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TOPOLOGY OF COMPLEX POLYNOMIALS VIA POLAR CURVES

PIERRETTE CASSOU-NOGUES AND ALEXANDRU DIMCA

1. The main results

The use of the local polar varieties in the study of singular spaces is already
a classical subject, see Le-Teissier [LT] and the references therein.

In this note we consider the global polar curves associated with an affine
smooth hypersurface F in Cn. Instead of considering the higher dimensional
polar varieties associated with F, we choose to look at the polar curves for the
various generic linear sections of F. This approach is motivated by our use of
classical dual varieties and also by our main interest in numerical invariants
describing the topology of F in terms of these family of polar curves.

More precisely, let f e C[x\,... ,xn] be a polynomial and assume that the
fiber Ft = f~ι(ή is smooth and connected. Our main result computes the Euler
characteristic χ(Ft) of the hypersurface Ft in terms of the polar invariants of the
intersections Ft Π Ek, where Ek is a general linear subspace in Cn of codimension
k, for k = 0, 1 , . . . , Λ - 1.

First we define these polar invariants. For any hyperplane

H : h = 0 where h(x) = ho + h\X\ + + hnxn

we define the corresponding polar variety ΓH to be the union of the irreducible
components of the variety

{xeCn\ rank(df(x),dh(x)) = 1}

which are not contained in the critical set S(f) — {x e Cn \ df(x) = 0} of /.
Note that Γ# depends only on the direction Hd = (h\ : : hn) e Pn~x of the

hyperplane H.

LEMMA 1. For a generic hyperplane H we have the following properties.
(i) The polar variety TH is either empty or a curve, i.e. each irreducible

component of TH has dimension 1.
(ii) d\m(Ft Π Γ//) < 0 and the intersection multiplicity (Ft, Γ#) is independent

of H.
(iii) The multiplicity (Ft, Γ#) is equal to the number of tangent hyperplanes

to Ft parallel to the hyperplane H. For each such tangent hyperplane Ha, the
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intersection FtΓiHa has precisely one singularity, which is an ordinary double
point.

Note that (i) and (ii) above are well-known, see for instance Tibar [Ti].
On the other hand, the last property (iii) is exactly the analog of the defining
property of a projective Lefschetz pencil, see [L].

DEFINITION 2. The non-negative integer (Ft, ΓH) is called the polar invariant
of the hypersurface Ft or of the polynomial / at the point t, and is denoted by
P(Ft) or by P(/, t), depending on the point of view we want to emphasize.

Note that P(Ft) corresponds exactly to the classical notion of class of a
projective hypersurface.

Our main result is the following.

THEOREM 3. For a generic hyperplane H, the homotopy type of the fiber Ft is
obtained from the homotopy type of the section Ftf)H by attaching P(Ft) cells of
dimension n — 1.

In particular

P(Fl) = (-l)n-ι(χ(Ft)-χ(FlΠH))

In the next section we describe geometrically what is meant by a generic
hyperplane is these statements, see Theorem 3'. We note here just that the
Zariski open set of hyperplanes H for which Lemma 1 (iii) holds is smaller than
the open sets corresponding to the claims in Lemma 1 (i) and (ii) and in Theorem
3.

COROLLARY 4.

Λ=0,«-l

where Ek is a generic linear subspace in Cn of codimension k, for k = 0,1,.. .,
n- 1.

The last term in this sum P(Ftf)En~x) is set by convention to be the degree
of the polynomial /.

To explicitly compute the polar invariant P(/, t) one may proceed as
follows. Let (y^ be the finite set of fixed parametrisations, one for each branch
at infinity of the polar curve Γ#. Each such parametrisation is given by a
Laurent series (convergent in a punctured disc at the origin)

γ{s) = aks
k + aMsk+ι +

where k e Z, k < 0 and aj e Cn for all j >k. For such a Laurent series (even
for series with k > 0), we set ordy = k if ajc φ 0. With this notation we have the
following result.
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PROPOSITION 5. (i) P(f, ί) = - Σ , ord(/(y, ) - t);
(ii) The function P(/, —) takes its maximal value on an open set

U=C\{cx,...,cm}.

The function P(/, —) has a jump at a value c e C, say c — c}, if and only if
there is a parametrisation γ' for a branch at infinity of the polar curve of Fc such
that X\ms^f(y'(s)) = c. When this is the case, then P(f,u) - P(f,c) =
Σ oτd(f(γf) — c) where the sum is extended to all the parametrisations γ1 with
the above property.

Assume now that the polynomial / has only isolated singularities. Then
Artal-Bartolo, Luengo-Velasco and Melle-Hernandez [ALM] have introduced
some (possibly negative) integers λ(f) and λ(f,t) called Milnor numbers at
infinity such that

(i) the Euler characteristic of the generic fiber Fgen of / is given by

λ(f))

where μ(f) is the total Milnor number of/, and
(ii) if Ft is any smooth fiber of /, then

χ(Ft) = 1 + {-\)"-\μ{f) + λ(f) - λ(f, 0)

In this case we have the following result.

PROPOSITION 6. (i) For any polynomial f and a generic hyperplane H, the
critical set of the restriction fH:H-+C of f to H satisfies dim S(fH) <
max(dimS(/)- 1,0).

(ii) Assume that f has only isolated singularities. Then for a generic hy-
perplane H, the restriction fH:H—>C off to H has only isolated singularities and

P(f, t) = μ(f) + μ(fH) + λ(f) + λ{fH) - λ(f, t) - λ(fH, t)

In particular, for all teC one has

Remark 7. (i) When dim*S(/)<0, it is not true in general that
^/) > dim S(fH) for a generic hyperplane. To see this, it is enough to

consider the polynomial / = xf H Yx^ for which dim*S(/) = dim5'(///) = 0
or the polynomial in our Example 11 below where S(f) = 0 and dim S(fH) = 0.

(ii) When / has isolated singularities on Cn and at infinity (in the sense that
the projective closure of Ft has only isolated singularities), then for a generic
hyperplane H the restriction fH has no singularities at infinity, in particular

It is likely that a similar property holds for the polynomials with isolated
singularities at infinity relative to an arbitrary compactification of Cn, see [ST] for
more on this class of polynomials and also Note 3.8 in [Ti].

Moreover, if / and fH are such polynomials, then by our Proposition 6 (ii)
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the function P ( / , - ) is constant on a neighborhood U of to if and only i f / a n d
fH are locally trivial over U.

A general discussion on polar curves from the point of view of their relations
to topological triviality at infinity can be found in [Ti], see our Acknowledge-
ments (ii) at the end of this paper. Some results for n = 2 can be found in Assi
[A]

2. Proofs, examples and some further results

Proof of Lemma 1 (i). Let φ : Cn —> Cn be the gradient map associated to
/. Then there are algebraic subsets Yj in Cn for j = 0,1,...,« such that

(i) codim Y, > j and

(ii) d i m ^ " 1 ^ ) >j implies that y^Yj.
If we choose a line L : yλ — h\yn = = yn^x — hn-\yn = 0 such that

LΠYjCz {0} for all j > 1 and that L is not contained in Y\, then for the
corresponding hyperplane H : h\x\ -\ h hn-\xn-\ + xn = 0 the variety Γ// =
closure(φ~ι (L\{0}) is a curve.

This curve has no isolated points as components, since such a point would be
defined locally by (n- 1) equations, a contradiction.

Proof of Lemma 1 (ii), (iii) and of Theorem 3. This proof is based on the
results of Nemethi on the Lefschetz theory for aίfine varieties, see [Nl] and, for
more details, [N2].

To simplify the notation, in this proof we omit the subscript t, e.g. we write
F instead of Ft.

Let V be the projective closure of F in Pn. Let H^ : χ0 = 0 be the hy-
perplane at infinity in this projective space Pn.

In the dual projective space Pn we use (λo: :λi) as homogeneous

coordinates. Let V c Pn be the dual of the hypersurface V.
We introduce the following sets to describe the bad directions of hyperplanes

in C\ The affine hyperplanes in Cn are parametrized by the open set
A = Pn\{oo}, where oo = (1 : 0 : : 0) is the point corresponding to i/oo Con-
sider the projection p : A —> Pn~ι associating to a hyperplane H its direction
Hd. Note that the fibers of p are precisely the pencils of parallel hyperplanes
in Cn. We define D(F) = {(x,H) e F x A\TXF = H} and F = pr2(D(F)), the
dual of the affine variety F. Let D(V) be the closure of D(F) in Pn x Pn and

= {(x,H)eD(V)\xo = 0}

Next let V^ = Pr2(D(V)J, Wx =
Let C = Coo (V) be the projective tangent cone to the dual variety at the

point oo and let W2 = p(C\{oo}). When oo φ V, we set C = W2 = 0.
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EXAMPLE 8. The case (n = 2). In this case it is very easy to describe the
sets W\ and W2.

Note first that the directions Hd in Pι can be identified to the points on the
line at infinity H^, i e. a direction (a : b) corresponds to the point (0 : b : —a).

Under this identification, the directions in W\ (resp. W2) correspond to the
points p e Vf) H^ such that the germ ( F , p) has a tangent direction different
from (resp. equal to) i/oo

Moreover, in this case we have the equivalences: dim(F) < 1 <Φ4> dim^(C 2 ) <
2 ^ Hess(/) = 0 <£> / is a linear form <ΦΦ> the generic fiber of / has no tangents
parallel to a generic direction (note that V cannot be a line!).

If we take any polynomial / e C[x, y], we know that / = g(h) where g e C[t]
and h e C[x, y] is such that the generic fiber FH of h is connected. It follows that
the generic fiber of/is the disjoint union of k = deg(g) copies of Fh and hence we
have Hess(/) = 0 <^ dim^(C 2 ) < 2 <& there is a linear coordinate change of
C2 such that f{x,y) = g(x).

Note that for / homogeneous, this last statement is a well known fact in
classical invariant theory, see [GY], p. 235.

To come back to the proofs, we know by [Nl], [N2] that dim Wx < n — 2 for
i = 1,2. We will show the following more precise version of Lemma 1 (ii) and
Theorem 3.

THEOREM 3'. For a hyper plane H whose direction Hd is not in W\ U Wi the
claims of Lemma 1 (ii) and Theorem 3 hold.

First assume that there is a component D in Γ# Π F with dimZ) > 0. At the
points of D, the tangent hyperplane TXF has always the fixed direction Hd. But
such a D is unbounded and this implies that Hd e W\, a contradiction.

Note that the set U of directions Hd in Pn~ι\{W{ U W2) for which the
corresponding projective pencil L\ = closure(p~ι(Hd)) is transverse to the dual
hypersurface V is open and dense (for the exact meaning of transverse in this
context, see the discussion of the Cases 1 and 2 below).

It follows that for any direction Hd e Pn~ι\(W\ \JW2) we can find a small
1-parameter deformation Hd such that H$ = Hd and Ήd e U for all s e (0,e).

Let Γy be the polar variety of F corresponding to the direction Hf. Note
that all the intersections Γ, Π F are finite, by the first part in Lemma 1 (ii), that
was proved above.

We will show below that (ΓS,F) = \ΓSΓ\F\ for s Φ 0. The only way in
which (Γo,^) can have a different value is when some point in the intersec-
tion ΓyΠF tend to infinity when s tends to 0. But this would imply that
Hd = Hξ GJVU a contradiction.

It follows that (Γo,F) = (ΓS,F) forsφ 0, and therefore in computing this
polar invariant we may assume that the pencil L\ is transversal to V.

To continue the proof, we note that there are two different cases to discuss.
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CASE 1. deg(F) = 0 <=> dim(F) < n - 1 & dim^(Cn) < n.
In this case we can choose Hd such that the associated affine pencil

L = p~ι(Hd) is disjoint from V. It follows then from [Nl], Theorem 2 that this
pencil induces a regular function g : F —> C whose fibers are precisely the hy-
perplane sections of F by the hyperplanes in L and which is a locally trivial
fibration. In particular, the inclusion of F Π H in F is a homotopy equivalence
for any H e L.

In this case it is also clear that ΓHΠF = 0, i.e. P(F) = 0.

CASE 2. deg(F) > 0 & dim(K) = n - 1 <& dim^(C") = n.
For Hd generic, the corresponding protective pencil Lc given by the closure

of L will meet the dual V at oo (if oo e V) and at some simple points a\,..., am

on V, all the intersections being transverse. Then we have

deg(F) = {V,Lηao

For each α, , the corresponding hyperplane HΛi is tangent to V at points in F,
since Hd φWx.

By [L] or [Dl], the section FΓ\Ha., has exactly one singularity, say bi, which
is an ordinary double point, i.e. μ(FΠHanbi) = l

Then it is easy to see that we have Γ# Π F = {b\,..., bm} for any
HeL. Moreover, an easy local computation using / - U s a local coordinate
at bi shows that (Γπ,F)bi = 1. Hence P(F) = m is independent of the choice of
the generic hyperplane H.

Our Theorem 3 now follows from Theorem 9 (a) in [Nl] and Remark 5.7 in
[N2].

Remark 9. When the dual hypersurface V has only isolated singularities
{a\,...,am}, then one can use the formula for the degree of V, see for instance
Kleiman [K], in order to compute the multiplicity ^

where d is the degree of the polynomial/and μn~ι(V,a) is the Milnor number of
a generic local hyperplane section of the singularity (F,α) as in Teissier [T].

When the part at infinity Foo has also isolated singularities, then we get via a
simple computation based on [D2], p. 159 and p. 162

A) -μ*-\V,bt))

where {b\,... ,bm} — F s m g U Fusing, i.e. multoo V is a sum of local contributions
measuring how far is the hyperplane H^ from a generic hyperplane at each of
the points b^

In particular, it follows that if we look at the fibers Ft of the polynomial /,
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the corresponding dual varieties Vt may have different degrees and different
multiplicities at oo as well.

Proof of Proposition 5. Let (Cγ,a) be the branch of the protective closure C
of TH at a point a e Hoo corresponding to the parametrisation γ written down in
the previous section.

We can assume that a — [0 : : 0 : 1]. Then the parametrisation γ cor-
responds to a mapping

s*-* [s~k : g\(s) : ••• : gn-\(s) : 1]

where all the function germs gι are holomorphic.
We obviously have (Cγ,Ho0)a = —k. By taking the sum over all the

branches of C at infinity we get degC= (C,//QO) = -J2ιOΐ^= ϊi
Let /(xo,..., x«) be the homogeneisation of the polynomial f — t. Then we

have (C?, V)a = ord f{s~k,gx(j),..., 1) = -kd + ord/(l, γ(s)) = -kd + ord/(y),
where d is the degree of the polynomial /. Summing over all the branches of
C at infinity, we get Σ ^ c n / z J ^ V)a = degCdeg V + Σ , ord(/(yi) - t). By
Bezout Theorem, this gives us the first claim in Proposition 5.

The second claim follows from the first, once we notice the following
"stability" of a generic hyperplane: For any to e C there exist an o O and a
hyperplane Hto satisfying the claims in Lemma 1 with respect to all the hy-
persurfaces Ft for \t-to\<ε. When to = c, a special value, one should pick
such a hyperplane Hc and the parametrisations / are associated to the branches
at infinity of the polar curve Γ#c.

Remark 10. In [Nl], [N2], A. Nemethi has introduced for any polynomial/
a bad set Λy such that/is a locally trivial fibration over C\Λy. This set is not
in general the minimal one with this property, see [NZ] for a polynomial / with
Λ/ = C.

We conjecture that all the special values Cj from Proposition 5 (ii) are
contained in this set Λ/.

A much harder question is to compare the set C/ = {Q, .. ., cm} to the
minimal set Bf such that / is locally trivial over C\Bf. For n = 2, we have
Cf = Bf, since in this case χ(Ft ΠH) = d, the degree of the polynomial / and the
set Bf is detected by the jumps in the Euler number of Ft by Ha-Le [HL].

Proof of Proposition 6. In fact, we have to prove only the first claim (i),
since (ii) follows directly from Theorem 3 and Proposition 5 (ii) above.

Choose a point y e Cn such that y φ 0 and dim^" 1 ^) < 0 (note that this
choice is generic!). Let H be any hyperplane whose direction Hd is defined by y
and such that dim(5(/) Π H) < dim S(f) - 1. We will show that the correspond-
ing restriction fH satisfies (i).

Let e = dim S(f) and let D be a component of the singular locus S(fH) with
dimD > max(e — 1,0). It follows then that fH is constant along D, i.e. there is
a value t such that D a Ft. This means that at any point x e D\Ft,smg, the
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tangent hyperplane TxFt has the same direction Hd. This is a contradiction
since

dim(Z) Π i^ s i n g) < dim(S(/) Π H) < e - 1

EXAMPLE 11. Consider the polynomial f = x - 3x3y2 + 2x4y3 + yz, which is
the simplest of the polynomials fnq introduced in [PZ], i.e. n = q = 1.

This polynomial is equivalent to a linear form via an automorphism of C3,
in particular S(f) = 0, μ{f) = 0, λ(f) = 0.

One can look at the hyperplane H : ax + by + z + c = 0 and note that for
α # 0 the restriction fH{x, y) = /(x, j , — ax — by — c) has isolated singularities at
infinity such that λ(fH) = λ(fH, —a) = 1. By Proposition 6 in which we choose
the hyperplane H such that aφ —t, we have the following.

P(f,t)=μ(fH) + l

The polar curve Γ# is given by the equations

1 - 9x2y2 + 8 * V - α ^ = 0 and - 6x3y + o x 4 / + z - by = 0

To compute the parametrisations for the branches at infinity of the polar
curve, it is enough to do this for the plane curve given by the first equation. A
direct computation using Proposition 5 (i) yields P(/, t) = 8 for all t e C. This
gives in particular μ(fH) = 7 > 0 as claimed in our Remark 7 (i) above.
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Our Theorem 3 is proved there for families of affine hypersurfaces (which is
more general) but under the more restrictive hypothesis that all these hyper-
surfaces have isolated singularities. Note also that in our Theorem V we make
precise the meaning of generic hyperplane in this context by using the con-
structions by Nemethi [Nl], [N2].

We also relate the polar invariants to the Milnor numbers at infinity in-
troduced by Artal-Bartolo, Luengo-Velasco and Melle-Hernandez, showing that
the sum of these invariants for/and for the restriction to a generic hyperplane fH

is positive.
The main result in [Ti] is that the constancy of the invariants P(Ft Π Ek) for

k = 0,1,...,«- 1 (in the notation of Corollary 4 above) for t e U a C\f(S(f))
implies that / is smoothly locally trivial over U.

Since most of our results as well as our methods of proof are quite different,
the interested reader will find useful to compare the two approaches.
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