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(2,3) TORUS SEXTICS AND THE ALBANESE IMAGES OF 6-FOLD

CYCLIC MULTIPLE PLANES

HlRO-O TOKUNAGA1

Introduction

Let B be an irreducible plane curve of degree n given in affine part, Ba, by
the equation / ( * , y) = 0. Consider a fc-cyclic extension, K, of C(P2) = C(x, y),
of P2 given by

ζk = f(χ,y)

Let S£ be the ^-normalization of P2; and we denote its smooth model by S*. S^
is a λ -fold cyclic covering of P2 branched along B and possibly along the line L
in infinity. Sk is called a cyclic multiple plane by Italian algebraic geometers.
There are many results on it ([BdF], [Co], [CC], [DF1], [DF2], [Ku], [L], [Sa], [Zl]
and [Z2]). One of the purposes to study cyclic multiple planes is to understand
the topology of P2\B; and the irregularity, q(Sk), of Sk (or the first Betti number
of Sk) plays a central role for this purpose.

In [Zl] and [Z2], Zariski studied cyclic multiple planes and proved the
following:

ZARISKI'S THEOREM. Assume that singularities of B are only nodes and cusps
and B is transversal to L. Then the irregularity of Sk vanishes unless both n and k
are divisible by 6.

In view of Zariski's theorem, 6-fold cyclic multiple planes branched along
irreducible sextics are the first possible one with non-vanishing irregularities. This
makes study of such cyclic multiple planes worthwhile.

In [Ku], Kulikov studied cyclic multiple planes by using a quasi-torus
decomposition of a curve whose definition is as follows:

DEFINITION 0.1. Ba is called a (p,q) quasi-torus curve (gcd(p,q) = \,
p,q>\) if there exist a positive integer α and polynomials g, h and r with
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deg g > 0, deg h > 0 and deg r > 0 which are pairwise coprime and coprime with
f(x,y) such that

A quasi-torus curve is called a torus curve if r in Definition 0.1 is a con-
stant. We simply call this decomposition a (p,q) torus decomposition.

Let A(Sk) be the Albanese variety of Sk and let α^ be the Albanese mapping
from Sk to A(Sk).

DEFINITION 0.2. The number

a(Ba) = max d imα^(^)
keN

is called the Albanese dimension of Ba.

In [Ku], Kulikov studied Ba with a(Ba) > 0, and proved the following:

KULIKOV'S THEOREM (Theorem 1, [Ku]). Suppose a(Ba) > 0. Then:
(i) dim (Xk(Sk) > 0 for some k and (Xk gives a quasi-torus decomposition off.
(ii) If a(Ba) = 1, then f possesses a unique quasitorus decomposition.
(iii) If f possesses different quasi-torus decompositions:

rPWf = g\x + A?1, rpiqif = #f + hf

such that two pencils determined by

λoflf +λ!** =0, [lo^.leP 1

«re different, then a(Ba) = 2.

Kulikov's theorem shows the importance of quasi-torus curves in the study
of cyclic multiple planes. In this paper, we study (2,3) torus sextics and 6-fold
cyclic multiple planes from Kulikov's viewpoint. Here a plane sextic B is called
a (2,3) torus curve if its affine part is a (2,3) torus curve.

Note that the line L in infinity is not contained the branch locus of 6-fold
cyclic multiple planes branched along sextics. This means dimocβ(Sβ) is inde-
pendent of the choice of homogeneous coordinates; and dimo^Sό) is defined
for B.

If B is a (2,3) torus curve given by the affine equation g3 + f2 = 0, deg# =
2, d e g / = 3, then the conic, C, defined by g = 0 meets B only at Sing(i?) in
a certain special way. We consider a "converse" of this. Along this line, our
question may be formulated as follows:
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QUESTION 0.3. Let B be an irreducible sextic. Suppose that there exists a
conic, C, meeting B only at Sing(5). In terms of data on how C meets B, find a
sufficient condition for B to be a (2,3) torus curve.

One of the results in this article is to give a partial answer to Question 0.3
when B has at most simple singularities:

THEOREM 0.4. Let B be an irreducible sextic with at most simple singularities.
Suppose that there exists a conic, C, such that

(0.4.1) C meets B only at singularities, and
(0.4.2) the type of a singular point in BΠC is either a^k-\ or e^\ and the

intersection multiplicity of B and C at an a^u-x (resp. e$) singularity is 2k (resp. 4).
Then B is a (2,3) torus curve.

In [D], Degtyarev proved Theorem 0.4 for abundant sextics. His proof
heavily made use of the fact that the degree of the curve is 6; and it seems to be
difficult to generalize the statement, for example, to a criterion for a given curve
to be a (2,p) (p: odd prime) torus curve. On the other hand, our method is to
make use of a certain normal form of a genus 2 curve, if, defined over C(t), the
rational function field of one variable, having a 3-torsion in P ic^^(^) . From
this point of view, by considering a normal form of a curve with higher genus,
one might be able to generalize the result in Theorem 0.4 to the one for a curve
of degree 2p to be a (2,/?) torus curve.

Now we go on to explain our idea to prove Theorem 0.4. It is based on the
following well-known fact on an elliptic curve:

Let S be an elliptic curve defined over K, char(K) φ 2,3, given by the
equation

g : y2 = χ3 + ax + b.

Suppose that the Mordell-Weil group, MW(ί) , of g over K has a non-trivial
3-torsion element (xo,7o) Then the right hand side of the above equation can
be rewritten in such a way as

x3 + ax + b = (x - xoΫ + (ux + v)2,

where the line y = ux + v is the tangent to $ at (xo, >>o)
In the case when K = C(t), a,beC[t], this decomposition gives rise to a

(2,3) torus decomposition of the polynomial x 3 + ax + b. We want to make use
of this type of argument in finding a (2,3) decomposition of B; and this is the
case in [T5]. However B is not always given by such an affine equation as
x 3 + ax + b, β, b e C[t]. Hence one can not apply the above fact on g to general
sextics. Instead, we make use of a similar fact for a curve of genus 2 (see
Lemma 3.1).

Now we give our strategy to prove Theorem 0.4. Let / ' : Sf —> P2 be a
double covering branched along B, and we denote its canonical resolution by
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μ : S —> Sf. Choose x e P2\B. Then a pencil of lines through x gives rise to a
pencil of genus 2 curves with two base point, x+,x~ e (μo ff)~l(x) on S. Let
S-+S be blowing-ups at x+ and ΛΓ. Then the pencil induces a fibration of
genus 2 curves, φx, on *S. Let S^ be the generic fiber of φx. Then Sη is a genus
2 curve over if = C(Pι). Let Pic^(5^) be the degree 0 part of the divisor class
group of # defined over K. We first show that the conic C in Theorem 0.4 gives
rise to a 3-torsion in Pic^(S^) (§1 and §2). Hence, by applying Lemma 3.1 to Sη,
we eventually obtain a (2,3) torus decomposition of B (§4).

As we have seen in [T5], there are some irreducible plane sextics with the
Albanese dimension 2. All of them are, however, either with non-simple sin-
gularities or curves with non-zero genus. We use Theorem 0.4 in finding a (2,3)
torus sextic such that

(i) all the singularities of B is at most simple,
(ii) the normalization of B is a rational curve, and
(iii) a(B) = 2.
Now we state our result.

THEOREM 0.5. Let B be an irreducible sextic possessing singularities either
4ί*2 4-^5 + ̂ 6 or 6#2 + ̂ 6 Then (i) there exist irreducible sextics for both cases,
and (ii) dimo^-Sό) = 2. In particular, the former satisfies the three conditions as
above.

Acknowledgment. Most of this work was done during the author's visit at
the Max-Planck-Institut fur Mathematik in Bonn. He thanks the institute for
its hospitality. Many thanks go to Vik. S. Kulikov, F. Leprevost and T. Sugie
for their instructive comments. He also thanks the referee for his/her comments.

Notation and conventions

Throughout this article, the ground field is always the complex number field
C. Also a surface and a curve always mean protective ones. For a variety X,
We denote the field of rational function of X by C(X).

Let X be a normal variety, and let Y be a smooth variety. Let π : X —> Y
be a finite morphism from X to Y. We define the branch locus, A(X/Y), of π as
follows:

A(X/Y) = {y e Γl^π"1 (y)) < degπ}.

Let S be a finite double covering of a smooth projective surface Σ. The
"canonical resolution" of S always means the resolution given by Horikawa in [H].

For singular fibers of an elliptic surface, we use the notation of Kodaira
[Ko].

Let Z>i,Z>2 be divisors.
D\ ~ D2 : linear equivalence of divisors.
D\ « Z>2 : algebraic equivalence of divisors.
D\ « Q Z>2 : Q-algebraic equivalence of divisors.
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A (—n) curve means a rational curve with self-intersection number — n. For
simple singularities of a plane curve, we use the same notation as in [PI], while
we use the standard one for rational double points.

§1. Preliminaries

Let W be a smooth surface. Let B be a reduced divisor on W such that
B ~ 2L for some line bundle on W. Then it is well-known that there exists a
normal surface, S", with degree 2 finite morphism ff:S'^>W having the branch
locus Δ(S'/W) = B (cf [H]). Let μ : S -> S' be the canonical resolution of Sr

given in [H]. Then we have a commutative diagram:

S' ^— S

\f

P2 ^— Σ,

where q is a composition of a finite number of blowing-ups so that the induced
morphism / is finite of degree 2. We denote the covering transformation of /
by σ.

Let NS(S) and NS(fF) be the Neron-Severi group of S and W, respectively.
Let Tμ be the subgroup of NS(S) generated by π*NS(PΓ), where π = f'oμ =
q o / , and all irreducible components of the exceptional divisor of μ. Tμ has a
decomposition as follows:

LEMMA 1.1. Let Rυ be the subgroup of Tμ generated by irreducible com-
ponents of the exceptional divisor of v e Sing(S"). Then

7;-π*NS(^)Θ 0 RΌ.
veSing(S')

This lemma is immediate by the definition of Tμ.
From now on, we always assume that
(*) H2(S,Z) is torsion free.
Under the assumption (*), H2(S,Z) becomes a unimodular lattice with

respect to the intersection pairing; and NS(S) is a primitive sublattice of it, i.e.,
H2(S,Z)/NS(S) is torsion free. Tμ is also a sublattice of H2(S,Z), and the
decomposition in Lemma 1.1 is orthogonal with respect to the intersection
pairing. Tμ is, however, not primitive in general. Let Γ| be the primitive hull
of Tμ. Note that (NS(S)/Tμ)tor = T^/Tμ. We next consider when a given
divisor D is a member of Γj. Let us start with the following lemma.

LEMMA 1.2. Let D be a divisor on S and let α be its image in NS(S)/Tμ.
Then there exists an element, Z)α, in NS(*S) (x) Q satisfying the conditions as

follows:
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(i) Da =DmodTμ®Q
(ii) Dx-LTμ with respect to the intersection pairing.

This is a straight forward modification of Lemma 8.1 in [S2], so, we omit its
proof.

We now give a numerical criterion for D to be a member of TK

LEMMA 1.3. If D\ = 0, then D e Γj.

Proof By the Hodge index theorem, D2 < 0; and if the equality holds, then
Z>α~ρ0. This implies Lemma 1.3.

We give an explicit formula for Da when W = P2 for later use.

LEMMA 1.4. Put L = π*l, where I denotes a line in P2. Then we have

where mv = r a n k z ^ , AΌ = the intersection matrix of the lattice determined by Rv,
and Θiv (i = 1,... ,mΌ) are irreducible components of the exceptional divisor for
v. In particular, if D eTμ® Q, we have

DπQ-{DL)L+

This is again straightforward by the definition of Da, so, we omit its proof.
From now on, we restrict ourselves to the case when W = P2 and

deg B — In. Moreover, we always assume

ASSUMPTION 1.5. B has at most simple singularities.

Under Assumption 1.5, (i) S is the minimal resolution of *S" by Lemma 5 in
[H], and (ii) S is simply connected by [Bl], [B2] and Proposition 1.8 in [Ca], This
implies that NS(S) is not only torsion free, but also equal to Pic(5). In
particular, there is no difference between linear equivalence and algebraic
equivalence.

Let x be an arbitrary point in P2\B. Let Σ —> Σ be a blowing-up at q~ι(x),

and let v : S —> S be a composition of blowing-ups at two points π~ι(x). Then S

satisfies the following:
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(i) S is a double covering of Σ. We denote its covering morphism and the

covering transformation by / and σ*, respectively.
(ii) S has a fibration of hyperelliptic curves of genus degB/2 — 1 = n — 1,

φx : S—•P1, arising from a pencil of lines through x and σ induces the hy-
perelliptic involution on a smooth fiber.

(iii) The exceptional divisors of v give rise to two sections, s+ and s~(= σ*s),
of φx.

We define the sublattice, Tψχ, of Pic(S') as follows:

Tψχ := the subgroup of Pic(S) generated by s+ and all irreducible compo-

nents in fibers of φx : S —> Pι.
Tψχ has a decomposition as follows:

τψχ = zs+ © ZF © 0 (θϊ ZΘ, J W)

where Red(^x) = {w e Pι l ^ " 1 ^ ) i s reducible}, and the ΘI)W's are irreducible
components of φ~ι(w) not meeting s+. This decomposition is orthogonal with
respect to the intersection pairing.

Note that v*Tμ is not contained in Tψχ since v*L ~ s+ + s~ + F. Tψχ,
however, contains v*(©peSmg(1s/)Λi;). In fact, all irreducible components of the
exceptional divisors are those of reducible fibers of φx not meeting s+. Let T*
be the primitive hull of Tψχ. Then:

LEMMA 1.6. Suppose that T^/Tμ has a p-torsion (p: odd prime), and let D be
a divisor in T* that gives a p-torsion in T$/Tμ. Then:

(i) The intersection number, (DL), is even,
(ii) D - {DL)/2{s+ + s~) φ Tψχ, and p(D - (DL)/2(s+ + s~)) e Tψχ.
(iii) T*JT9x has a p-torsion.

Proof Since T*®Q^Tμ® Q, we have

D~Q

l-{DL)L+ J2 (Σhv®i,v) a,bitVeQ.
yeSing(5") )

As D φ Tμ and pD e Tμ, p(DL)/2 and all the pbi^'s are in Z, and at least one of
\/2{DL) and the biiV's is not in Z. As p is odd, (LD) is even. This shows
(i). Since v*L ^ s+ + s~ + F, we have

vDUDL)s~QUDLy +

As ZλL is even, the left hand side is in 7^ . Since s+, F and v*Θ;)t/s are part of
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basis of Tψχ, the presentation in the right hand side is unique. Hence v*D —
(DL)/2s~ φTφχ and p(v*D- (DL)/2s~) e Tψχ. This implies (ii) and (iii).

Let Sη be the generic fiber of φx : S -» P 1 . Then Sη is a curve of genus

n— 1 over K— C(Pλ). Let D be the divisor in Lemma 1.6, and put Z>i =
V*D\A , oo+ = j +U . and oo~ = S~\A . Then we have

PROPOSITION 1.7. 7%e divisor D\ — (DL)/2(oo+ + oo") 0« ^ w α« element
in Y\cκ(Sη) such that

(i) A - (DL)/2(oo+ + 00") 7̂  0, β«rf (ii) /?(/>! - (DL)/2(oo+ + oo")) - 0.

Proof. Since Z) is a divisor on S, D\ is a divisor on Sη defined over K.
Hence D\ — (DL)/2(oo+ 4- oo~) gives an element in Pic^(»Sv). Suppose that
Dx - (DL)/2(oo+ + oo") - 0. Then there exists g in C(Sη) such that (g) =
D\ — (DL)/2(co+ + oo") on Sη. If we consider g as an element in C(S), this
equality gives D — (DL)/2(s+ + s~) — (g) = G, where G is a divisor whose
irreducible components are contained in fibers of φx. Hence D — (DL)/
2(s+ +s~) ~ G E Tψχ. This contradicts Lemma 1.6 (ii). The second assertion
easily follows from our proof of Lemma 1.6.

§2. A 3-torsion of T*/Tμ for a double sextic

We keep the notation as before. In this section, we consider 3-torsions in
^ μ in the case when B is a sextic satisfying Assumption 1.5.

Let C a conic satisfying the conditions (0.4.1) and (0.4.2). The purpose of
this section is to show that C gives rise to a 3-torsion in T^/Tμ. Let q~xC be the
proper transform of C Then it satisfies:

(i) te-»C)2 = -2,
(ii) q ιC does not meet the branch locus of / , Δ(5/Σ).
Hence f*(q~ιC) has a decomposition in the form of C + σ*O for some

divisor C on S with C'2 = - 2 . For this C , we have the following:

LEMMA 2.1. C" φ Tμ and 3 C e Tμ.

Proof. Let α(C') be the image in NS(S)/Tμ. Consider Z)α(c) obtained in
Lemma 1.4. It is in the form of

Ax(c7) — C - L~ the correction terms.

The correction terms arise from the singularities lying over CDB. To describe
them explicitly, we label irreducible components of the exceptional divisors as
follows:
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θ 4

03*-:

θ 2

θ 3

θ3fc_l

θ 5

θ 6

Figure 1

Also, by the conditions (0.4.1) and (0.4.2), we may assume that C hits Θi at
the exceptional divisor of the Eβ singularity lying over an eβ singularity, and Θ&
at the exceptional divisor of the A$k-\ singularity lying over an a$k-\ singularity.
Then the correction terms are

4 5 4 2
-01 +-02+20 3 +04+-05+T06
3 3 3 3

for an Eβ singularity, and

k

ι=\
k+ι

ι=l

for an A^-i singularity.
Using these explicit formulas, we have

CLAIM. D\C>) = 0

Proof of Claim. Suppose that B and C meet at x\,..., xχx, xχγ+\,..., xχι+λ2>
where

xt : an a^-x singularity for 1 <i<λ\,
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and

xt : an e§ singularity for λ\ < i < λ2.

Then, as EC = 12, Σti kι + 2λ2 = 6 Hence we have

J ι=l J

= 0

Now, by Lemma 1.3, C &QL + the correction terms. This implies Lemma
2.1.

Summing up, we have

PROPOSITION 2.2. Let B be a sextίc with at most simple singularities. If
there exists a conic, C, satisfying (0.4.1) and (0.4.2), then T$/Tμ has a 3-torsion.

§3. A certain canonical form of a curve of genus 2

Let K be a field of characteristic zero, and let K be its algebraic closure. Let
^ be a curve of genus 2 defined by the affine equation:

if : Y2 = F{X)

where

f 0 X 6 + .. + f 6 , f e K

is of degree 6 and has no multiple factor. Adding up two points at infinity, oo+

and oo ~, we have a complete curve. Put O = oo+ + oo~. Then any effective
divisor of degree 2 on # of form (x0, y0) + (xOl -y0), x0 e K is linearly equivalent
to O. Although the following lemma may be well-known to experts, we give a
proof for completeness.

LEMMA 3.1. Let (x\, yx) + (xi, y2), where x\ φ xi, (xly yt) Φ oo+, oo~

(/=1,2) be a divisor on <β defined over K. Suppose that the divisor D =
(*i, j>i) + (x2» yi) — O gives rise to a 3-torsion o/Pic^(#), i.e., D ^ 0 and 3D ~ 0.
Then there exist G, H e K[X] and aeKx such that

(i) degG = 2, degH = 3,
(ii) F{X) =H(X)2+aG(X)\ and
(iii)

Proof Since the divisor (xi, yx) + (x2,y2) is defined over K, there exists
a polynomial, G e K[X], such that G(x\) = G(x2) = 0. G(X) gives rise to
a rational function on #; and {G(X)) = Σι=ι(χn ϊι) + ( ^ L Γ ^ ) ~ ^ ^ ^ s

3((χι>yi) + (χ2, J2) - O ) ^ 0 , we have a rational function φ e K(%) on ^ such
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that

(φ) = 3((xuyι)-h(x2,y2)-O) i.e., φeH°(

Rational functions 1, X, X2,_X3, Y form a Gal(K/K)-invariant basis of
H0(<g,Θ(3O)); and (φ) is Gal(^/A:)-invariant. Hence we may assume

φ = k0 + kxX + k2X
2 + fc3^

3 + fc* Y, (kt e K).

Moreover, as φσ Φ φ (σ denotes the hyperelliptic involution, (X, Y) \-+ (X,-Y),
k$ Φ 0. Hence, replacing ψ by (l/k^φ, we may assume

φ = Y + h0X
3 + hλX

2 + h2X + Λ3, (*« e ΛΓ).

Then we have

φ° = -Y + h0X
3 + hχX2 + h2X + h3

and
( ^ ) = 3 ( ( X 1 , - J 1 ) + ( X 2 , - J 2 ) - O ) .

Thus we have

(φφη = (G3).

Hence there exists ae Kx such that

-φφσ = aG3.
Thus we have

Y2 = F(X) = {h0X
3 + hxX

2 + h2X + A3)
2 + fl<?3

on * . Therefore we have F{X) = (h0X
3 + h{X

2 + h2X + A3)2 +«G 3 as a
polynomial.

§4. Proof of Theorem 0.4

The goal of this section is to prove Theorem 0.4. We keep the notation as
in §1 and §2. Our proof of Theorem 0.4 is divided into two parts:

Case (I) C is irreducible.
Case (II) C is reducible.

CASE (I). Choose an affine coordinate, (X, Y), of P2 as follows:
(i) B is given by the equation f(X, Y) = 0.
(ii) C is given by the equation Y + X2 — 0.
(iii) The point x is the origin (0,0).
Note that /(0,0) Φ 0 since x e P2\B. Let μx : P2 -> P2 be a blowing-up at

x. Choose an affine open set Us of P2 in such a way that
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Then the total transforms, μ*B, and μ*C, of B and C are given by the equations:

μ*xB :f(s, X) = f{X, sX) = fo(s)X6 + + f6(s) = 0

where f^s) e C[s], deg/z = 6 - z, and

/ ι * C : J φ f + *) = ().

Then the generic fiber, Sη, of ^ is given by the affine equation

(4.1) Z2=f{s,X).

Also, by the construction of Sη the divisor given by X(X + s) = 0 on Sη is equal
to v*C" + v*σ*C'\s , where C" is one in Lemma 2.1, and v*C'\$ is an effective
divisor of degree 2 on Sη. Hence, by Proposition 1.7, Proposition 2.2, and
Lemma 3.1, we have

(4.2) f(s,x) = (ho(s)X3+hι{s)X2+h2(s)X + h3(s))2+a(s)(X(X + s))3

where hi(s), (i = 1,2,3), a(s) e C(s). Hence, in order to prove Theorem 0.4 in
Case (I), it is enough to prove that (i) a(s) is a non-zero constant and (ii)
hi e C[s], degλ/ < 3 - /. Comparing the coefficients of X1 (0 < / < 6) in (4.2),
we have

(4.3.1) h

(4.3.2) /,

(4.3.3) f2 = h\ + 2h0h2 + 3as2

(4.3.4) / 3 = 2hιh2 + 2hoh3 + as3

(4.3.5) / 4 = h\ + 2hh

(4.3.6) / 5 = h2h3

(4.3.7) f6 = hi

Since / 6 is a non-zero constant (/(0,0) φ 0), Λ3 is a non-zero constant by (4.3.7).
By (4.3.6), h2h3eC[s] and degh2h3 = deg/5 < 1. This implies h2eC[s] and
deg/* 2 <l. Also, by (4.3.5), h% + 2hιh3e C[s] and deg(Λf + 2hxh3) < 2; this
means Ai e C[,s] and deg/ î < 2. Next we put α = a'/a", ho = hf

0/hfQ, af, a", h'o,
hi e C[s]. Then, by (4.3.1), we may assume a" = chjf, ceCx. If h% = 0 has a
non-zero root, then 2hoh\ + 3as φ C[s]. This contradicts (4.3.2). Hence we may
assume that AQ = c'sa ( V e C x , α > 0 ) . Suppose that α > 0 or deg/zo > 3. Then,
since 2hoh\ + 3as e C[s] by (4.3.2), we have α = 1. In this case, as3 e C[s\. Then
we have hoh3 e C[s] by (4.3.4). This is a contradiction as h$ is not a constant.
Therefore, a, h0 e C[s], Now it is enough to show the following claim.

CLAIM, a is a constant, and deg/*o < 3.
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Proof of Claim. If degα > 0 or degA0 > 3, then we have degA0 = degα 4- 3
as deg(2AiA2 4- 2A0A3 4- as3) < 3 and degAiA2 < 3. Hence deg(Aj + a)= 2degα
+6 > 6. But this contradicts (4.3.1) as deg f0 < 6.

CASE (II). Choose an affine coordinate (X, Y) of P2 as follows:
(i) B is given by the equation f(X, Y) = 0.
(ii) C is given by the equation X(X + Y + k) =0, k: a non-zero constant,
(iii) x is the origin and any line except X = 0 through x meets B more than

3 distinct points.
By the same argument as that in Case (I), we have

(4.4) f(s, X) = f0X
6 + AX5 4- f2X

4 + AX3 + f4X
2 + / 5 * + f6

= (h0X
3 + AiZ2 + h2X 4- A3)

2 + a{X((\ + j)JT 4- A:))3

where A/, (/ = 1,2,3), α e C ( J ) . Likewise in Case (I), it is enough to show that a
is a constant and A, e C[s], deg A; < 3 - /. Comparing the coefficients of X1 in
(4.4), we have

(4.5.1) /o

(4.5.2) /i

(4.5.3) / 2 = A2 + 2A0A2 4- 3α(l 4- s)

(4.5.4) / 3

(4.5.5) f4

(4.5.6) / 5

(4.5.7) / 6 = A3

2.

By (4.5.7), A3 is a non-zero constant. Hence, by (4.5.6), h2 e C[s] and degA2 < 1.
By (4.5.5), Ai e C[s] and degAi < 2. Now put a = a'/a" and Ao = A /̂A .̂ Then,
by (4.5.4), we have a" = ckζ, (c e C x ) . But, if degA^; > 0, then hi 4- α(l + ^) 3 ^
C[^]. This contradicts to (4.5.1). Thus a,hoeC[s].

CLAIM. Both degα and degAo are < 3 .

0/ C/α/w. Suppose that degα > 3 or degA0 > 3. Then, by (4.5.4),
as deg/3 < 3, degAo = degα. Hence deg(Aj) 4- a{\ + s)3) — 2degα > 6. But this
contradicts (4.5.1) as deg/0 < 6.

Now Case (II) is immediate from the following claim.

CLAIM, a is a constant.
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Proof of Claim. Suppose that deg# > 0 and let α be a root of a = 0. Then
the line Y — aX = 0 meets B at less than 4 distinct points. This contradicts our
choice of x (see (iii)).

REMARK 4.1. Just Lemma 3.1 is not enough to find a (2,3) torus de-
composition for a given sextic curve. In fact, we have the following example:

X6 — 3X5 i ~ χ4 -f (1 -f 3s)X2 -f 2s2X + s2

§5. Some examples

In this section, we give some examples of (2,3) torus sextics. To this
purpose, we make use of theory of elliptic surface as we did in [T2], [T3] and
[T4]. We first summarize results from theory of elliptic surfaces which we use
later. We refer to [Ko], [M], [SI] and [S2] for details.

Let φ : £ —• Pι be an elliptic surface. We always assume that $ satisfies the
following:

ASSUMPTION 5.1. (i) $ has a section, so, and (ii) ψ has at least one singular
fiber.

By Assumption 5.1 (i), the generic fiber, $η, of φ becomes an elliptic curve
over C(/> 1). Hence one can introduce a group structure on Sη, so\η being the
zero. The inverse morphism with respect to the group structure gives an in-
volution on S. We call it the canonical involution.

Let NS(<ί), 7> and M W ( ί ) be the Neron-Severi group, the subgroup of
NS(^) generated by so and all irreducible components of fibers, and the Mordell-
Weil group, the group of section, of $, respectively. Then under Assumption 5.1
we have the following theorem:

THEOREM 5.2 (Shioda). MW(ί) £ NS(<ί)/7V. In particular, MW(ί) is
finitely generated.

For a proof, see [S2].
The following fact is useful.

LEMMA 5.3. Let s be a non-zero torsion section in MW(<?). Then s and so
are disjoint.

An important corollary to Lemma 5.3 is the following:
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COROLLARY 5.4. (i) //MW(^) has a 3-torsion, then every singular fiber of
S is of type either IV, IV*, or In.

(ii) //MW(<f) has a p-torsion (p > 5), then $ has only In fibers as its singular
fibers.

For proofs of Lemma 5.3 and Corollary 5.4, see [Mi] VII, 3.
Our method to obtain a sextic is based on the following proposition due to

Persson [P2].

PROPOSITION 5.5 (Persson). Let φ : $ —> Pι be an elliptic K3 surface with a
section so having an Iβ fiber or I2 and I4 fibers. Then:

(i) $ is the canonical resolution of some double covering S1 —> P2 branched
along a sextic B with at most simple singularities.

(ii) The elliptic fibration φ : $ -» Pι is the standard fibratίon centered at a
triple point, x, of B. Namely, φ is induced by a pencil of lines through x; and x is
an eβ singularity for the former, while x is a ds singularity for the latter.

(iii) The involution determined by the covering transformation coincides with
the canonical involution.

For a proof, see [P2], p. 282.
Now we have the following:

PROPOSITION 5.6. Let φ : S —> P 1 be an elliptic K3 surface as in Proposition
5.5, and let B be the sextic in Proposition 5.5 (i). //MW(^) has a 3-torsion, then
B is a (2,3) torus curve.

Proof Suppose that MW(I) has a 3-torsion and let s be the corresponding
section. By Lemma 5.4, every singular fiber of $ is of type either IV, IV*, or /„.
To see at which component s meets at each singular fiber, we label irreducible
components of a singular fiber as follows:

θ 2

θ 2 θ 4

θ 3

θ 6 θn-l

θ 0
θ 3

Figure 2
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Then, by [M] VII. 3.3, we may assume that s meets Θi at IV and IV* fibers.
Also, by Lemma 3.5 in [T3], if s meets Θk at an /„ fiber, then we have k =
0mod«/3 if n = 0mod3 and k = 0 if n ψ 0mod3. Hence, by considering the
process of the canonical resolution δ —> δ1 in Proposition 5.5, we can check that
the image of s in P2 is a conic satisfying (0.4.1) and (0.4.2). Hence, by Theorem
0.4, B has a (2,3) torus decomposition.

Now we go on to give rather concrete examples by using Proposition 5.6.
We first define the total Milnor number of a plane curve.

DEFINITION 5.7. Let B be a reduced plane curve. For x e Sing(2?), μx

denotes its Milnor number. We define the total Milnor number, μ(B), of B to be

By the definition, μ(B) is a non-negative integer. For a sextic, B, with at
most simple singularities, it is well-known that μ(B) < 19 (see [P2], for example).
Following to Persson, we define a maximizing sextic as follows:

DEFINITION 5.8 (Persson). Let B be a sextic with at most simple singu-
larities. We call B a maximizing sextic if μ(B) = 19.

For an irreducible maximizing sextic, we have the following:

PROPOSITION 5.9. Let B be an irreducible maximizing sextic with a triple
point. If B has three or more singularities, each of which is of type either eβ or
ayc-i {k > 1). Then B has a (2,3) torus decomposition.

Let δ be the canonical resolution of a double covering of P2
Proof

branched along B. Let be a triple point of B and let ψx: δ —> P be the
standard fibration centered at x . Then, by Theorem 0.6 in [T2], MW(ί) has a
3-torsion. Hence, by Proposition 5.6, B has a (2,3) torus decomposition.

Example 5.10. There exist irreducible maximizing sextics, B, for the fol-
lowing 7 cases:

1

2

3

4

5

6

7

Singularities of B

3̂ 6 + a\

e6+a5+ 4a2

eβ + au +a2

eβ + #8 + en + cLi

eβ + «8 + 2α2 + a\

£6 + <*5 + <?4 + 2 β 2

ds + as + 3α2
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For the existence of sextics as above, see [P2], [MP2], [T4] and [Y].

Remark 5.11. (i) One can find other examples of (2,3) torus sextics by
using elliptic K3 surfaces with 3-torsions. For details, see [T2] and [T4].

(ii) Proposition 5.9 is false if μ(B) < 18. In fact, there are two irreducible
sextics, B\ and B2, such that (i) B\ and B2 have the same configuration of
singularities, and (ii) B\ has a (2,3) torus decomposition, while B2 does not.
Such examples give rise to a Zariski pairs. For details on Zariski pairs of degree
6, see [A], [Tl], [T2] and [T4].

Now we go on to consider sextics possessing two different (2,3) torus
decompositions. By Proposition 5.6, one of possible approaches is to make use
of an elliptic K3 surface with MW(ί) t o Γ => Z/3Z © Z/3Z. To construct such
an elliptic K3 surface, we start with a rational elliptic surface as follows:

Let g : E(3) —> Pι be the elliptic modular surface attached to Γ(3), where

Then it is known that E(3) satisfies the following properties:
(5.12) E{3) has four /3 fibers.
(5.13) g has 9 sections; and by choosing one of them as the zero, we have

MW(£(3)) ^ Z/3Z Θ Z/3Z.
(5.14) E{3) is obtained from a pencil of cubics given by {λo(X3 + Y3 + Z 3 )

+ 3λ\XYZ}, [λo : λ\] e ? 1 , and each base points of the pencil gives rise to a
section of E(3).

For these facts, see [I] and [SI] for details.

LEMMA 5.15. One can label the four singular fibers and their irreducible
components in the following way:

(i) If Ft (i = 1,2,3,4) denote the singular fibers, then Fi = Θz ,o + Θ,; 1 + Θ/2
such that so&i,o = Θi,oΘ, } i = Θ iΘ/2 = Θ/^Θ^o = 1, (/ = 1,2,3,4).

(ii) There exist 3-torsion sections s\ and S2 such that

and

S2&H = S2&2,2 = ^ Θ 3 , l = ^2Θ4,0 = 1.

Proof By (5.14), we can easily check the above fact.

Let p : P 1 —> Px be a morphism of degree 2 with branch points v\ and 1̂2-
Let φ : £ -> Px be the relatively minimal model of the pull-back of g : E(3) -> Pι

by p.

LEMMA 5.16. For singular fibers of φ, we have the following:
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1

2

3

Fibers of E(3) over v\ and V2

FUF2

F\, a smooth fiber

a smooth fiber, a smooth fiber

Singular fibers of $

/6, /6, /3, h, h, h

/6, /3, h, h, h, /3, h

h, h, h, I3, I3, /3, I3, h

Proof. By Table 7.1 in [MP1], our table is immediate.

The sections, si and S2, in Lemma 5.15 give rise to 3-torsion sections, s\ and
S2, of S, respectively. For the first two cases in Lemma 5.16, Figures 3 and 4 as
below explain at which component of each singular fiber s\ and S2 meet.

CASE 1.

Figure 3

CASE 2.

\ \ \ \ \

Figure 4
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For each case as above, φ has an Iβ fiber. Hence, by Proposition 5.5, we
have

(i) δ is the canonical resolution of a double covering $' branched along
some sextic, B, with at most simple singularities, and

(ii) φ is the standard fibration centered at an eβ singularity of B.
Thus, by looking into the process of the resolution $ —• δ*\ we have the

following:

PROPOSITION 5.17. Let B\ and Bι be the sextics as above corresponding to
Case 1 and Case 2, respectively. Then:

(i) B\ has singularities Aai + a$ 4- e§. Let Ch\ be the image ofsj. Then both
C / } i ( / = l , 2 ) are conies satisfying the conditions (0.4.1) and (0.4.2). Both
Ch\ (i= 1,2) meet B\ at eβ, a$ and 2 ^ ; and the two <z2 points in C\t\Γ[B are
disjoint from those in C2,1 Π B.

(ii) B2 has singularities βai + e^. Let Ch2 be the image of 5/. Then both
C , , 2 ( Ϊ = 1 » 2 ) are conies satisfying the conditions (0.4.1) and (0.4.2). Both
Ch2 (i= 1,2) meets B2 at 4#2 and eβ', and the four a2 points in Ci^ΠT? do not
coincide with those in C2

Proposition 5.17 shows that Theorem 0.5 (i).

§6. Proof of Theorem 0.5 (ii)

We keep the same notation as that in §6. We start with the following
lemma.

LEMMA 6.1. Let B\ and B2 be sextics as in Theorem 0.5, and let φt : δt -> Pι

be the standard fibration centered at the eβ singularity. Then:
(i) The configuration of singular fibers of φλ is Iβ, h, h, h, h, h-
(ii) The configuration of singular fibers of φ2 is Iβ, h, h, h, h, I3, h

Proof For each /, the elliptic fibration φt comes from a pencil of lines
through the eβ singularity; and it is easy to see that

(a) a singular fiber arising from the eβ singularity is of type /„ (n>6), and
(b) a singular fiber arising from an #2 singularity is of type either I3 or IV.
Since rank^TV < 20, and the sum of the topological Euler numbers of

singular fibers is 24, the configuration of singular fibers of φλ is Iβ, h, h, h, h,
I3, and the configuration of singular fibers of φ2 is either Iβ, I3, I3, I3, 73, 73, 73 or
I9, I3, I3, I3, 73, 73. But the latter case of φ2 does not occur by [MP2].

LEMMA 6.2. Let ψ : $ —> P 1 be a semistable elliptic K3 surface with singular
fibers / „ , , . . . , 7Λr. Let p be a fixed prime. If p divides r — 1 or more of nfs, then
Z/pZ ® Z/pZ a MW(<f).
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This is straightforward generalization of Lemma 9 in [MP3], so, we omit its
proof.

By Lemma 6.2, for each of φt in Lemma 6.1, Z / 3 Z 0 Z / 3 Z c MW(ί,).
Hence, by [CW], there exist degree 2 morphisms ρxr. Pι —> Pι (z = 1,2) such that
<?z (z = 1,2) are obtained as relatively minimal model of the pull-back surfaces of
E(3) by Pi (i = 1,2), respectively. This means that i?i and B2 are obtained in
the same way as in Proposition 5.17. This implies Theorem 0.5 (ii).
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