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GEOMETRY OF F-HARMONIC MAPS
MITSUNORI ARA

1. Introduction

Harmonic maps are critical points of the energy functional defined on the
space of smooth maps between Riemannian manifolds. There are many studies
on harmonic maps. Also, p-harmonic maps and exponentially harmonic maps
have been developed. Baird and Eells [BE], and Takeuchi [T] studied some
conformal properties of harmonic maps and p-harmonic maps, respectively. They
showed that if the dimension of the target manifold is equal to 2 (resp. p), then
the fibers of harmonic morphisms (resp. horizontally conformal p-harmonic maps)
are minimal submanifolds in the domain manifold. Leung [L], Cheung and
Leung [CL], and Koh [K] discussed the stability of harmonic maps, p-harmonic
maps and exponentially harmonic maps, respectively.

We would like to construct a unified theory for several varieties of harmonic
map. We give the notion of F-harmonic maps, which is a generalization of
harmonic maps, p-harmonic maps or exponentially harmonic maps.

In this paper, we discuss some conformal properties and the stability of F-
harmonic maps. Our results are extensions of [BE], [T] for conformal properties,
and [L], [CL], [K] for the stability. We can see results for harmonic maps, p-
harmonic maps or exponentially harmonic maps in a different viewpoint.

Let F : [0,00) — [0,00) be a C? function such that F’ > 0 on (0,0). For a
smooth map ¢:(M,g) — (N,h) between Riemannian manifolds (M,g) and
(N,h), we define the F-energy Ep(¢) of ¢ by

2
Er(9) = jMF('d—f'—) o,

where |dg| denotes the Hilbert-Schmidt norm of the differential d¢e
[(T*M ® ¢ 'TN) with respect to g and h, and v, is the volume element of
(M,g). It is the energy, the p-energy, the a-energy of Sacks-Uhlenbeck [SU]
and the exponential energy when F(7) =1t,(20)"%/p (p=4), (1+20)* (a> 1,
dim M = 2) and €', respectively. We shall say that ¢ is an F-harmonic map if
it is a critical point of the F-energy functional, which is a generalization of
harmonic maps, p-harmonic maps or exponentially harmonic maps.

This paper is organized as follows. In Section 2, we derive the first
variation formula for F-harmonic maps, and have a certain relation between
F-harmonic maps and harmonic maps through conformal deformations. In
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Section 3, we study the following problem; for a smooth given map ¥ : M — N,
does there exist an F-harmonic map ¢ is homotopic to ¥? In Section 4, we deal
with the stress energy tensor for the F-energy functional, and discuss weakly
conformal F-harmonic maps. In Section 5, we discuss horizontally conformal F-
harmonic maps, which is a generalization of harmonic morphisms (cf. [B], [BE])
or horizontally conformal p-harmonic maps (cf. [BG], [T]). In Section 6, we derive
the second variation formula for F-harmonic maps. In Section 7, we study the
stability of F-harmonic maps to unit spheres. One of our main results is as follows.

THEOREM 7.1. Let ¢: M — S" be an F-harmonic map from a compact
Riemannian manifold M to the n-dimensional unit sphere S". Assume that

2 2
() jM |d¢|2{|d¢|2F” (@'—) +Q2—-n)F’ (li;‘i) }vg <0.

Then ¢ is unstable.

In the case of nonconstant harmonic maps, the condition (%) implies that
n>2, since F'=1,F"=0. Similarly, in the case of nonconstant p-harmonic
maps, nonconstant exponentially harmonic maps, the condition (x) implies that
n>pn—2> |d¢|2, respectively. Therefore, Theorem 7.1 is an extension of [L],
[CL] and [K] for the stability of harmonic maps, p-harmonic maps and ex-
ponentially harmonic maps, respectively.

COROLLARY 7.2. Assume that (i) F" <0 and n >3, or (ii) F” < 0 and n = 2.
Then any stable F-harmonic map from a compact Riemannian manifold M to S" is
constant.

We remark that Corollary 7.2 (i) is also an extension of the result of [L] for
harmonic maps.

The author wishes to thank Professor Y. Hatakeyama, Professor Ta.
Takahashi, Professor M. Sakaki and Professor H. Urakawa for their constant
encouragement and valuable advice.

2. The first variation formula

Let F:[0,00) — [0,00) be a C? function such that F’ >0 on (0,00). Let
¢: M — N be a smooth map from an m-dimensional Riemannian manifold
(M,g) to a Riemannian manifold (N,%). We call ¢ an F-harmonic map if it is a
critical point of the F-energy functional. That is, ¢ is an F-harmonic map if and
only if

d
EEF(@)L:O =0

for any compactly supported variation ¢, : M — N (—¢ < t < &) with ¢, = ¢.
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Let V and MV denote the Levi-Civita connections of M and N, re-
spectively. Let V be the induced connection on ¢ 'TN defined by VyW =
NV, xW, where X is a tangent vector of M and W is a section of ¢~ 'TN. We
choose a local orthonormal frame field {e;},”; on M. We define the F-tension
field zp(§) of ¢ by

m 2 2
() = Z{ﬁe, (F ('df | >¢*e,-> - F'("’f ' )«s*ve,e,}
=1
(ol (2))

where () = 37, (V,,9.ei — ¢, Vee;) is the tension field of 4.
Under the notation above we have the following:

THEOREM 2.1 (The first variation formula).

GE @)= [ BV @),
where V = d¢,/dt|,_,.

Therefore a smooth map ¢ : M — N is an F-harmonic map if and only if the
F-tension field tr(¢) = 0.

Example. (i) Harmonic maps with constant energy density are F-harmonic
maps. In particular, in the case where ¢ is a isometric immersion, the following
properties are equivalent:

a) ¢ is minimal;

b) ¢ is harmonic;

¢) ¢ is F-harmonic.

(i) In the case where ¢ is a Riemannian submersion, the following properties
are equivalent:

a) The fibers of ¢ are minimal submanifolds;

b) ¢ is harmonic;

c) ¢ is F-harmonic.

(iii) The map ¢ : R™ — {0} — S™! defined by ¢(x) = x/|x| is an F-harmonic
map.

(iv) We choose a C* function F such that F’'(f) +2¢F"(t) is not identically
zero. For m>2, let y(r) (0 <a<r<b) be a solution of the ordinary dif-
ferential equation

[r4#) - i)elooms2o oo
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for a suitable initial condition. Set 4 = {xe R™|a < |x| < b}. Then the map
¢ : A — R defined by ¢(x) = ¢(|x|) is an F-harmonic map.

Proof of Theorem 2.1. Let ®:(—¢,¢) x M — N be defined by ®(z,x) =
#,(x), where (—e&,&) x M is equipped with the product metric. We extend the
vector fields 0/t on (—¢,¢), X on M naturally on (—¢,¢) x M, and denote those
also by 0/0t,X. Then

0

V=00,—
ot

t=0

We shall use the same notations V and V for the Levi-Civita connection on
(—&,€) x M and the induced connection on ®~!TN.
We compute

o . (1dg)*\ _ . (ldg)’
(40 - (4

where we use that

. - 0 0
o, i — Ve Wy - =W, | —,€| =
Vojo®@se; — V,, @ pr (O} [at e} 0

for the third equality.

Let X; be a compactly supported vector field on M such that g(X;, Y) =
h(®,(0/0t),®.Y) for any vector field ¥ on M. Then

2
o g(@)

o flde & V(14 & 05 o
=F <—2 ;e, g(X,e))— F 2 Zh o, atyve,-q)*et

=1
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('d¢’ )Z{g (Ve X, €1) + 9(Xi, Vo) }
<Id¢, )Zh< J¥,0 e,)

. (ld«st ) ; ( ) R )
) el )

0 oifldéd”\ N . _
h((I)*E,F ( )Z (V,,D.e <I)*Ve,.e,)>

N&

=1

- (445) ) - 0.5 . (o (45))
+ Xm: F’ <@;f|—2) (Vo ®.e; — CI)*Ve,.ei)>
=1
m 2
= div (F’ ('d—gﬁ> X,) —h (cp* 'aa‘z , ; {f/e,. (F’ (’—d%l—> (D*ei)
(ld«m )(D V.e })

By (2.1) and Green’s theorem, we get

., |dé,|
EEF((ﬁz)lt:O J ot ( 2 )t=0

B p) (e

=—j WV 2 (8))v,.
M

9
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Next we give a certain relation between F-harmonic maps and harmonic
maps through conformal deformations, which is an extension of [BG, Lemma 1.2]
for p-harmonic maps and [H, Theorem 2] for exponentially harmonic maps.

ProposiTiON 2.2. Let ¢:(M,g) — (N,h) be a smooth map from an
m-dimensional Riemannian manifold (M,g) (m > 3) to a Riemannian manifold
(N,h). In the case where F'(0) =0, we assume that d¢, #0 for any x in M.
Then ¢ is F-harmonic if and only if ¢ is harmonic with respect to the conformally
related metric § given by

2 2/(m-2)
)

Proof. Let g be a metric on M, conformally related to g by § = A2 g for
some positive smooth function 4 on M. If 7(¢) denotes the tension field of the
map ¢ : (M,g) — (N, h), then the tension field 7(¢) with respect to the metric g is
given by

79) = 2 (1"22(4) + 9. (grad (7).

Putting 1 = {F'(|d¢|*/2)}"/" 2, we have

2 m/(m-2)
{F' (@)} () = ().

The proposition follows from this equation.

3. Existence of F-harmonic maps

In this section we assume that (M,g) and (N,h) are compact Riemannian
manifolds, and s is a homotopy class of a smooth given map (M, g) — (N, h).
The following result is due to Eells and Ferreira.

THEOREM 3.1 (cf. [EF]). Suppose that m =dim M > 3. Then there is a
smooth metric § on M conformally equivalent to g, and a map ¢ € # such that
¢:(M,§) — (N,h) is harmonic.

Yoshida [Y] and Hong [H] gave the p-harmonic version and the expo-
nentially harmonic version of the above theorem, respectively. We would like to
derive the F-harmonic version.

THEOREM 3.2. Suppose that m =dimM = 3. Let F:[0,00) — [0,00) be a
smooth function such that F' >0 on [0,00) and F"(0) #0. Then there is a
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smooth metric § on M conformally equivalent to g, and a map ¢ € # such that
¢:(M,§) — (N,h) is F-harmonic.

Remark. Theorem 3.2 is an extension of [H, Theorem 1] for expon-
entially harmonic maps.

In order to prove Theorem 3.2, we introduce some lemmas.

Lemma 3.3. Suppose that m>3. Let F:[0,00)— [0,00) be a smooth
Sfunction such that F' >0 on [0,00) and (m —2)F'(t) —2tF"(t) #£0, F"(t) # 0 on
[0,¢) for some positive constant e. Then there is a smooth Sfunction (I)( ) on [0,¢")
for some positive constant ¢ such that F'((®(y))?y) = (®(»))" 2.

Proof. Since F"(t) #0 on [0,¢), F'(t) on [0,¢) has a smooth inverse
function G. So we have

G(F'(1)) =t on]0,¢),
G'(F'())F"(t) =1 on [0,e).

We shall consider the function

The derivative of y is

% = %{(m —2)x"2G (x™2) — 2G(x™2)}.

Thus

1

(F'(l))3/(m_2)F"(t) {(m N 2)F (t) - 2F (t)} #0

dy . ., m-2)\ _
a((F(t))”( ) =

for 1€ 0,¢).
Hence we have

dy

peia 0 on x between (F'(0))/™? and (F'(e))"/™2.

Therefore, there is a smootgl functlon ®(y) on [0,¢") for some posmve; constant &
such that y = G((®(»))"*)/(®())’, and F'((®(y))*y) = (®(»)" .

We can see the following lemma in [H].
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Lemma 3.4 (cf. [H, Lemma 2]). Suppose that the map ¢ : (M,g) — (N,h) is
harmonic. Then for any ¢ >0, there exists a smooth metric § conformally
equivalent to g such that ¢ : (M, g) — (N, h) is harmonic and |d4|; < e, where |d¢|;
is the Hilbert-Schmidt norm with respect to § and h.

We prove the following theorem in a way analogous to [H, Theorem 3].

THEOREM 3.5. Suppose that m =dim M > 3, and that ¢ € # and ¢ : (M, g)
— (N, h) is harmonic. Let F be a smooth function such that F' > 0 on [0, ©) and
F"(0) #0. Then there is a smooth metric § on M conformally equivalent to g
such that ¢ : (M,3) — (N,h) is F-harmonic.

Proof. Since m >3, F'(0)#0 and F”(0) #0, there exists a positive
constant ¢ such that (m — 2)F'(t) — 2¢tF"(t) # 0, F"(¢) # 0 on |0, a) By Lemma
3.4, we can suppose that ¢ : (M,g) — (N, h) is harmonic and |d¢| /2 < & where
¢ is given in Lemma 3.3.

Since ¢ : (M, g) — (N,h) is harmonic,

©(¢) =

Write § = A~2g for a smooth positive function 1: M — R. We have

L omas m—
0 =1(g) = - {A"*2(4) + 4. (grads (A" ~))}.
Since |d¢|§/2 < ¢', we can define the above 1 by

A= d)(l ¢|)>0,

where ®(y) is given in Lemma 3.3. This yields that

2
m-2 _ ! 2% / |d¢‘
A =F (A > =F —
Therefore we have

) F <| ¢:>(¢)+¢*( ( <| ¢|>)) 0.

This proves Theorem 3.5.

Proof of Theorem 3.2. Combining Theorems 3.1 and 3.5, we can prove
Theorem 3.2.

THEOREM 3.6. Suppose that m =dimM > 3. Let F:[0,00) — [0,00) be a
smooth function such that F' > 0 on (0, 0) and (m —2)F'(t) — 2tF"(t) # 0, F"(?)
# 0 on (0,¢) for some positive constant . Then there is a smooth metric § on M,
conformally equivalent to g, and a map ¢ € # such that ¢: (M,,§) — (N,h) is
F-harmonic, where M, = {x € M;|d¢(x)| # 0}.
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Remark. (i) Theorem 3.6 is an extension of [Y] for p-harmonic maps.
(ii) The assumption (m —2)F'(t) —2tF"(t) # 0 on (0,¢) for some positive
constant ¢ in this theorem is not satisfied in the case of m-harmonic maps.

Proof. We can prove this theorem in a way analogous to Theorem 3.2.

4. The F-stress energy tensor

Let ¢:(M,g9) — (N,h) be a smooth map from an m-dimensional Rie-
mannian manifold (M,g) to a Riemannian manifold (N,#). The stress energy
tensor Sr(¢) of ¢ associated to the F-energy functional Er (which we call, the
F-stress energy tensor of ¢, in short) is given by

sﬂ@#(@)g ("’"") o

(cf. [B, Chapter 3]).
ProposiTION 4.1 (cf. [B, Chapter 3]). Under the notation above,

(div Sp(¢))(X) = —h(zr(4), 4.X)
for any vector field X on M.

Therefore, if ¢ is an F-harmonic map, then divSr(¢) =0. Conversely, if ¢
is a submersion almost everywhere and divSp(¢) =0, then ¢ is an F-harmonic
map.

This proposition is included in [B, Chapter 3]. But here, we give its ele-
mentary proof.

Proof. Let V_and Ny denote the Levi-Civita connections of M and N,
respectively. Let V be the induced connection on ¢"'TN. We choose a local
orthonormal frame field {e;},2; on M with Ve, =0 at a point x € M.

Let X be a vector field on M. At x, we compute

m

(div S¢(4))(X) = > (Ve SF(4)) (ei, X)

=1

=Z{e, (Sr(4)(ei, X)) = Sp(#)(Veei, X) — Sr(¢)(ei, Ve, X))

m 2
-y { (F <@)g<e,-,x>) ~e ( ("“" >h<¢* e, X))
1=1
F(@) g(ei, Ve, X) + F' <|d¢| )h(qb* i O, Ve,X)}
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/<d¢' )Xm:h Ve¢ €, p.€) - g(ei, X)

1

2
-e,-<F'<'df' ))hm e $.X)
y

2
_ F,(ldzl ){h(ve,.¢*e,-,¢*x) + h(p,ei, Vb, X)}
2
L F ('df' )h(«s*ei,«s*ve,X)]
—F ("’¢' ) 3 hTxscnb.c)

Aol 4 )

2 m
FI <M_;éL) Z h(ﬁe,¢*ei7 ¢*X)
=1

2 m
_F ('ﬁf_') Zh(ve,,ﬁ*x — d Ve X, p.€).

1=1

At x, we have

Z ve,¢>|<ei = Z(ee,ﬂﬁ*ei - ¢*V€iei) = T(¢)7
=1 =1

and
Ved X — 9.V X = Vxd,ei+4,[e;, X] — 4.V X
=Vxd.ei + $.(Ve X — Vxe:) — Ve X
= Vxd,e:.
Thus we get

2
(div Sr#)(X) = ~F' (""”' ) (x(6),4.%) - h(«x (grad (F' ('ﬁfl»)«u)

= _h(TF(¢)a ¢*X)
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PROPOSITION 4.2. Let ¢ : (M,g) — (N, h) be a weakly conformal F-harmonic
map from an m-dimensional Riemannian manifold (M, g) to a Riemannian manifold
(N,h). Assume that the zeros of (m — 2)F'(t) — 2tF"(t) are isolated. Then ¢ is
a homothetic map.

Remark. (i) If F" <0 and m>3, or F"#0 and m =2, then the as-
sumption for F in this proposition is satisfied.

(i) This proposition is an extension of [BE, Example 3.3] for harmonic maps
and [T, Corollary 4] for p-harmonic maps.

Proof. Let {e;},~, be a local orthonormal frame field on M. As ¢ is
weakly conformal there is a nonnegative smooth function 4> on M such

that ¢*h = A’g. So we have Sr(¢) = (F(ma’/2) — 2’F'(m3*/2)) -g. Let X be a
vector field on M. Since ¢ is F-harmonic, by Proposition 4.1 we have

0 = div Sp(¢)(X)

w((F(37) - (3)) )
(F(gzz) PF(32))-glen X)
- Z{F’( ?) S eli) - elR)F (322) - PF(37) Seli’) bglen X)

om0 (2) - (2) )

Thus 4% is constant, and ¢ is homothetic.

I

I Ms EMs

5. Horizontally conformal F-harmonic maps

Let ¢:(M,g) — (N,h) be a smooth map between Riemannian manifolds
(M,g) and (N,h). For each x € M satisfying d¢, # 0, set V, = Kerdg, and let
H, be the orthogonal complement of V, in T,M. We call V, the vertical space
at x, and H, the horizontal space at x. For X € T, M, we may decompose X =
XH 4+ XV, where X¥ e H, and XV e V,.

We say that ¢ is horizontally conformal if there exists a positive smooth
function 4 on M such that (4, X,4,Y) =A% g(X,Y) for all X,Y € H, and x ¢
M. The function 1 is called the dilation of ¢.

THEOREM 5.1. Let ¢:(M,g) — (N,h) be a horizontally conformal F-
harmonic map with dilation A from an m-dimensional Riemannian manifold (M, g)
to an n-dimensional Riemannian manifold (N,h), where m > n. Assume that the



254 MITSUNORI ARA

zeros of (n—2)F'(t) — 2tF"(t) are isolated. Then the following properties are
equivalent:

(i) The fibers of ¢ are minimal submanifolds;

(ii) grad(A?) is vertical;

(iii) the horizontally distribution has mean curvature grad(1?)/24%.

Remark. (i) If F" <0 and n>3, or F"#0 and n=2, then the as-
sumption for F in this theorem is satisfied.

(ii) This theorem is an extension of [BE, Theorem 5.2] for harmonic
morphisms and [T, Proposition 7] for horizontally conformal p-harmonic maps.

Proof. For x e M, we choose a local orthonormal frame field {e;}~, near
x with ej,...,e, horizontal and e,.i,...,e, vertical. As ¢ is horizontally
conformal with dilation A, we have |dg|* =ni? and Sp(¢) = F(ni’/2)-g—
F'(nA?/2) - ¢*h. Since ¢ is F-harmonic, by Proposition 4.1 we have

(51)  0=(divSr(9)(e)

NgE

(Ve Sr(8))(eis )

I
—

14

= Z:j{ei(sp(qb) (e6,€1)) = SF(#) (Verer ) = Se(#) (€1, Vo))
- {el- (FG)) -g(ene) —a(F' (547) - h(gend.e)
F'(547) - h$.Veend.e) + F/(52) - hden ¢*ve,.ej)}

2 (3o - S0P (242 hendoe)

=1

n m
+ F'(z 12) D {h($.Veei b.6) + h(d,e:,0,Ve6)}-
=1
For j (1 < j<n) we have

(5.2) 0=">"eglee)
=1

= Z{g(Veie,-, €j) + g(ei) VE,ef)}

=1
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= Z{g (Ve,ez )€ +g(el) (Ve,ej) )}
= %;{h(¢* (V‘—’lei)H7 ¢*ej) + h(¢*ei> ¢* (Veiej)H)}

= %;{h(‘i’*ve,en 9.¢)) + h(p,e1,$.Vee)}.

By (5.1) and (5.2), for j(l <j<n)

_ (a2 a2y a2 (T2
0—2F Zl)ej(/l) e](/lF(z/l))

niz) Z {h(p.Veei, d.e) + h(d.ei,$.Vee))}

1=n+1

F'(gzz) e () ( Az)ej(,ﬂ) S (gﬁ)ej(ﬁ)

F/(g/lz) Z h Ve,et) a¢*ej)

1=n+1

o) -ntr ()
F (gﬁ) i, 229((Vee) ", )
b (3) (3 o

n m
+ A%F' (522) Z g(Veei e)).

1=n+1

I\)I:

+

The mean curvature vector H; of the fiber of ¢ is given by

Z Z Ve,ez,ej

j 1 1=n+1

Thus we get

0= % {(n —2)F' (g 12) — nA2F" (g- /12> }(grad(iz))ﬂ + (m—n)A2F’ (gxz) Hi.

From this equation we can see that (i) is equivalent to (ii).
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Using (5.1) for j (n+1 < j <m), we have

0=F' <g ).2) {g ej(lz) + ;h(¢*ei7 ¢*V€iej)}‘

For i (1 <i<n),

h(d.ei,$,Vee) = h(d,e1,8,(Veie)™) = 22g(er, (Vo)) ™)
= Azg(ei, Ve,ej) = —Azg(Ve,.ei,ej).

So we have

0=36(2) =47 g(Veene).

=1

Hence the mean curvature H, of the horizontally distribution is given by

1 m n 1 m
Hy=- >0 a(Veeie)e = Y > €(A%)e

J=n+1 1=1 J=n+1

_ (grad(4?))” _ grad(4%) — (grad(4*))"”
22 2 '
From this equation we can see that (ii) is equivalent to (iii).

6. The second variation formula

In this section, we calculate the second variation of the F-energy functional.
Let ¢:(M,g) — (N,h) be a smooth map from an m-dimensional Rie-
mannian manifold (M,g) to a Riemannian manifold (N,#A).

THEOREM 6.1 (The second variation formula). Let ¢: M — N be an
F-harmonic map. Let ¢,,: M — N (e <s,t <&) be a compactly supported
two-parameter variation such that ¢,,= ¢, and set V = og, /01| W=
a¢s,t/ as’s, t=0" Then

5,t=0"

o2 R -
@EF(%,:N;,::O *JMF <—2’ <VV’d¢><VW7d¢>vg

2 m
+JM F/ (l—d'gl_) . {<6V, 6W>_Zh(NR(V7 ¢*ei)¢*ei7 W)}Ug,

=1
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where <, ) is the inner product on T*M ® ¢_1T N and VR is the curvature tensor
of N.

We put

62
nv,w)= EEF(qss,t)'s,t:O'

An F-harmonic map ¢ is called stable if I(V, V') > 0 for any compactly supported
vector field V along ¢.

Proof. Let @ : (—¢,¢) x (—¢,6) x M — N be defined by ®(s,t,x) = ¢, ,(x),
where (—¢,¢) X (—¢&,¢&) x M is equipped with the product metric. We extend the
vector fields d/0t on (—e¢,¢),0/0s on (—¢€), X on M naturally on (—¢,¢) X
(—¢&,¢) x M, and denote those also by 0/0¢,0/0s,X. Then

d
(6.1) V=o.

0

W=0,—
’ (Das

s, =0

s5,t=0

We shall use the same notations V and V for the Levi-Civita connection on
(—&,€) X (—&,6) x M and the induced connection on ®~'TN.
Using (2.1) we have

o2 o o (ldg, |
(6.2) @EF(%,I)h,z:o—a—SJME;F( 7|

s5,t=0

Ug

5,t=0

0 Z'" = o [ (1de, )
B _JMh<(D*a’ =1 {Va/asVe, (F (T b
5 do. |

where we use the F-harmonicity for the last equality. We compute

Vg,
5, =0




258 MITSUNORI ARA

o £l (o) (42 o)
ox{o ) (2455
ol (#)os.0)})

where we use [0/0s,e;] = 0.
The first term in the right-hand side of (6.3) is

(64 h( 2 St (r (o0
m 2
£ ()
_ ih(ﬁel Va/as (F/ <’d¢s tl ) ))
=1

The second term in the right-hand side of (6.4)

N d,
(6.5) ;h(Ve'q’*E’Va/as<F'(l ¢ |> ))

5502 () $ 50
e 0/0s *equ)*ej)q)*ei
1= J=1

1

dé. I*\ .
+F'<| ¢;‘t| )Va/aﬂ)*ei)

dé, [P\ &N (o 0 mo (e D
_ S, i .
_F< 5 ;h Ve,CD*at,CI)*e,> ;h(v v @ e,>
+F/(| ¢st| )Zh<ve'¢) (D*g)
| < os

1
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Let X; and X, be compactly supported vector fields on M such that

o(X1, Y) =F"('d¢' ><VW dg> - (.Y, V),

g(Xa, Y) = F' ('d—fg h(VyW, V)

for any vector field Y on M, respectively. For the first term in the right-hand
side of (6.4) and the last term in the right-hand side of (6.3), we have

& v ! d¢st 2 5
(66) ’§=l € - h (V(‘?/ﬁs (F (| 2, l )q)*ei> P D, ‘6—1‘)
Zm |dé; .| 0
- =1 ’ (Va/as < ( ) * Ve’ ei) e gi)

m m
_ Zei . h<F//<|d¢s t| ) Zh Va/bsq) €, *ej)(D e;

=1 J=1

d
+F (l ¢St| )Va/ésd) e;, D, gt)

m

" |d¢s,t|2 “ -
- E h| F ——2—— E h(Va/asd)*ej,CILej)d)*Veie,-
J=1

1=1

d 0
<| ¢s d >Va/as(1) Veei, Os 0[)

_ Z:e" . { F (Ws d ) ih( (D*e,-) ~h(<1>*e,»,<1>* a%) }

J=1

"‘ |dé |2 L ~ 0 0
" S,z R
— ,E=1 <—2 ) ,E h(Ve](I)*a , D, e,) h<(I)*Ve,e,,<I)* 6t>

u A N R R
+E,=1 e'{F (T h(Ve"q)*a_s’d’* 52)
m o (1dée 1P\, (< o 0
_ N T _ _

3o (B a(ves0 f05)
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When s =1=0, (6.6) becomes

m

m m
67) > e-g(Xi,e)— Y g(Xi,Veer) +Zez- (X2,6) = > g(Xa, Veeer)
=1 =1 1=1

=1

=Y gVeXi,e) + Y 9(VeXne)

=1 =1
= div(X}) + div(X>).
By Green’s theorem the integral of (6.7) vanishes. The theorem follows from

(6.1)~(6.7).

THEOREM 6.2. Let ¢: M — N be an F-harmonic map from a Riemannian
manifold M to a Riemannian manifold N. Assume that F”" >0 and N has
nonpositive curvature. Then ¢ is stable.

Proof. 1t follows immediately from Theorem 6.1.

Remark. Theorem 6.2 is an extension of the well known fact for harmonic
maps (cf. [EL)).

7. Stability of F-harmonic maps to S”

We consider S” as a submanifold in R"*!. Let ®V and SV denote the Levi-
Civita connections on R""! and S”, respectively.

For a vector ¥ in R"*! at x € §”, we decompose V = VT 4+ V1 where V7 is
the tangential part to S” and ¥+ = (¥, x)x is the normal part to S”.

Let B denote the second fundamental form of S” in R""!. Then for tangent
vectors X and Y of S” at x, B(X,Y) = —(X, Y)x. For a normal vector field W
on S", the shape operator A" corresponding to W is defined by

AY(X) = —("vxw)T,
where X is a tangent vector of S”. Then it satisfies
AY(X), Y = (BX,Y), W) = —(X, Y )Xx, W)

for tangent vectors X and Y of S”" at x.

THEOREM 7.1. Let ¢: M — S" be an F-harmonic map from a compact
Riemannian manifold M to the n-dimensional unit sphere S". Assume that

2 2
JM |d¢|2{ \dg|F" (@) +(2=n)F ('if—'_> }vg <0,

Then ¢ is unstable.
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Proof. We use the above notation. We assume that M is m-dimensional.
Let {e;}1,,V and SR denote a local orthonormal frame field on M, the induced
connection on ¢~' 7S” and the curvature tensor of S”, respectively. Let {V, }”H
be a parallel orthonormal frame field in R"*!. We shall consider the second
variation

m 2
(7.1) IV, VD) =J F”('d¢| ) (Z VeV, ,¢*e,->> vg
M =1

+], 7 (W ) S VI = CROT ddben VIDloy

Now we discuss at x = ¢(p). As V, is parallel in R™*!,
Ve Vi = V4o Vy = (Ve V1) = ("Vga(Va= Vi)'

="V Vi) = 4" (4.e).
So we have

<Ve, a ’¢*et> - <A (¢*el) ¢*el> - —|¢*€,| <x VJ-> = —|¢ el| <X, V. >7

and

n+1 m 2
(7.2) > (Z Ve Vy ¢*e,->> = |dg|*.

a=1 1=1
We have also

n+1 n+1

Vo Vi |2 = 4% (ge)]> =D 4" (4,e), Vo)? —Z<A (@), V,

b=1

n+1 n+l1

= Lo Vi O VYT = (e Vo) x, V)P = |geil*<x, Vo,
b=1

b=1

n+1

(7.3) S IV VP =1dgl*.

=1

+

8
I
—

RV, pue)doen V> = bl - [V |* — {Bei, V) D2

= |¢*€,’|2 : IVJIZ - <¢*ei7 Va>2)
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we have

ntl m n+l

(74) N RV peeboen V> =1dgl> -1V~ 1dd)” = (n—1)|dg|’.

a=1 1=1 a=1

By (7.1)-(7.4) we get

n+1 2 —-—2
a5 Swrn=| |d¢|2{|d¢|2pu<|d§| ) + (2vn)F/<|d§| )}UQ.
a=1

By (7.5) and the assumption, we have

n+1

1w, v)) <o,
a=1
and ¢ is unstable.

COROLLARY 7.2. Assume that (i) F” <0 and n >3, or (ii) F” <0 and n = 2.
Then any stable F-harmonic map from a compact Riemannian manifold M to S" is
constant.

Remark. The assumption F” < 0 in this corollary is not satisfied in the case
of the p-energy, the exponential energy and the a-energy.

Proof. Suppose that ¢ is not constant. Then by the assumption and
Theorem 7.1, ¢ is unstable, which is a contradiction. Thus ¢ is constant.
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