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ON HASSE ZETA FUNCTIONS OF GROUP ALGEBRAS OF ALMOST

NILPOTENT GROUPS

TAKAKO FUKAYA

1. Introduction

1.1. In the paper [Fu], we generalized the Hasse zeta functions ζA(s) of
commutative finitely generated rings A over the ring Z of integers, to non-
commutative rings (concerning the definition, see below), and computed the zeta
functions of some rings. The examples suggested a strong relationship between
the convergence of the Hasse zeta functions and the Gelfand-Kirillov dimensions
of the rings (concerning the definition of the Gelfand-Kirillov dimension, see
section 2). So in [Fu], we conjectured the relationship between them (see section
2). In the present paper, we consider this conjecture in the case of group rings.

For a (not necessarily commutative) finitely generated ring A over Z, in [Fu]
we defined the Hasse zeta function CA(S) of A by

M

where M runs over the isomorphism classes of finite simple yl-modules and
N(M) = #EndA(M).

We say ζ^ (s) converges if there exists a real number d such that the product
defining CA(S) absolutely converges when Re(s) > d, and we say ζA(s) diverges
otherwise. In fact, the function ζA{s) diverges for some rings A.

The purpose of this paper is to prove

THEOREM 1.2. Let G be a finitely generated group which has a nilpotent
subgroup of finite index, and let R be a finitely generated commutative ring over
Z. Let A be the group ring R[Gf\. Then the function CA($) converges.

We call a group which has nilpotent subgroup of finite index, an almost
nilpotent group.

By a theorem of Gromov [Gr], for a finitely generated group G and for a
field k, the Gelfand-Kirillov dimension of k[G] (concerning the definition, see
section 2) is finite if and only if of G is almost nilpotent. So Theorem 1.2
implies the following corollary (see also Corollary 2.6).

Received June 23, 1998.

140



HASSE ZETA FUNCTIONS OF NILPOTENT GROUPS 141

COROLLARY 1.3. Let G be a finitely generated group, let k be a finite field,
and let A be the group ring k[G]. Then the function CA($) converges if the
Gelfand-Kirillov dimension of A is finite.

Concerning the explicit computation of CA(S) for group rings A, we have

THEOREM 1.4. Let G be a finitely generated nilpotent group which has a
central series

G= Go 3 Gx z> .. 3 Gr = {1}

such that

Gi/Gi+ι ^ Z for 0 < / < r - 1.

Let R be a finitely generated commutative ring over Z, and let A be the group ring
R[G}. Then the function CA{$) converges, and

ζA(s) = ζR,(s)

where Rf is the commutative ring R[X\,Xj~ι,... ,XnX~1].

In section 2, we review the conjecture on the relationship between the
convergence of our zeta functions and Gelfand-Kirilov dimensions of rings which
is described in [Fu].

In section 3, we show the main line of the proof of Theorem 1.2, and give a
part of the proof.

In section 4, we prove Theorem 1.4 and complete the proof of Theorem 1.2.
In section 5, we remark on the more strict form of our conjecture which is

described in section 2.
I would like to express my hearty gratitude to Professor Kazuya Kato who

suggested me to study this subject, gave me a lot of essential advice, and
encouraged me much.

Notes. In this paper, all rings are assumed to have a unit 1, and all
ring homomorphisms are assumed to respect 1. Fields are assumed to be
commutative, though rings are not assumed to be commutative. For a ring A,
an v4-module means a left ^4-module on which 1 acts as the identity. As usual,
Z denotes the ring of integers. We sometimes call a representation of A, an A-
representation.

2. Review of the conjecture

2.1. We introduce the definition of the Gelfand-Kirillov dimension. The
Gelfand-Kirillov dimension is defined usually for algebras over fields. For a
finitely generated algebra A over a field k, the Gelfand-Kirillov dimension
GKdim(^) G {t e R; t > 0} U { + oo} of A is defined as follows: Let S be a finite
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set of the generators of A over k. Then

where Vn(S) is the Λ>subspace Σ^Lo k$J °f A (SJ = {x\ xy, xi,..., x3 ε S}).
This is independent of the choice of S. If A is commutative, GKdim(^ί) coin-
cides with the Krull dimension dim(^4). (See [M-R] Chapter 8.)

For a commutative ring R and a finitely generated i£-algebra A, we define

GKdim(^ î ) = sup{GKdim(^ ®*fc(p)) + dim(R/p) : p e Spec(i^)}

where k(p) denotes the residue field of p. For a finitely generated ring A over Z,
we define the Gelfand-Kirillov dimension of A by

GKdim(Λ) = GKdim(Λ Z).

GKdim(^) = dim(A) holds again for a commutative finitely generated ring A
over Z.

2.2. By Gromov [Gr], for a finitely generated group G and for a field /:,
GKdim(A:[G]) is finite if and only if G is almost nilpotent. From this we can
deduce that for a finitely generated group G and for a commutative finitely
generated ring R Φ 0 over Z, G is almost nilpotent if and only if GKdim(i^[G]) is
finite. (To see this, we have to show that if G is a finitely generated almost
nilpotent group, then GKdim(i^[G] ® zk(p)) is bounded by a number which is
independent of p e Spec(Z). This fact is a consequence of [Ba].) (We say the
Gelfand-Kirillov dimension is finite also in the case it is — oo.)

2.3. In [Fu], we observed that concerning the relationship between the
convergence and the Gelfand-Kirillov dimension, the "modified Hasse zeta
function" ζ^{s) behaves better than CΛW

Let A be a finitely generated ring over Z. We defined in [Fu], the modified
Hasse zeta function ζ^(s) of A by

M

where M runs over all isomorphism classes of simple A -modules such that
DEnd^(M) is finite, and N(M) = $EndA(M).

Remark that in this definition, M itself need not be a finite module.
In [Fu], we formulated the following

CONJECTURE 2.4. Let A be a finitely generated ring over Z. The function
ζ*A{s) converges if and only if the Gelfand-Kirillov dimension of A is finite.

The examples which we have computed by now satisfy the conjecture.
Concerning Conjecture 2.4, we have the following proposition.

PROPOSITION 2.5. Let G be a finitely generated group having a poly cyclic
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subgroup of finite index. Let R be a commutative finitely generated ring over Z,
and let A be the group ring R[G\. Then

ζA(s) = C » .

Especially, for G and A in Theorem 1.2, we have

Proof For A = R[G] where G is finitely generated group having a poly-
cyclic subgroup of finite index, by [Ro], any simple ^4-module is finite.

Since an almost nilpotent group has a polycyclic subgroup of finite index, the
latter part of Proposition 2.5 in obtained. •

By Proposition 2.5 and by 2.2, Theorem 1.2 implies

COROLLARY 2.6. Let A be a group ring of a finitely generated group over a
commutative finitely generated ring. Then the function ζA(s) converges if the
Gelfand-Kirillov dimension of A is finite.

3. Proof of the results

We have the following propositions.

PROPOSITION 3.1. Let G be a finitely generated group, and let H be a normal
subgroup of G of finite index. Let R be a commutative finitely generated ring over
Z. Let A and B be the group rings R[G] and R[H], respectively. If the function
ζB(s) converges, then the function CA{S) converges.

PROPOSITION 3.2. Let G be a finitely generated nilpotent group, let R be a
commutative finitely generated ring over Z, and let A be the group ring R[G]. Then
the function ζA (s) converges.

Theorem 1.2 is deduced easily from Propositions 3.1 and 3.2 as follows. Let
G, R, and A be as in Theorem 1.2.

Let H' be a nilpotent subgroup of G of finite index, and let

H= f)gH'g-1.
geG

Then H is a normal subgroup of G, and also of H' of finite index. Since a
subgroup of a nilpotent group is nilpotent, H is a nilpotent normal subgroup of
G, and clearly of finite index. By well-known Lemma 3.3 below, H is finitely
generated. Let B be the group ring R[H]. By Proposition 3.2, the function
ζB(s) converges, and hence by Proposition 3.1 the function ζA(s) converges.

LEMMA 3.3. Let G be a finitely generated group, and let H be a subgroup of
G of finite index. Then H is a finitely generated group.
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Proof. Let S be a finite subset of G which generates G, and let T be
a representative of G/H in G including 1. For g e G and t e T, write gt =
tfhgjt (t' e T,hg,t e H). Then the finite set {hg,t\ge S,teT) generates H as is
easily seen. •

In this section, we prove Proposition 3.1, and deduce Proposition 3.2 from
Proposition 3.1 and Theorem 1.4. The proof of Theorem 1.4 is given in the next
section.

LEMMA 3.4. Let G be a finitely generated nίlpotent group. Then the group G
has a normal subgroup Gr of finite index which has a central series

such that

G[lGf

M ^Z for 0 < i < r - l .

Proof We prove this by induction on n = X^ΓQ1 rank(Gv/Gv+i) where {Gi}t

is the lower central series of G. (Gi/Gi+\ (0 < / < r — 1) are finitely generated by
[Se] Corollary 7.) We may assume n > 1. Then the center of G is infinite by
[Se], Section 1, Corollary 6. Take an infinite cyclic subgroup H of the center of
G. By induction, G/H has a normal subgroup G" of finite index having a
central series as in Lemma 3.4. Let G1 be the inverse image of G" in G. Then
G' has a central series as in Lemma 3.4. •

Proposition 3.2 follows from Theorem 1.4 and Lemma 3.4 by considering
Proposition 3.1.

We prove Proposition 3.1 in 3.5-3.7.
Let fs(A) and fs(B) be the set of all isomorphism classes of finite simple A-

modules, and all isomorphism classes of finite simple 2?-modules, respectively.

3.5. For a simple l?-module N (resp. v4-module M), we denote by [N] (resp.
[M]) the element of fs(B) (resp. fs(A)) which is represented by N (resp. M). Let
G\fs(B) be the quotient of fs(B) by the equivalence that [N\], [N2] e fs(B) are
equivalent if and only if 7̂ 2 = σN\ for some σ e G as ^-modules. Here σN =
{σx; x 6 N} is the set of symbols σx (x e N) which is regarded as a 2?-module in
the natural way. (For beB and xeN, bσx is defined to be σ(σ~ιbσ)x.)

We consider the diagram

MB)

β(A) > G\fs(B)
π

where φ is the canonical map and π is the following map. Let M be a simple
.4-module. Let TV be a simple i?-submodule of M. We define π([M]) = [N]
mod G. We show that this map π is well-defined. Since the subgroup Y^τeGτN
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of M is stable under the action of A, it coincides with M. Hence any simple
2?-submodule of M is isomorphic to τN for some τ e G. So the map π is
well-defined.

LEMMA 3.6. Let I = [G : H).

(1) For any [N]efs(B), we have ^π~ι(φ([N])) < /.
(2) For any simple A-module M and for any simple B-module N such that

φ([N]) = π{[M\), we have N(N) < N(M)ι/l.

As the function ζB(s) converges, Proposition 3.1 follows from Lemma 3.6.
So we prove Lemma 3.6 in 3.7.

3.7. (1) Since any finite simple A -module M such that π([M]) = [N]
is isomorphic to some subquotient ^-module of A®BN, $π~ι(φ([N])) <
lengthy (A ®BN) < length^Λ ®B N) = I.

(2) Let xnN be the annihilator of N. Let F be the center of B/mN, that is,
$F = N(N). Let GN = {ge G; gmNg~ι = mN}. Let IN = {g e G; the action of
g{ )g~ι on F is identity}. It holds that G => GN =>/TVΓ => H, and IN is a normal
subgroup of GN. An element of GN/IN can be considered as an element of the
automorphism of F. Let F$ be the subfield of F which is stabilized by GN/IN-
Then [F : Fo] = ί(GN/IN) < I

We show that Fo is embedded in End^(M) as a subfield. Then we obtain
that ttEnd^(M) = N(M) > N(N)ι/ι. It holds

n-\

M ^ (+) TiN1 as ^-modules
ι=0

where {τo,... ,τn_i} be the system of the representatives of G/GN, and
Nf = {x E M\ ax — 0 for any a e m^}. For α e FQ, we define

α : 0 τiN' -, 0 τ. TV'; 0 x , ^ ©(τ/ατΓ^,).
z=0 ι=0 ι=0 ι=0

We prove that this map α e E n d ^ ( M ) . It is sufficient to prove that for τe G

such that ττiN' = τg^N' (0 < / < n - 1,0 < g(ι) < n - 1), ττ/ατ"1 = ^ ( ^ α τ ^ τ on

τ/iV7. That is, (τ~() )ττ,)α(τ-())ττ,)~1 = α on TV', since

As τ~λττ! e GΛΓ, by the definition of α, the above equations holds. Hence

Fo cz End A (M).
Hence we obtain the result of Proposition 3.1.

4. Proof of the results. 2

4.1. In this section, we prove Theorem 1.4 by using Proposition 4.2 below.
First, we prepare to describe Proposition 4.2. Let A be a finitely generated ring
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over Z. The Hasse zeta function CA(S) has the expression

where r runs over integers > 1 and,

p n=\

where ®^,r is a certain scheme of finite type over Z, p runs over prime numbers,
and Fpn is a finite field with pn elements, so the function ζA,r(

s) coincides with the
product of Weil's zeta functions of &A,r®zFp [We] f° r all prime numbers
p. We do not review the definition of ®Λ,r> but what we need in this paper is
that for the algebraic closure K of Fp, &A,r(K) is identified with the set of all
isomorphism classes of r-dimensional irreducible representations of A over K, and
<ZAΛFP") i s identified with the Gal(K/Fpn)-fϊxed part of <5AΛK)-

Let G, R and A be as in Theorem 1.4. We may assume that R is a finite
field of characteristic p > 0, for ζR(s), ζA{s) are products of ζR/m(s), ζA/mA(s) over
all maximal ideals m of R, respectively. So assume R is a finite field k of
characteristic p, and let K be the algebraic closure of k.

Let S Λ = U r > ! ©Λ,r> a n d for an extension /:' of A:, let S^(fc') be the set of
fc'-rational points of ®Λ as a ^-scheme.

For a finite dimensional irreducible representation N of B (resp. M of A)

over AT, we denote by [N] (resp. [Λf]) the element of &β(K) (resp. ® (̂AΓ)) which

is represented by N (resp. M).
We have

PROPOSITION 4.2. Let G, k, K, and A be as above {A = k[G\). Let Fq be a
finite extension of k in K which has q elements, and let

Let θ : G —> G be an automorphism of G such that θ{Gi) = Gi for 0 < i <r and
θ : Gi/Gi+\ -> Gi/Gi+\ is the identity map of G, /G, +i for 0 < i < r - 1. Extend
the action of θ on G to A where the action of θ on k is trivial Then tf{[M] e
6^(^);Frob^([M]) = Θ([M])} = (q - \)r, a number which does not depend on the
automorphism θ.

Now, we prove Theorem 1.4 by using Proposition 4.2.
It is sufficient to prove that for any finite extension Fq of k in K,

$<5A(Fq) = (q — iy. By taking the identity map of G as θ in Proposition 4.2, we
obtain Theorem 1.4.

We prove Proposition 4.2 by induction on r. The outline of the proof is as
follows. Assume r > 1, and let B = k[G\\. Fix an element α of G whose image
in G/G\ ^ Z is a generator, let / : G\ —• G\ be the automorphism of G\ defined
by x ι-> αxoΓ1, and extend/to an automorphism of B in the natural way. Let
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f\<5β(K) be the quotient of ^(K) by the action of/. As we will show later, in
the category of Gal(K/k)-sets, ® (̂AΓ) is a ^-principal homogeneous space over
f\<Zk

B{K). The action of θ : &k

B(K) -> <5%(K) commutes with / and hence
induces f\<Sβ(K) —> f\<5β(K). From Lemma 4.3 below by using our induction,
we will deduce

IK* e Λ©SW; Frob,(x) = θ(x)} = {q- \γ-χ.

The key point will be the fact ${x e <5%(K)\ Frob^x) = θf(x)} = (q - l)r~ι for
all i by our induction which is applied to the automorphisms θfι of G\ (ieZ).
From the fact S\(K) is a K*-principal homogeneous space over f\<Sβ(K), we
will deduce

${xe<5k

A(K);Frobq(x) = θ(x)}

= tf{x 6 f\ek

B(K); Frob, = θ(x)} • «{x eK*;x* •= x}

The following lemma will be applied to the proof of Proposition 4.2 by
taking Y = <5%(K), F = θ~ι Frob r

LEMMA 4.3. Let Y be a set, and let f : Y —> Y be a bijection. Let F : 7 —•
Y be a map which commutes with /. Assume that for any i ε Z, {̂  G Γ;
F(^) =/'();)} w a finite set, and its order does not depend on i. Then

K j e Γ F W = y} = i {x€ / \Γ;F(x) = x}.

Proof. For each / e Z, put F, = {y e Y; F(y) = fι(y)}. Let φ : Γ -> /\ 7
be the canonical map. For j G i^ , as ^"^^(j)) c= i7/ (since F commutes with/)
and as Fi is a finite set, $φ~ι(φ(y)) = l{y) is finite. Then y e Fι+^y^m for all
me Z and ^ is not contained in Fj \ΐ j Φ i + l(y)m for any me Z. Hence there
exists n e Z , n > 1 such that Fi+n = Fi for all / G Z. SO for the canonical map
Φ'Uo<ι<n^^^ where 5 = {* e/\7;F(x) = x}, the set Γ ' ^ W ) is of
order n for any x e g. Hence (tδ = ItRf = tt̂ b = ttί^ e ^ ^ W = ^}?

 a finite

number which does not depend on ieZ. Π

We prove Proposition 4.2.
We prove by induction on r. Assume r > 1, and let B be the group ring

k[G\] where Gi is the subgroup of G in Theorem 1.4. In the exact sequence

let / : Gi -» Gi be the automorphism of G\ defined by x ^ αxoΓ1 where α is an
element of G whose image in Z is 1. The ring A can be expressed as the
following skew Laurent polynomial ring: { Σ ^ _ Λ Γ # / ^ ; N ^ 0>β/ e B} i n which Γ
is an indeterminate and the multiplication is defined by the rule Ta = f(a)T
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(aeB). When we consider the ring A as the above skew Laurent polynomial
ring, we can identify the element α of A as T.

We define a surjective map π : <S>k

A(K) -> f\<5%(K).
Let Λf be a finite dimensional irreducible representation of A over K, and let

iVbea i?-subrepresentation of M. We define π([Λf]) = [N] mod /. We show
that this map π is well-defined. Since the subgroup ΣιsZT

ιN of M is stable
under the action of A, it coincides with M. Here TιN = {Tιx; x e N} (i e Z) is
the set of symbols Tιx (xe N) which is regarded as a ^-representation in the
natural way. (For b e B and xe N, Tιx is defined to be Tιf~ι(b)x.) Hence any
simple i?-submodule of M is isomorphic to TιN for some i e Z and TιN ^
Γ{N).

We assume that I{[N] e ©£(*); Frob?([JV]) = Θ([N])} = (q - I ) ' " 1 as the
inductive hypothesis, then we will prove that D{[M] e <Z^(K);Fτobq([M]) =
θ ( \ M } ) } ( \ y

LEMMA 4.4. Let N be a finite dimensional irreducible representation of B over
K, and let n be the minimal integer >0 such that fn([N]) = [N] in &β(K). Let
JN C: BK = B®kK be the annihilator of N, and let

D = {ge (Bκ/JNγ g(bmoάJN)g-χ = fn{b)moάJN for all b e Bk}.

On the other hand, let C be the set of isomorphism classes of finite dimensional
irreducible representation M of A over K such that n{[M]) = [N] mod/. Then
there exists a bijection between C and D which preserves the action of Gal(K/k).

(Note that /"(JN) = JN- Since BK/JN is isomorphic over K to Mr{K) for
some r> 1, by the theorem of Skolem-Noether, the automorphism of BK/JN
induced by fn coincides with g( )g~x for some g e (BK/JN)*-)

Since D is a K*-principal homogeneous space (by the multiplication
in (Bκ/Jn)*), Lemma 4.4 implies that C has a structure of a ^"-principal
homogeneous space, and then &\(K) has a structure of a K*-principal
homogeneous space over ^

Proof We define the map D —• C as g i—> φ)Lo ^ ^ / 0 r 9 ^ N, where
the ^-module structure on ©,To - ^ ^ ^s a s f°H°ws The action of B is the
natural one and the action of T is given by

1=0 1=0

It is easy to see that this map D —> C is injective. We prove that it is
surjective. Let [M] e <5%(K), and let [N] e Ŝ (AΓ) be an isomorphism class of an
irreducible subrepresentation of B in M. We prove M = @"~0 TιN. Let Nr =
{x e M\ ax = 0 for any a e JN}. For any g\ e D, the action of gγιTn(modJN)
commutes with the action of B on N'. Assume Nf as a B[s] -module where s is
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an indeterminant and the action of s is given by g\x Tn{jΆθάJχ). Let N" be
an irreducible i?[£]-subrepresentation of TV7. Since the action of s commutes
with the action of B[s], the action of s on N" is a scalar. So N" is irreducible
also of B. Hence N" ^ N as ^-representations. As ^ l Ό 1 Γ W " = Θ Γ o 1 ; r w " i s

stable under the action of T, it coincides with M. We also obtain that
M = ©"Jo N. The action of Tn in M is regarded as an element of (BK/JN)*,
and it is the element of D which corresponds to M by the map D —> C. So the
map Z> —> C is surjective. Hence we obtain that there exists a bijection between
C and D which preserves the action of Gdλ(K/k). •

As ® (̂AΓ) has a structure of a AT*-principal homogeneous space over
f\<S>k

B(K), for [ΛΓ]mod/e/\s£( iq such that Frob^([iV]mod/) = 0([JV]mod/),

= [/V]mod/}

= |t{α G ̂ * ; Frob,(α[M]) =

= (({a G AT*;

For b e K* such that 0([M]) = feFrob^([M]), the above order is the same as the
number of the solutions a of the equation aq~Λ — b, that is, q—\.

Hence

e <5k

A(K);Frobq([M}) =

= (q - 1) • «{[JV] m o d / e /\<5*(*); Frob,([^V] mod/)

We prove that i{[N]modfef\Q^(K);Frobq([N]modf) = ([
{q-\)r-\ We use Lemma 4.3 by taking Y = <2k

B(K), F = θ'iFτobq. We
show that we can apply Lemma 4.3. Let pN be a ίΓ-homomorphism from 5jf
into Mr(K) for some r > 1 which represents the action of B in N. Since it is
clear that Frob 9 commutes with / we show that θ commutes with /. We have

=pN(a-ι(θ-\aθ(b)a~1))a)

where u — α~10~1(α), and u e G\ a B as it is a property of θ. Hence F com-
mutes with /

Take θfι as θ of Proposition 4.2. From our hypothesis of the induction,
{[N] G <5%(K)]F{[N]) = fι{[N])} is a finite set, and its order (q - I ) " " 1 does not
depend on /. So we can apply Lemma 4.3. Hence
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] mod/ e Λ © ! ( * ) ; *™bq([N] mod/) = Θ([N] mod/)}

Hence we accomplish the proof of Proposition 4.2.

5. Remark

In [Fu], we made a more strict conjecture on the relationship between the
convergence of the zeta function and the Gelfand-Kirillov dimension of its ring.

CONJECTURE 5.1. Let R be a commutative finitely generated ring over Z,
and let A be a finitely generated R-algebra. We define the "zeta dimension'
ζdim(A) e {t e R t > 0}U {±00} of A by

= lr£{d e R; ζ^(s) converges ifRφ) > d}.

Then
<GKdim(,4;iί).

5.2. For a finitely generated almost nilpotent group G, and for the group
ring A = R[G], if we take a nilpotent subgroup of G of finite index sufficiently
small, then we may assume that Go is a normal subgroup of G. Let

G D Go ̂  (?i =) 3 Gr = {1}

be a lower sequence of subgroups of G where

is the lower central series of Go. Then we conjecture that

r-\

ζdim(A) = dim(R) + ̂  r a n k z ( G / / G m ) .

By [Ba], 5.2 is compatible with 5.1.
In the case G is the group of Theorem 1.4, by Theorem 1.4, the conjecture in

5.2 is satisfied.

5.3. Let B -» A be a homomoφhism of finitely generated i^-algebras, and
assume that A is of finite type as a ^-module. We conjecture that

= ζdim(B).

From this conjecture and Theorem 1.4, we conjectured 5.2.
But it seems difficult to solve this problem.
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