' Γ / p J ' H (,Z[Cm"'']vJ' T /p )

(The first arrow is induced by the canonical map T/pn —> T'/pn which is a
Gal(β/(?(Cm^))4iomomorphism.) It *s checked easily that (z'm)m is an Euler
system for (F',T',N,N').

LEMMA 9.3. Let the notation be as in 9.2. Let

(1) There is an isomorphism of A!-modules

where Λ —• Λ ' is the unique continuous Op-homomorphism which sends σ e

Gal(β(Cφco)/β)<=Λ to χ(σ)σ.
(2) TjΓ the conditions (i), (ii) zw 0.6 are satisfied, then (F', T', N, N') also

satisfies the conditions (i), (ii).
(3) Assume that the condition (iii) in 0.6 is satisfied and that there are

an integer r and a continuous homomorphism λ: Gal(β(Cφ«) /Q) —> (O/r/)x of finite
order such that the product χλ coincides with the r-th power of the cyclotomic cha-
racter. (The cyclotomic character means the homomorphism Gal(β(£φoo)/Q)
( Z p ) x defined by the action on pn-th roots of 1 for all n > 0.) 7
(F',T',N,Nf) satisfies the condition (iii).

Prao/ (1) and (3) are easy, and (2) follows from

LEMMA 9.4. Let k be a field, G a group, and let U be a finite dimensional k-
vector space endowed with a k-linear action of G. Assume that there exists σ e G
such that

dim*(Ker(l - σ : U -> U)) = 1.

Then the following (i) (ii) are equivalent.
(i) U is irreducible as a representation of G over k.
(ii) Ker(l — σ : U —> U) generates U as a k[G]-module, and Ker(l — σ :

U* —• £/*) generates U* as a k[G)-module. Here U* denotes Hornet/,/:) endowed
with the dual action of G.

Proof It is clear that (i) implies (ii). Assume (ii). Let W be a k[G]-
submodule of U such that W φ U. Then by the assumption, W does
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not contain Ker(l — σ : U —» U). Hence 1 — σ : W—> W is bijective. Thus
dim*(Ker(l - σ : U/W -> U/W)) = 1, and hence dim*(Ker(l - σ : (U/W)* ->
(U/W)*) = l. This means that the £[G]-submodule (U/W)* of U* contains
Ker(l - σ : U* -> U*)9 and hence we have (U/W)* = U\ Hence W = 0.

We use the following module theoretic lemma for the proof of Theorem
9.1.

LEMMA 9.5. Let R be a Noetherίan integral domain, and let M be a finitely
generated R-module.

(1) Assume that there exists a prime ideal p of R such that κ(p) ®RM =
0(κ(p) here denotes the residue field of p). Then M is a torsion R-module.

(2) Let x be an element of M, and assume that x is not an R-torsion element
(that is, ifaeR and ax — 0, then a = 0). Then for almost all prime ideals p of R
of height one, the images of x in κ(p) ® Λ M are non-zero.

(3) If M is a torsion R-module, κ(p) ®^ M = 0 for almost all prime ideals p
of R of height one.

Proof. (1) If κ(p) ®RM = 0, we have Rp®RM = 0 and hence M is a
torsion jR-module.

(2) For some non-zero element / of R,R[l/f]x becomes an R[l/f]-direct
summand of R[l/f] ®RM and is a free R[l/f]-module of rank one. For any
prime ideal p of R which does not contain / (note there are only finitely many p
which contain / ) , the image of x in κ(p) ®R M is not zero

(3) There exists a non-zero element f of R which kills M. For any prime
ideal p of R which does not contain /, we have κ(p) ®R M = 0.

9.6. Let m>\ be an integer which divides dp1 for some /. Then there
exist spectral sequences

^ => E'ao=H'(z\ζnn^T>j (m > 3 or p Φ 2)

i => E^ = Q® Hι(z\ζm,^\, τ\ (any m)

which comes from the isomorphism

Am ®ΪR lim ΛΓ(Z[ί φ I ], T/pnT) * R Urn Λ

for m > 3 or p φ 2 ([BO, Appendix B]). (The strange condition "m > 3 or
p φ 2" appears here to have the ίiniteness of the cohomological dimension. If
m > 3 (then F has no real place) or if p φ 2, the /7-cohomological dimension of
Spec(Z[ίm,l/iV]) is 2 ([Ma]).



352 KAZUYA KATO

9.7. Now we prove Theorem 9.1.
Let Δ be the torsion part of Gal(β(Cφ°o)/β), and let F' be the subfield of Λq

generated by the image of ZP[A] in Λq. Let Θ be the set of all continuous
homomorphisms

x

satisfying the following conditions (9.7.1) and (9.7.2).

(9.7.1) For σ e A, χ(σ) coincides with the image of σ under the canonical map
Δ c ZP[A] -> F' cz Λq.

(9.7.2) There are an integer r and a continuous homomorphism λ:
Gal(β(Cφoo)/β) —> (Of)x of finite order such that χλ coincides with the r-th
power of the cyclotomic character.

If χ e Θ is given, define 71', (zf

m)m, A' as in 9.2 with respect to χ. We regard
Λ' as a ring over Λ with respect to the unique continuous Op-homomorphism
which sends σ e Gal(β(£φ«)/β) to χ(σ)σ. Let q' be the ideal of Λ' generated by
the image of q. Then q 'ΠΛ^q. Since Λ' ®AH

2(T) ^ H2(T') (cf. Lemma
9.3 (1)), H2(T)q - 0 is equivalent to H2(Tf)q, = 0. Furthermore (JF', T',N,N')
satisfies the conditions (i), (ii), (iii) by Lemma 9.3 (2), (3). Thus Theorem
9.1 for {F,T,N,N',(zm)m,d,c\) is equivalent to Theorem 9.1 for
(Ff,Tf,N,Nf,(z'm)m,d,qf). By the condition (9.7.1), q' is contained in the kernel
of the unique continious Op<-homomorphism ε: A' —> F' which sends
Gal(Q(ζdpr)/Q)<=A' to 1.

Consider the spectral sequence

(9.7.3) EΪJ=Ύor«(F',H>{T')) =* i& = Hk(z [^

where F' is regarded as a A!-module with respect to ε : Λ' —> F', and F' =
Q®T' (the case m = 1 of the second spectral sequence in 9.6). We obtain from
(9.7.3)

2

By Lemma 9.5 (1) applied to R = Λ'/q' and p = Ke^A'/q7 -> F'), we see the
following fact: If H2(Z[l/N], Tf) is a finite group, then Λ'/q' ®AΉ

2(Tf) is a
torsion A'/q'-module and hence H2(Tf) , = 0. Hence for the proof of Theorem
9.1, it is sufficient to prove that there exists χ e Θ for which H2(Z[l/N], T') is a
finite group.

For χ e Θ, let pχ be the kernel of Λ/q —> F1 which is induced by the unique
continuous OF-homomorphism Λ —> F r which sends σ e Gal(β(Cφ«)/β) to χ{σ).
Then pz is a prime ideal of height one. By Lemma 9.5 (2) applied to R = Λ/q,
M = Λ/q 0 A / / 1 , x — the image of ξ in M, we see that the image of ξ in
κ(pχ) (χ)Λ β^1 is not zero for almost all χeΘ. On the other hand, by Lemma 9.5
(3) applied to R = Λ/q and to the î -modules

Λ/q ®Λ lim H2(Q, ® Q(ζφn), T)



EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS 353

for prime divisors / of N, which are torsion i^-modules by Remark 0.5.2, we see
that φχ) ® Λ l i m n # 2 ( β z <g) β(ζφ«), τ) = ° f o r almost all χ e Θ. These things
show that there exists / e θ satisfying the following conditions (9.7.4)-(9.7.6).

(9.7.4) The image of ξ in κ(pχ) ®AH
X is not zero.

(9.7.5) φχ) ®AlimnH
2{Qι ® Q(ζdpn),T) = 0 for all prime divisors / of N.

(9.7.6) V (defined by χ) is not of weight Φ 0, -2.

We prove that H2(Z[l/N], T1) is a finite group for T' defined by χ, by using
the part of Theorem 8.1 already proved in §8. Since we have a commutative
diagram

β ® Λ / q —?-> β φ Λ ' / q ' ,

in which the horizontal rows are isomorphisms, (9.7.4) (resp. (9.7.5)) is rewritten
as the following (9.7.7) (resp. (9.7.8)).

(9.7.7) Define f e H\T) for (F',T',N,Nf,(z'm)m,d) just as ξ for
(F,T,N,Nf,(zm)m,d). Then the image of £' in F'®A>Hι(Tf) is not zero.

(9.7.8) β ® i / 2 ( β / , r ) = 0 (equivalents, H°{Qh (Γx)*(l)) = 0) for all prime
divisors / of N.

(9.7.9) By (9.7.3), we have an injection

Hence (9.7.7) is rewritten as

(9.7.10) The image of ξ' in HX(Z[\/N),T') is not a torsion element.

By (9.7.6), (9.7.9) and (9.7.10), the case w φ 0, -2 of Theorem 8.1 proved in
§8 shows that H2(Z[l/N], T') is a finite group.

§10. Ring theoretic preliminaries

10.1. In this §10, we prove some ring theoretic propositions which are
used in later sections. In Propositions 10.2 and 10.3, let R be a Noetherian
commutative ring, and let p be a prime ideal of R such that the local ring Rv is a
discrete valuation ring. Fix an element π of R whose image in Rp is a prime
element, and let Ψ be the set of all ideals α of R such that the image of π in R/a
is a non-zero-divisor.
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PROPOSITION 10.2. Let M be a finitely generated R-module. Then there

exists an element t of R\p having the following property: For any α e Ψ and any

q> 1, t annihilates Tor*(R/a,M).

Proof We have Mv ^ Nv for some /^-module TV of the form

There are iΐ-homomorphisms

/ : AT -> JV, g:N^M

and an element t of R\p such that go f : M —> M coincides with the multi-
plication by t. This t has the desired property. In fact, for any α e Φ and any
q > 1, the composite

Tor*(Λ/α,M) Λ Ύoτf(R/a,N) Λ Tor*(Λ/α,M)

coincides with the multiplication by ί. But Tor£(R/a,N) —0.

PROPOSITION 10.3. i>/ M Z?e a finitely generated R-module, let s\,... , ^ ^
elements of M, let I\,..., 4 Z>β /ίfeαfe o/ /̂ , and assume that for 1 < i < k, the
annίhilator of

ι-\

st mod

jRp and the annihilator of the Rv-module (Σj=i Rp ' Sj)/(Σ /=i ^p
i i d ih (Λ) TT / i R\ h i h f l l icoincide with (Λ)p. Then there exists t e R\p having the following property: If

α e Ψ , I <i<k, Cj e R (1 < j < i), bjq e tJ(R) + It (1 < j < i, 1 < q < k, J(R)
denotes the Jacobson radical of R, that is, J(R) is the intersection of all maximal
ideal of R), and if

y=l \ q=\ J

then

tCj e α + // for 1 < j < ί.

Proof Let N = Ey=i R-Sj.
First take ίi e R\p which kills Torf (R/a,M/N) for any α e Ψ (cf.

10.1). Since there exists an exact sequence

Torf (Λ/α, Λf/ΛΓ) -^ N/αiV -^ Aί/αAί,

ίi kills the kernel of N/a -^ M/aM for any α e Ψ.
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Next we show that there exist tι e R\p and jR-homomorphisms

hβ : N -> R/It

defined for j , i such that 1 < j < ί < k, satisfying the following condition:

sj) = ΐ2 mod Ii

sg) = 0 for any q such that 1 < q <i and q Φ j .

Indeed, for 1 < ί < k, Σy=i Rv ' sj ^s a n ^p-direct summand of Nv and
( Σ i = i RP ' ^)/(/i) P (Σi=i ^ P ' SJ) i s a f r e e ^p/(//)p-module with basis
(sq mod(//) p (^^ = 1 Rv •^/))i<^<r Hence there exist i^p-homomorphisms

satisfying

h'j^Sq) = 0 for any q such that 1 < q < i and q Φ j .

This proves the existence of hβ.
Now let t\ and ^ be as above. We show that t — t\t2 has the property

stated in Proposition 10.3. Let 1 < / < k and assume

CjeR (1 < j < /), bjqet- J(R) + // (1 < j < i, 1 < ^ < fc).

Then we have

By applying hmι (1 < m < /), we obtain

for \<m<i. Since the matrix lz + («m;)i<m<^i< ;< z (1» denotes the unit
matrix of degree i) is invertible, we have ί c m e o + // for 1 < m < i.

10.4. In later sections, we will apply the above propositions to the following
situation: Let (F, T, N, Nf) be as in 0.1, and let d, A be as in 0.4. We will take
the ring Λ as R in the above propositions. In the rest of §10, we prove
preliminary results Propositions 10.5-10.7 concerning this situation.
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PROPOSITION 10.5. Let the situation be as in 10.4.

(1) A[l/p] is a finite product of principal ideal domains.
(2) The following three conditions (i)-(ϋi) are equivalent.
(i) Λ is a regular ring.
(ii) Let Δ be the torsion part of Gal(β(Cφ°o)/β). Then the order of A is

prime to p.
(iii) There exists a prime ideal p of A such that pep and such that Λ p is a

discrete valuation ring.
(3) The equivalent conditions in (2) are satisfied if p φ 2 and d = 1.
(4) The equivalent conditions in (2) are not satisfied if p = 2.

Proof. (1) Since Gal(β(Cφ-)/(2) s Δ x Z , ,

From this we have that A[l/p] is isomorphic to a finite product of rings of the
form 0F'[[^]][1//>] for finite extensions F' of F. These rings 6V>[[X]][1//?] are
principal ideal domains.

(2) It is easy to see that (ii) implies (i) and that (i) implies (iii). We show
that (iii) implies (ii). Identify Λ with 0/r[[Z]][Δ]. Let p be a prime ideal as
in (iii). Then p' = O/r^]] Γ\p coincides with the prime ideal of (^[[X]]
generated by the maximal ideal of Op. Write Δ = Δi x Δ2 where the order
of Δi is a power of p and the order of Δ2 is prime to p. Since
O/Γp^ΠΔi] -> (O/r[[Jr]][Δi])[Δ2] = Λ is etale, the regular ring Λp is etale over the
local ring O/r^]] ,[Δi]. Hence 0/r[pf]] ,[Δi] is regular, and this implies Δi =

{}
(3) If p φ 2 and d = 1, Δ is isomorphic to (Z/pZ)x whose order is prime

to p.
(4) The complex conjugation in Gal(β(£φ°°)/β) is of order 2.

COROLLARY 10.6. Let the situation be as in 10.4, and let p be a prime ideal
of A such that Av is a discrete valuation ring. Then, if p does not contain p
(resp. if p e p), pA[l/p] (resp. p) is a principal ideal.

Proof The case p does not contain p follows from Proposition 10.5 (1).
In the case p e p, Λ is a regular semi-local ring by Proposition 10.5 (2), and
hence any prime ideal of Λ of height one is principal.

PROPOSITION 10.7. Let the situation be as in 10.4, and let p be a prime ideal
of A such that Λp is a discrete valuation ring. Let Σj be the set of all positive
integers which are divisors of dp1 for some i > 0. Assume that p does not contain
Ker(Λ -> Am) for any m e Σd. (Am = OF[Gal(Q(ζm)/Q)] as before.) Then there
exists an element t of Λ\p which kills the kernel and the cokernel of
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for any m e Σj.

Proof. We may assume m > 3. (The norm argument reduces the cases
m — 1 or 2 to the case m > 3).

If p does not contain p, take an element π of Λ which generates the ideal
A[l/p]p of Λ[l//?]. If /? e p, let π be a generator of the ideal p. (Such π exists
by Proposition 10.5.) We apply Proposition 10.2 to the case R = Λ, M = H2,
and to p and π here. Then the ideal α = Ker(Λ —> Λm) belongs to the set Ψ in
10.1. Take t of Proposition 10.2 for the Λ-module H2. By 9.6, we have an
exact sequence

( [ ^ ] ) 2) ̂  0.
Since t kills Tor£(Am,H2) for q >2, t has the property described in Proposition
10.7.

§11. Proof of Theorem 0.8, (I)

In this §11, we deduce Theorem 0.8 from Proposition 11.6, and reduce the
proof of Proposition 11.6 to Proposition 11.14 which will be proved in §12.

In §11 and §12, let the assumptions and the notations be as in Theorem 0.8.
Fix a prime ideal p of Λ such that Λp is a discrete valuation ring.

11.1. By Theorem 9.1 applied to the unique prime ideal q of Λ of height
zero such that p =3 ς, we see that H2 is of finite length as a Λp-module.

11.2. The inequality

length Λ p (# 0

2

p ) < lengthΛ p(//'/Λp<g

in Theorem 0.8 under the condition (ivp) is deduced from the inequality

lengthΛp(//0

2

 p) < lengthΛ p(Λ p//(O p)

in Theorem 0.8, as follows. Under the condition (ivp),

rankΛ p (JϊJ) = rankΛ p (H2

p) + n( K, p) = 0 + 1 = 1,

(cf. 0.5) and hence

as a Λp-module with TV a Λp-module of finite length. Let pr\ : Hp —> Λp be the
first projection. Then J(ζ)v — Avpr\(ξv), and hence
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lengthΛp(Λp//(£)p) = lengthy

11.3. For the proof of Theorem 0.8, we may replace T by the Tate twist
T(r) (reZ). (Twist the Euler system by a power of the cyclotomic character
(cf. 9.2).) Hence we may assume that the following conditions (11.3.1)—(11.3.4)
are satisfied. Let Σd be the set of all positive integers which divide dp1 for some
/ > 0 .

(11.3.1) The integer w in the condition (iii) in 0.6 is not 0,-2.

(11.3.2) For any meΣd, H2(Z[ζm,l/N]yT) is a finite group.

(11.3.3) For any meΣd, P does not contain Ker(Λ —> Am).

(11.3.4) The following does not hold: The action of Gal(β/β) on T factors
through Gal(β(£φoo)/β), and the induced action of Λ on T factors through
Λ/p.

In the rest of §11, we assume that the conditions (11.3.1)—(11.3.4) are satisfied.

11.4. Take an element π of Λ as follows. If p does not contain p, let π be
an element of Λ which is a generator of the ideal pA[l/p] of A[l/p}. If p e p,
let π be a generator of p. (Such π exists by Corollary 10.6.)

11.5. For a commutative ring R, an .R-module M, and an element x of M,
define an ideal JR(x,M) of R by

JR(x,M) = {h(x);h is an i^-homomorphism M —> R}.

If R is injective as an i^-module, and N is an î -module containing M, we
have JR(X,M) = JR(X,N). In this case we sometimes denote JR(X,M) simply
by JR(x). The ring ΛW>Π = OF[Gal(Q(ζm)/Q)/pn] is injective as a Λm,w-module.

PROPOSITION 11.6. For meΣd and n>\, let ξmn be the image of ξ in
Hι(Z[ζm,l/N],T/pnT). Let e = lengthΛ p((^) p). Then there exists an ele-
ment t of Λ\p such that for any meΣd and n > 1, we have the following inclu-
sion between ideals of Am^n

(11-6.1) t-JAmn(ξm,n)<=πeλm,n.

We deduce Theorem 0.8 from this Proposition 11.6.
We prove first some lemmas.

LEMMA 11.7. There exists ίeΛ\p such that for any meΣd, the image of
t-JA(ξ,Hι) in Am is contained in JAm{ξm,Hι(Z\ζm,l/N],T)). Here ζm denotes
the image of ξ in Hι(Z[ζm,l/N},T).
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Proof By Proposition 10.7, there exists s e Λ\p which kills the kernel and
the cokernel of

for any meΣ^. Let A be a Λ-homomorphism Hι —> Λ. Then there exists
a Λm-homomorphism Hλ(Z[ζm, l/N], T) —> Am which induces s2h on Hι®A

Am. This shows that the image of s2JA(ξ,Hι) in Λw is contained in
JAm(ξm,Hι(Z[ζm, l/N], T)). So we can take t = s2.

LEMMA 11.8. Let t be as in Lemma 11.7. Then for any meΣd
and any n>\, the image of t JA(ξ,Hι) in Amn is contained in

\

Proof The image of JAm(ξm,Hι(Z[ζm, l/N], T)) in Λm^ is contained in
Mm mod pn,Hι(Z[ζm, 1/7V], T)/pn)). By the exactness of

\ι_ _ι / / \ ι_ _ι

and by the injectivity of ΛmA2 as a Λm π-module, we have

JAmn (ξm mod p\Hx(z[cm, 1] , T)/P")

Hence Lemma 11.8 follows from Lemma 11.7.

11.9. Now we deduce Theorem 0.8 from Proposition 11.6. By Proposition
11.6 and Lemma 11.8, there exists /eΛ\p having the following property: For
any meΣj and any n > 1, the image of t JA(ξ,Hι) in Λm?rt is contained in
πeAm^n. By taking lim for various m and n, we have that t JA(ξ,Hι) = t J(ξ)
is contained in πeA. This proves e < lengthΛ (Av/J(ξ) ), and hence proves
Theorem 0.8.

11.10. In the rest of §11, we reduce Proposition 11.6 to Proposition 11.14
which will be proved in §12.

In 11.10-11.13, we fix notations which are necessary to state Proposition 11.14.
First, take an element σ of Gal(Q/βa b) such that dim/r(Ker(l - σ:

V -> V)) = 1. In the case pep, we take σ such that Coker(l - σ : T -> T) is
torsion free. We fix such σ.

Fix homomorphisms μ : T —> OF and v : OF -+ T having the properties
stated in 5.4. Fix a Zp-basis ^ of Zp{\).

Let the notations Ω J Ω ' J Ω ^ Λ J Ω ^ n be as in 5.1.

11.11. We fix elements τi,. . . ,τ* of Gal((Ω/)ab/Ω/) and an open subgroup
U of Gal(Ωab/Ω) as follows. Consider the homomorphism
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obtained from βn(Ωf/Q(ζm),T,vη-1) (meΣ,nd>\). By 7.7, (H%\ coincides
with the Λp-submodule of H2 generated by the image of Gal(Ω a b/Ω) under β.
Hence (H%)v coincides with the Λp-submodule of H2 generated by β(τ) when τ
ranges over all elements of Gal((Ω') a b/Ω') whose images in Gal(Ω'/Ω) coincide
with the image of σ. By this fact, we can find inductively, elements τi, τ2,. . . of
Gal( (Ω' ) a b / Ω ' ) satisfying the following conditions (11.11.1), (11.11.2).

(11.11.1) For any /, the image of τz in Gal(Ω/Ω') coincides with that of σ.

(11.11.2) For i > 1, the annihilator of

in Λp coincides with the annihilator of the Λp-module H\ P/{J2JZ\ \ ' β(τj))-
Then for some k > 1, Σ t i Ap β(τι) = H2

r We fix' such k.
For I <i<k, let e{ι) be the length of the Λp-module Q ^ = 1

 Av'β(τj))/
(Σ/=ί ^ P ' β(τj))- (βo the sum of e(ϊ) for 1 < / < k coincides with the length of
the Λp-module //Q p.)

If we denote Λ by R, the image of H2 in H2 by M, the image of β(τt) in M
by Si, and πe^R by //, then the assumptions of Proposition 10.3 are satisfied.
Let to be the element / e Λ\p of Proposition 10.3. The Jacobson radical /(Λ) of
Λ is an open ideal of Λ, and hence to ( Σ ^ i ^(ΛK) is an open subset of
Σι=i A st. Hence there exists an open subgroup U of Gal(Ω a b/Ω) whose image
under β is contained in to (Σt=\ ̂ (ΛK), such that the extension Ξ of Ω in Ω a b

corresponding to U is Galois over Q. We fix to and U.

11.12. For m,n > 1 and for an integer / such that 0 < i <k, let Tm?W)Z be
the set of maps ω from {1,...,/} to the set of all good maximal ideals for
(σ,/w,Λ) (cf. 5.2) satisfying the following conditions (11.12.1) and (11.12.2).

(11.12.1) For each j — 1,...,/, there exists an element Uj of U such that the
image of UJTJ in Y\N(Ωf

mn)/pn (cf. 7.3) coincides with the Frobenius of ω(j).

(11.12.2) For j = 1,...,/, let ω(j) be the prime number lying under ω(j). Then
the map ω from the set {1, . . . , /} to the set of prime numbers is an injective
map.

For ω e Ύ m 7 V , let r(ω) be the product Πι<J<icd(j).
(We interpret Tm,«,o to consist of one elemenF ω which satisfies r(ω) = 1.)

11.13. For m eΣj and r,n>\ such that there exists n1 >n for which the
4-ple (mN,n,nf,r) has the properties (2.1.1)—(2.1.3) (m in 2.1 is replaced here by
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mN) let

be the image of κr e Hι(Z[ζmN,l/N],T/pn) under the norm map.
For example, κ\^n = ξm>Λ.

PROPOSITION 11.14. There exists ί e Λ \ p having the following property. Let
meΣd,n>\. Then for any sufficiently large n', and any 1 < i <k and any
ω6Ϊmjv,«',i-i, we have the inclusion

Σ
ω'

where ω' ranges over the subset 6>/Tmw,«',z consisting of elements whose restrictions
to {1,...,/ — 1} coincide with ω.

Now we deduce Corollary 11.6 from this Proposition 11.14.
By downward induction on z, Proposition 11.14 implies the following

Proposition 11.15. (Note the case i — k of Proposition 11.15 is clear.)

PROPOSITION 11.15. There exists an element t of Λ\p having the following
property. Let m eΣ^,« > 1. Then for any sufficiently large n', for any 0 < i < k
and for any ω e Ύww,«',*, we have the following inclusion between ideals of Km^n

(11.15.1) ί . / Λ . , w ( ^ H , W ) r t ) c = π ^ + 1 ) + + ^ Λ m , w .

Consider the case / = 0 of Proposition 11.15. For meΣd and n > 1, since
H®(Q(ζmN), T ® (β/Z)) is finite by the assumption w φ 0 (cf. 11.3.1), there exists
nf >n such that (mN,n,nf) satisfies (2.1.1). Since the unique element ω of
ΎmN,n':o satisfies Kφ) m n = ξm m the case ι = 0 of Proposition 11.15 implies
Corollary 11.6.

§12. The proof of Theorem 0.8, (II)

The aim of §12 is to complete the proof of Theorem 0.8.
In §12, we have reduced Theorem 0.8 to Proposition 11.14. In this §12, we

prove Proposition 11.14. Let the notation and the assumption be as in
Proposition 11.14 (in particular, we assume (11.3.1)—(11.3.4)).

Proposition 11.14 is clearly reduced to the following Proposition 12.1 and
Proposition 12.2.

PROPOSITION 12.1. There exists an element t of Λ\p having the following
property. Let meΣd,n> 1. Then for any sufficiently large nf, for any 1 < i < k
and for any ωeΎmN,n',ι-u
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where ω' ranges over elements of T ^ n ^ whose restrictions to {1, . . . ,/—1}

coincide with ω and which satisfy ώ'{i) = 1 m o d r ( ω ) . (κV(ω) m «(<^'(0) denotes

the image of κr{ω)^n in Hι(Fώ>{£) ® Z[ζm], T/p*).)

PROPOSITION 12.2. There exists t e A\p having the following property: Let

m e Σd,n > 1. Then for any sufficiently large n!, for any I < i < k and for any

ω e TW7v,«',,-i, cof e Twτv,«',z such that ω is the restriction of ω' to { 1 , . . . , / — 1}

and such that ω'(i) = 1 mod r(ω), we have

t ' βω{ί)\Kr{ω),m,n\P^ \}))) ^ ' «ΛV« (Kr(ω'),m,n)

Proposition 12.1 follows from

LEMMA 12.3. There exists an element t of Λ\p having the following property:

Let meΣdin
f>n>\, 1 < / < k, ωeΎmN^a-X. Let h: Hι(Z[ζm,l/Nr(ω)},

T/pn)-^Am,n be a Am^n-homomorphism. Then t h is a Am,n~linear combina-

tion of Am^-homomorphisms of the form

, T/p"τ) - H\Fώ,{i) ® Z[ζm], T/p"T) ^ Λ,

where ω' ranges over elements of Tm^,«',z whose restrictions to {l,...,z— 1}

coincide with ω and which satisfy, ω'(ϊ) = lmodr(ω) .

Proof of Lemma 12.3. We will deduce from Proposition 7.7 that there exists

/eΛ\p having the following property (12.3.1).

(12.3.1) For any m,n>l and any multiple M of TV, the cokernel of

Am,n ® U -

is killed by t.

This t has the property stated in 12.4. Indeed, t h is a ΛW ) W-linear

combination of αΛ(w) with ueU, where ocn = ocn^Nr(<ω>)(Ω//Q(ζm), T,μ) (cf. 7.3).

Since an(u) — (xn{uτt) — α w (τ z ), t h is a ΛW ; W-linear combination of αrt(wτz) with

ueU. Take a maximal ideal v of Oa> [\/mN'r{ω)\ satisfying the following

(12.3.2) and (12.3.3).

(12.3.2) The Frobenius substitutions of υ in the Galois groups

^Nr(ω)(^mN n')/pH a n < ^ Gal(ΩmNin'(ζ n'r,ω\/Ω'mN n,)

coincide with the images of uτt, respectively.

(12.3.3) v is of degree one over Q.

Such v exists by Chebotarev's density theorem, since these Galois groups are

finite groups. This v is a good maximal ideal for (σ,m,«7).
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Define ω' e ΎmN)n>jt by co'(j) = ω(j) for 1 < j < i and by co'(ϊ) = v. Then
ώ'(ΐ) = 1 mod r(ω) because the Frobenius of ωf{i) in Gal(β(C r(ω))/β) coincides
with the image of uτι which is the identity element. By Lemma 7.6 (1), α^wτ,)
coincides with the composite map

) Λ

It remains to prove the existence of t satisfying (12.3.1). Consider the part
of Proposition 7.7 concerning the map (7.7.1). Let a,b\,...,br be as there.
Then the image of α under Λ —> Λ is not contained in p by (11.3.4), and the
images of bz (1 < / < r) under Λ —> Λ is not contained in p since the images are
open in Λ. If p e p, take c — 1 in Proposition 7.7 (we can take c=\ since
T = <v> and T* = <//> by (istΓ) and (iistΓ) of 0.6). Then by what we have seen,
there exists an element of cab\ br whose image t under A —> Λ is not contained
in p. By Proposition 7.7, this t has the property (12.3.1).

12.4. For the proof of Proposition 12.2, it is sufficient to prove that there
exists teA\p having the following property: For m,n,n',i,ω,ω' as in Pro-
position 12.2, there exists a Λm)Π-homomorphism

such that the image of κr^ω^m^n{ω'(i)) under

tμω,(ή : H\Fώ,{ί) ® Z[ζm], T/pn) -> Λm,w

is contained in πe^g(κr^^m^n) Λw ? n.

12.5. As a preliminary for the definition of g in 12.4, we define first Λ m α -
homomorphisms ha : H

ι(Z[ζm, l/Nr(ω')], T/pa) —> Λm,a for integers a such
that 1 < a < nf. By 5.5, there exists an element t\ e Λ\p having the following
property: For any m,a> 1, and for any good maximal ideal v for (σ,m,a) lying
over a prime number /, t\ kills the kernel and the cokernel of the homo-
morphisms

ψι : H\Fι ® Z\ζm\ T/pa) -+ H\FV ® Z[ζm], T/pa)

μv : H\Ft ® Z[ζm], T/pa) -+ Am,a.

Fix such t\, and define a Λm?fl-homomorphism

as follows. Let v = ω'(i), l = ω'(i). Let xe Hι(Z[ζm, \/Nr{ω% T/pa).
Then there exists y e H\Ft® Z[ζm],T/pa) such that
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t\ d,(x) = φ,(y)

in H°(F, ® Z[ζm], T/pa{-\)) g ^°(F/ ® Z[ζm], T/pa)

where (*) is obtained by the basis η of Zp{\). We regard (*) as identification.
Then t\y depends only on x (is independent of the choice of y). Define

ha(x) =μυ(t\y) eΛm,α.

LEMMA 12.6. The image of t\ha {which is an ideal of Am a) kills the cokernel

of

dι : H' ^ z [ ί w , ^ y ] , T/pή - H\Fl ® Z[ζm], T/pa).

Proof Let x e Hι(Z[ζm,\/Nr(ω%T/pa), and let y be as in 12.5. Since
e dι{Hι(Z[ζm,l/Nr(ω%T/pa), we have by Proposition 5.6 that tχha(x)

— tiVviy) kills the cokernel of 5/.

LEMMA 12.7. There exists t e Λ\p having the following property: Let
m,n,nf,i,ω,ωf be as in Proposition 12.2, let 1 <a<nf, and assume pa kills
H2(Z[ζm,l/N],T). Let b be an element of A which kills the cokernel of

(12.7.1) dώ,{iy.Hι(z[ζmiJ^^T/pή -, H°(Fώ,{ή ® Z[ζm],

Then

tb mod am e πe^Am

where am = Ker(Λ - , Am = OF[G*l(Q(ζm)/Q)]).

Proof of Lemma 12.7. By Proposition 5.5, there exists t\ eΛ\p which kills
the cokernel of vv : Λw ? α -^ H°(Fι (x) Z[ζm], T/pa) for any m,a > 1 and for any
good maximal ideal υ for (σ,m,α) lying over a prime number /. On the other
hand, let to e Λ\p be as in 11.11. We show that t = tot\ (resp. t = 2tot\) has the
property stated in Lemma 12.7 if m > 3 or p Φ 2 (resp. if m < 2 and p = 2). (If
p = 2, then 2 is not contained in p by Proposition 10.5 (4).)

Let be A and assume b kills the cokernel of (12.7.1). By the localizing
exact sequence

[ ^ ] T / P " )

we have



EULER SYSTEMS, IWASAWA THEORY, AND SELMER GROUPS 365

b I m ( V ( , ) : H\Fώ,(i) ® Z[ζm], T/pa(-l)) -+ H2

C Σlm(lω(j) •• H°(Fω(j) ® ZiU, T/p"){-\)) -f 7/
7=1

Hence by 7.6 (2), we have

i - l

(12.7.2) tιb.*n,(uiτι) = ΣcJ"n>(ujτJ) for some Cj e A in W z t J , T/p

with Uj e U (1 < j < i). Assume m > 3 or p = 2. Then by the fact pa kills
H2(Z[ζm, l/N], T) and by the first spectral sequence in 9.6, we have

Let M be the image of H2 in //j;, and let Sj (I < j < k) be the image of τy in
M. Let ct = -ίiZ?. Then from (12.7.2), we obtain

/ k \

cy(jy + Zj) e amM with zy e t0

By Proposition 10.3 (note αm e Ψ by (11.3.3)), we have toCj e am + πe^A. Since
ίocz = —tot\b, this implies /ô iZ? mod αm G πe^Am. In the case m <2 and /? = 2,
by the reduction to the case m > 3 by norm argument, we have 2tot\b mod am e

12.8. Now we prove the existence of the homomorphism g having the
property stated in 12.4 (this will prove Proposition 12.2 and hence 11.14 and
Theorem 0.8).

Assume n1 is sufficiently large. Then there exists an integer a such that n <
a<n', pa~n kills H2(Z[ζm, l/N], T) (note H2(Z[ζm, l/N]) is finite by 11.3.2),
pa~n e πe^Am, and (mN,a,nf) has the properties (2.1.1)-(2.1.3) ((rn,n,nf) in 2.1
is replaced here by (mN,a,nf); note H°(Q(ζmN),T ® (Q/Z)) is finite because
w / 0 by (11.3.1)).

Let t\ be as in 12.5, and let t2 be t of Lemma 12.7. By Lemmas 12.6 and
12.7, the image of t\t2ha is contained in πe^Am,a. Define a homomorphism

as follows. For x e Hι(Z[ζm, l/(7V>(ω'))], T/pa), write

tχt2 - h(x) = πe{i) y with y e Am,a
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and let
g'(x) = the image of y in Λm,w.

The image of y in Λm w depends only on x because

This map g' factors as

for some Λm?n-homomorphism g. To see this, since Λw>n is injective as a Λm n-
module and the sequence

τlή

is exact, it is sufficient to show that g' kills the image of the above map
"pn". But this fact follows from the commutative diagram

» " " Λ

Now we show that g has the property described in 12.4 for t—t\t2. From
Theorem 4.5, we obtain

This shows

ha(Kr{ω'),m,a) = ίl^u('cr(ω),m,α(

Hence

This proves Proposition 12.2.

§13. Selmer groups and finiteness theorems

In this section, we prove a finiteness theorem for the Selmer group of Γ*(l)
(Theorem 13.2), a finiteness theorem for H2 of T (Theorem 13.3) which is an
improvement of Theorem 8.1.
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13.1. Let T be a free Z^-module of finite rank on which Gal(β/β) acts
continuously. Let V = Qp ®Zp T. The Selmer group Sel(Γ) of T is defined
as a subgroup of Hι(Q, V/T) in the following way ([BK]). For each prime
number /, a β^-subspace H}(QhV) of Hι(QhV) is defined in [BK, 3.7] as
follows. If / Φ p,

H}(Qh V) = Kcv(Hι(Qh V) -+ Hι(QltUr, V))

where Qlm is the maximal unramified extension of βz. For I = p,

H}(Qp, V) = Ker(Hι(Qp, V) -+ Hι(Qp,Bcrys ®Qp V))

where Bcrys is the ring defined by Fontaine in [Fo]. Sel(Γ) is defined by

Sel(Γ) = Ksr(Hι(Q, V/T) -> \{H\Qh V/T)/lm(H}(Qh V)))
i

where / ranges over all prime numbers.
For example, if T is the /?-adic Tate module of an abelian variety A over β,

Sel(Γ) coincides with the /?-primary part_of the classical Selmer group of A.
If N > 1, p\N, and the action of Gal(β/β) on T is unramified outside prime

divisors of N, we have

Sel(Γ) = Kerίtf1 (z^, V/TJ -+ ®Hι(Qh V/T)/lm(H}(Qh V))\

In this case,

Sel(Γ) s (QP/ZPY Θ (finite group)

for some r > 0, because HX(Z[\/N], V/T) ̂  (βJZ p ) r ' Θ (finite group) for some
r ' > 0 .

THEOREM 13.2. Let (F,T,N,Nf) be as in 0.1, let (zm)m be an Euler system
for (F, T,N,Nf), and let V = F ®OF T. Assume that the conditions (i), (ii), (iii)
in 0.6 are satisfied. Furthermore, assume that V is a de Rham representation as a
representation of Gzl{Qp/Qp) over Qp ([Fo]), that Hι{Qp,V)/H}{Qp,V) is one
dimensional over F, and that the image of ξ (cf. 0.7) in Hι(Qp, V)/HJ{Qp, V) is
not zero. Then Sel(77*(l)) is a finite group.

We will deduce Theorem 13.2 from the following finiteness Theorem 13.3.

THEOREM 13.3. Let (F, T,N,Nf) be as in 0.1, let (zm)m be an Euler system
for (F, T,N,Nf), and let V = F ®Op T. Assume that the conditions (i), (ii), (iii)
in 0.6 are satisfied, and that the image of ξ (cf. 0.7) in Hι(Z[l/N], V) is not
zero. Then the kernel of
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is a finite group, where j is the inclusion morphism from Spec(-Z[l/iV]) to
Spec(Z[l//>]).

13.4. Theorem 8.1 is a consequence of Theorem 13.3. In fact, since the
sequence

is exact, Ker(i/2(Z[1/7V], T) ^®mH2(QhT)) is isomorphic to a quotient of~A\N

Ker(H2(Z[l/p]J*T) -^ H2(Qp,T)), and hence the finiteness of the former
follows from the finiteness of the latter.

13.5. The rest of §13 is devoted to the proofs of Theorem 13.2 and
Theorem 13.3. Let the notation and the assumption be as in Theorem 13.3.

Define Λ (cf. 0.4) by taking d= 1. Let

For a prime number /, let

Hf = limH"(Qι<S>Q(ζpn),T).
n

Let W = nomθF(\jmnH°(Q(ζpn),T\\)®θFF/OF),F/OF) which we regard as

a Λ-module in the natural way.
We will use often the spectral sequences

(13.5.1) Eι{' = Tor2i(F,HJ(jtT)) => E^ = H'[ Z\-\ JtV

(13.5.2) E? •-

(13.5.3) E

where F is regarded as a Λ-module with respect to the CV-homomorphism
Λ —> OF which sends all elements of Gal(β(C^oc)/β) to 1.

Let C — {/; / is a prime number, /|JV, I φ p).

LEMMA 13.6. (1) Hι(j\T) ^H\

(2) PFe Aflf̂  tf« exαcί sequence of A-modules

leC

(3) We /zαz e an exact sequence of A-modules

O v 1/2 v ZJΓ2/ rrι\ Tj2 TT/ Γl
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Proof. For n > 0, we have an exact sequence

®H°(Fι®Z[ζpn},Hι(Qhm,T))
leC

leC

Here in tf°(F/ ® Z[ζpn],H\Qhm, T)\Hι{Qhm,T) is regarded as a Gal(F//F7)-
module via the isomorphism Gal(F//F/) ^ Gal(β;J U T/QJ), and regarded as an
etale sheaf on Spec(F/ (x) Z[ζpn}). By taking the inverse limit of these exact
sequences, (1) and (2) are reduced to

(13.6.1) limi/°(F/ <g>Z%n\,Hx{Qhm, T)) = 0

f o r / e C . We prove (13.6.1). By taking HomO /. ( ,F/OF), (13.6.1) is equivalent to

(13.6.2) ljmHι(Fl®Z[ζp»},H°(Qltm,T*(l)®θF F/OF)) = 0.

(13.6.2) follows from the fact that the degree of any finite extension of Fι(ζp<χ>) is
prime to p.

Next (3) follows from the duality exact sequences

P»>p\J*T

([Ma]).

LEMMA 13.7. Let p be the kernel of the Op-homomorphism Λ —» Op which
sends all elements of Gal(Q(ζpκ)/Q) to 1.

(1) If Hι

v has a non-trivial torsion as a Ap-module, T ^ Op with the trivial

action of G a l ( β / β ) .
(2) If Wv φ 0, then T ^ OF(l) as an Op-module with an action o / G a l ( β / β ) .

Proof (1) The spectral sequence (13.5.2) shows

/Γ°(β, V) = H° (z [1], Vj * Torίp ( F , ^ ) .

If the Λp-module ^ has a non-trivial torsion, then Torj P(F,H^) φ 0 (note Λp

is a discrete valuation ring and F is the residue field of Λp), and hence
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H°(Q,V) φθ. By the simplicity of V (the condition (i) in 0.6), we see that
dinv(F) = 1 and the action of Gal(β/β) on V is trivial.

(2) We have

W/pW * Homo,(JΪ°(β, Γ*(l) ®OpF/OF),F/OF).

If Wv / 0 , this shows that H°(Q,T*(l) ®OFF/OF) is not a finite group, and
hence H°(Q, F*(l)) Φ 0̂  By the simplicity of V, we see that dim^F) = 1
and the action of Gal(β/β) on F*(l) is trivial.

13.8. In the case T = OF (resp. OF(l)), the map H2(Z[l/p],j\V)-+
H2(QP, V) is injective. In fact, by duality [Ma], the kernel of this map is dual of
F ®Q Ker(Ai) (resp. F ®Q Ker(λo)), where

+H\Qp,Qp{r)) (reZ).

h\ is rewriten as Z[l/p]x ® Qp -^ Q* ® Q and hence is injective. ho is injective
as is seen by class field theory.

13.9. Now we prove Theorem 13.3. By Lemma 13.7 and 13.8, we may
assume that H^ is torsion free as a Λp-module and Wp = 0. We assume these.

By the spectral sequence (13.5.2), F®AvH
ι

p is embedded in Hι(Z[l/N], V).
Hence the image of ξ in F (χ)Λp H

x

v is not zero. Since H^ is torsion free, this
implies J(ξ)p = Av. By Theorem 0.8, this implies HQV = 0. By the exact
sequence in Lemma 13.6 (3) and by Wv = 0, we have

By the spectral sequences (13.5.1) and (13.5.3), F(χ)Λp of this isomorphism gives
an isomorphism

Wzί-l,/' v)-^H2(Q^V).

This completes the proof of Theorem 13.3.

13.10. Now we prove Theorem 13.2. Let the assumption be as in The-
orem 13.2. Let S = HomZ|,(β/,,Sel(Γ*(l))). Then

S^Ker(V(z[-ί],ΛF*(l)

Since Sel(Γ*(l)) ^ (Qp/Zp)
r 0 (finite group) for some r > 0 and

HomZp(Qp, (Qp/Zpy Θ (finite group)) £ (Qp)\ it is sufficient to show S = 0.
In the perfect pairing of Tate duality
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H}(Qp,V) and H}(Qp,V*(l)) are the annihilators of each other ([BK, 3.8]).
Hence, the duality exact sequence

([Ma]) gives an exact sequence

HΊZ\-\,J\V)^H1(QPJV)/HUQP,V)^S*

(S* = HomF(S,F)). By Theorem 13.3, H2(Z[l/p],j\V) -» H2(Qp, F)isinjective.
Hence, it is sufficient to prove that Hι(Z[l/p],j\V) -> Hι(Qp, V)/H}(Qp, V) is
surjective. But Hι(Qp1 V)/HJ(Qp, V) is one-dimensional and the image of ξ in
this space comes from Hι(Z[l/p],j\V) because Hι(j\T)=Hι (Lemma 13.6
(1)).

Remark 13.11. We can apply the method in this paper to get the analogous
results for the Selmer group over K where K/ Q is a finite abelian extension, and
for the second etale cohomology over Ok[l/p] of j\T. See [Ka2J.
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