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NON-LINEARIZABILITY OF POLYNOMIALS AT IRRATIONALLY

INDIFFERENT FIXED POINTS
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Abstract

In this paper, we consider the non-lineaπzability of polynomials with irrationally

indifferent fixed points. Under the assumption that there exists a cubic polynomial

which is lineaπzable at an irrationally indifferent fixed point with a non-Brjuno

multiplier, we show that, for every degree more than two, one can construct a hol-

omorphic family of possible maximal dimension consisting of polynomials lineanzable at

the fixed point.

1. Introduction

Let / be a germ of a holomorphic map at ZQ E C with /(zo) = zo and call
X := /'(zo) the multiplier o f / a t z$. We consider the linearization problem of/
at z = zo, i.e. whether there exists a holomorphic local change of coordinate
z = h(w) with Λ(0) = zo and λ'(0) φ 0 which conjugates / to the linear map
w ι-> λw. If such h exists, the germ / i s said to be lineanzable at zo and we call h
the (analytic) linearizing map of / at zo or the solution of the linearization
problem of/ at zo

If λ = 0, Bottcher showed that /(z) = zn + an+\zn+x -\ is always ana-
lytically conjugate to w ι-> wn. In the case 0 < \λ\ < 1 (resp. 1 < \λ\), Kcenigs
showed that/ i s always linearizable at zo and the fixed point zo is called attracting
(resp. repelling). If \λ\ = 1 and λ is a root of unity, / i s always non-linearizable
at zo and zo is called parabolic (for the details, see [5]).

If \λ\ = 1 and λ is not a root of unity, the fixed point zo of / i s said to be
irrationally indifferent. In this case, some are linearizable at zo, others non-
linearizable at zo. For example, a rational or entire function / which has an
irrationally indifferent fixed point zo is linearizable there if and only if the fixed
point zo belongs to the Fatou set of/ (cf. [5] and [8]).

From now on, we always assume that a real number α is irrational. Let
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Gzo,α be the set of holomorphic germs at zo which have an irrationally indifferent
fixed point zo with multiplier λ = exp(2π/α). If α is a Brjuno number, any germ
/ e G Z ( h a is linearizable at ZQ ([2]). We define

& := {α G R — Q; α is a Brjuno number}.

The Brjuno numbers are defined in terms of the continued fractional expansion.
Since we do not need the definition of them, we omit it. For the precise
definition of them, see, for example, [5].

In [9] Yoccoz showed that the Brjuno condition is optimal. In other words,
if α φ &, we can find a germ / e G Z o > α which is non-linearizable at zo, indeed, the
quadratic polynomial P(z) = e2πmz + z2 is non-linearizable at the origin. Thus it
follows that a quadratic polynomial with an irrationally indifferent fixed point with
multiplier e2πm is linearizable there if and only if α is a Brjuno number, since it is
affinely conjugate to P(z). Can we extend this result for polynomials of degree
more than two?

In this paper, we shall study the linearizability of polynomials of degree
more than two at irrationally indifferent fixed points.

In [7] Perez-Marco showed that for λ = exp(2π/α) (α φ 3S) and d > 2, the
family

»λid := {P(z) = λz + a2z
2 + + adz

d (a2,... ,ad) e Cd~1} * Cd~ι

contains an open dense subset whose elements are non-linearizable at the origin.
It is not known whether this subset coincides with &χyd

The main theorem in this paper is the following.

M A I N THEOREM. Fix λ = e2πm (α φ 31). Suppose there exists AeC such
that the cubic polynomial P^A(Z) = λz + Az2 + z 3 is linearizable at the origin,
then for any d > 3, the family &χ,d contains a holomorphic subfamily of complex
dimension d — 2 whose elements are linearizable at the origin.

Remark. Fix λ = e2πm (ocφ&). If 0>χyd has a nonlinear element Pd line-
arizable at the origin, (\/c)Pd{cz) is also linearizable at the origin for any c e C*,
so SPχ^d always contains a holomorphic subfamily of complex dimension one
whose elements are linearizable at the origin.

By Perez-Marco's result, if 0>χ^ contains a holomorphic subfamily consisting
of elements linearizable at the origin, the complex dimension of it is at most
d-2. In this sense, Main Theorem says that for d>3, βPχj contains a
holomorphic subfamily of possible maximal dimension consisting of elements
linearizable at the origin if it is impossible to extend Yoccoz's result on quadratic
polynomials to the case of cubic polynomials. Thus we have the following.

COROLLARY 1.1. Fix λ — e2πιa (&$&). The cubic polynomial PλA is non-
linearizable at the origin for any AeC if and only if the α satisfies the
degeneration property: For some d > 3, &χ,d does not contain a holomorphic
subfamily of complex dimension d-2 whose elements are linearizable at the origin.
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COROLLARY 1.2. If every non-Brjuno number has the degeneration property,
it holds that a cubic polynomial with an irrationally indifferent fixed point with
multiplier e2πιcc is linearizable there if and only if α is a Brjuno number.

Remark. Fix λ = e2πιa (α φ St) and d > 3. If &χj has an element Pd lin-
earizable at the origin, by computing the dimension of Teichmuller space of the
polynomial Pj (cf. McMullen-Sullivan [4]), it may be possible to show a result
similar to the above. But in this paper, we explicitly construct a holomorphic
subfamily in the proof of Main Theorem.

In the rest of this paper, we shall prove Main Theorem. We fix λ = e2πι<x.
In Section 2, we shall show that for a univalent function f on D which has a fixed
point z = 0 with multiplier λ, the function fa A b(z) := a~ιf(az) + Abz2 + b2z3

can be regarded as a cubic-like map under a suitable condition. In Section 3, we
shall show that the cubic-like map is quasiconformally conjugate to a cubic
polynomial which has a fixed point at the origin with multiplier λ. In Section 4,
we shall complete the proof of Main Theorem.

2. Cubic perturbation of univalent maps

We set

S := {/; holomorphic and univalent functions on Z),

/(0) = 0, and 1/(0)1 = 1},

Sλ:={feS;f'(0)=λ} and

Dr := {z; \z\ < r} for r > 0.

JLet λ = e2πm for α e R - Q, and let / be an element of Sλ. We set, for
aeD- {0}, AeC and be C,

A triplet ( ϋ , U, f) is called a cubic-like map if Ό and U are simply connected
proper subdomains of C, and U is relatively compact in U, and / : ϋ —> U is a
proper holomorphic map of degree 3.

LEMMA 2.1. For A e C and b e C, we define

BA,b:= 2ΊRA,b ^

W : = DRAb = {z; \z\ < RA,b} and
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For feS, aeD-{0}, AeC and \b\2 > BAb, the triplet {W,WJa^b) is a
cubic-like map.

Proof. It is sufficient to prove this in the case a—\. Since / e S, it
follows that |z|/(l + |z |) 2 < |/(z) | < |z|/(l - |z |) 2 for z e D. In particular, if
\z\ = 1/3, we have 3/16 < |/(z) | < 3/4 and it follows that

(i) L/U>(*)l > I*V| - \Abz2 + /(z)| > i ϊ 1 > nA,b.

Thus f\,A,b(P\ι$) contains the disk W, so f\^,b : ^ -^ ^ is proper and W is
simply connected by the maximum modulus principle. And for \z\ = 1/3 and
z\ e J¥, it follows from (1) that

\b2z3 - z i | > \b2z3\-RAib > \Abz2+f(z)\ and

since \b\2 > BAb > 2ΊRA^b by definition. Thus by the theorem of Rouche, f\tA,b :
W -» W is a proper map of degree 3.

If W is not connected, then the number of connected components of W is
three or two. First, if it is three, the connected component of W containing the
origin is conformally mapped to W by f\A^ However this contradicts the
Schwarz lemma because \λ\ = 1. Second, if it is two, two cases occur. If flA b

conformally maps the connected component of W containing the origin onto W,
we can derive a contradiction by the same argument as above. Otherwise f\jAtb

conformally maps the other component W of W onto W. So there exists the
only one point zo e W such that f\,A}b{zo) = 0. We define φ := (f\,A,b I W')~ι,
and φ(z) := φ(RA,bz). Then φ conformally maps D onto W, and φ(0) = ZQ (see
Figure 1).

By the Koebe one-quarter theorem, it follows that W contains the open disk
of which the radius is (l/4)|^'(0)| = (l/4)/^,z>|^'(0)|. Since Dϊ/3 ID W and
W jfίO, we have ( l/4)i^,^ '(0) | < 1/6. Hence

3RA,b

1^(0)1

On the other hand, we have

1 " ' — • • " — - 2 μ | H | z o | + 3 | έ | 2 | z 0 | 2

1/(0)1 u hA

and by the Koebe distortion theorem, |/ ' (z o ) |<9/2 for |zo| < 1/3. Since
AtAtb(zo)=f(zo)+Abz2+b2zl = O and |/(zo)|<|z 0 |/(l- |zo|) 2

; we have 3|fe|2|z0|
2 +
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Figure 1

2\A\ \b\ N < (27/4) + (5β)\A\ \b\ for |zo| < 1/3. Hence

9

This is a contradiction. So fF is connected, and the proof is completed. •

3. Straightening of the cubic-like mapping

We define N(M) := (33M + χ/lOS9M2 + 891)/2 for M > 0. Then |Z>|2 >
£Λ,* if and only if \b\ > N(\A\).

Let M be an arbitrary positive number and take a smooth function
η : R —> [0,1] which is identically 1 on (— oo, 1/3] and 0 on [^^,+oo). And we
define the round annulus A(M) := {fc; N(M) < \b\ < N(M) + 1}. There exists a
constant R(M) > 0 which depends only on M such that RA^ < R(M) for any
As DM and b e A(M).

For f G Sχ, as D\/R(M) — {0}, >4 e />M and Z? e A(M), we define

Abz2 + b

Then faAb : C -> C is in C 0 0 .

LEMMA 3.1. If a-+0, then faAb{z) converges to λz + Abz2 + b2z3 in C 0 0-
topology on C, and this convergence is uniform in f e Sχ, A e DM and b e A(M).

Proof On C - DRA b, faA b (z) = λz + ,4fe2 + Z? V . If we write f(z) = λz +
Σ™=1anz

n then \an\ <n. Noting that ^ , 6 < R(M)9 we see that on DRAb,



NON-LINEARIZABILITY OF POLYNOMIALS 61

Λ=2

/i=2

<R(M)1-

so \ima-+ofa,A,b(z) = λz + Abz2 + b2z3 uniformly on DRA b and in f e Sχ,
AeDM and b e A(M). Since fa^b{z) - (λz + Abz2 + tfz3) = η{z){fa^b(z) -
(λz + Abz2 + b2z3)}, it follows that \\ma^faAb(z) = λz + Abz2 + b2z3 uniformly
on C and in f e Sχ} AeDM and beA(M). Similarly, we can see the con-
vergence of the derivatives of faA b. •

LEMMA 3.2. Both of two finite critical points of faA b(z) belong to
{z; \z\ < 1/3} if \a\ is sufficiently small.

Proof From Lemma 3.1, it is sufficient to prove that two critical points of
z^λz + Abz2 + Z>2z3 is included in {z; \z\ < 1/3}. Note that (λz+Abz2+b2z3)' =
λ + 2Abz + 3b2z2. Since \b\ > N(M) i.e. \b\2 > BAJ?, we can see on \z\ = 1/3,

|3Z?2z2| - μ + 2Abz\ > ^ -\--\A\ \b\ > 0.

By the theorem of Rouche, both of critical points of λz + 4̂Z>z2 -\-b2z3 are in

#1/3- D

We can conclude the following by the previous lemmas.

LEMMA 3.3. There exist an ao e (0, \/R(M)] and a continuous function k :
[0, ao] -> [0,1) such that k(0) = 0 and for any f e Sh A e DM, b e A(M) and a e
Dao — {0}, the map fa^A^b is a branched covering map of C of degree 3 and it
satisfies

Ύa,Λ,b(-> ^ ( ^ l )

Moreover, the Beltrami coefficient SfaAb(z)/dfaAb(z) holomorphically depends on

feShAeDM,be A(M) and a e Dao - {0}. ' '

For an open set U a C, we identify a Beltrami coefficient on U with a
function μeL^(U) such that \\μ\\^ < 1. And for a C1-function / : U -> V and
a Beltrami coefficient μ on V, we define the pullback f*μ of μ on U by

,,. λ(λ_df(z)μ(f(z))
U N\z) — =

ddf(z)μ(f(z))
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For f e Sχ, AeDM, b e A(M) and ae Dao - {0}, there exists a unique

Beltrami coefficient μ = μf,a,A,b o n C which is invariant under the pullback by

fatAtb and agrees with dfa^b/dfa^b on 1/3 < \z\ < RAb and is 0 on{C-W)U

On>ofanAAW) Since supp// c W and y ^ < *(«) < 1, by the Ahlfors-Bers

theorem [1], there exists a unique quasiconformal homeomorphism φ = φf,a^A)b of

C onto itself which satisfies the following

(i) for a.e. ZGC, dφ(z) = μ(z)dφ(z),
(ii) φ(0) = 0 and
(iii) φ(z) — z is bounded on C.

LEMMA 3.4 (cf. [3]). 77zm> exwto an A' e C such that φ o faAb o φ~ι(z) =
Az + ̂ ' z 2 + έ 2 z 3 , wΛ r̂̂  A1 e C holomorphically depends on f e Sχ, A e DM, b e
A(M) and aeDao-{O}.

Proof. Since μ{φofaAb) = μ(φ), it follows that φofaAboφ~ι : C —• C is
holomorphic and fixes the origin. So it is a branched covering map of C of
degree 3 fixing the origin. Thus we can write

By the theorem of Naishul [6], the multiplier of the fixed point of a holomorphic
map is topologically invariant when its modulus is 1. So we have λ' = λ. Next,
we show br = b2. According to (iii), we have

(2) Φf,a,A,b(z) = z + c+ (lower terms)

on a neighborhood of the point at infinity. When \z\ is sufficiently large,

fa,A,b(z) — λz+Abz2+b2z3 by definition, and we note that Φ{fa,A,b(z)) = λφ{z) +

ALf(φ(z))2 + bf(φ(z))3. Therefore it follows that

φ(λz + Abz2 + Z>2z3) - (λz + Abz2 + Z>2z3)

= (bf - b2)z3 + {(Af - Ab) + 3b'c}z2 + (lower terms).

Since this quantity remains bounded as \z\ -^ +oo, it is necessary that b' — b2 = 0
and A1 - Ab + We = 0. Thus it follows that br = b2 and A1 = Ab - 3b2c. •

LEMMA 3.5. c = c(f,a,A,b) in (2) holomorphically depends on f e Sχ, A e
DM, b e A(M) and a e Dao — {0}. And c —• 0 uniformly in f e Sχ, A e DM and
beA(M) as α-> 0.

Proof The former part follows from the Ahlfors-Bers theorem. Noting
that MΛ̂IIOO ^k(\a\) a n c * limα_+o&(|tf|) = 0 uniformly in f e Sχ, A e DM and be
A(M), we can see the latter part holds. •
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4. Proof of Main Theorem

Let α φ @ and λ = e2πm. For Λo e C, we take M = M o := 2 |4 0 | + 1. By
Lemma 3.5, for a fixed 0 < ε < 1/3, there exists an a\ e (O,αo] which is inde-
pendent of f e Sχ, A e DM0 and b e A(Mo) such that

3\b\\c(f,a,A,b)\<ε (0<\a\<ax).

Then |v4o| < Mo — 2e. We define a holomorphic map iτ>,& on DMo'

At->A-3bc(f,a,A,b).

By the theorem of Rouche, there exists A\ = A\(f,a,b) e DMo-ε such that
Ff,a,b(A\)=Ao. From the implicit function theorem, A\ = A\(f,a,b) holo-
morphically depends on / e Sχ, b e A (Mo) and a e Dα i — {0}. Thus we have the
following.

THEOREM 4.1. /fee λ = e2πzα (α ̂  J>). ^ r ^o e C, we set Mo := 2\A0\ + 1.
Then there exist an αie(O,αo], # holomorphic function A\ = A\(f,a,b) with
\A\\ < Mo of f e Sχ, a e Daι — {0}, be A (Mo), and also exists a quasiconformal
homeomorphism φ = φj a Aχb of C onto itself such that

Φ°fa,Aub°Φ \Z) =λz'
IS

If Pχ,A0 w linearizable at the origin, then fa,Aub(z) = a~Xf(az) + A\bz2 -\-b2z3 is
linearizable at the origin.

Proof The former part has been proved in the above and the latter part
follows from Lemma 3.4. Assume Pχ Ao is linearizable at the origin and let D
be the Siegel disk of (l/b)Pλ,Ao(bz). We have fa^Aub(Φ~l(D)) = φ~x(D), so the
fixed point z = 0 of fa Aχh is contained in the Fatou set of fa Aχh. •

Proof of Main Theorem. Suppose PχiAo is linearizable at the origin. If d =
3, Main Theorem is trivial. We consider, for d > 3, the family

%d := I P(z) =λz + a2z
2 + + adz

d ^n\an\ < \\ c Sλ.

We fix b e A(M0) and aeDaχ- {0}. If f(z) = λz + a2z
2 + a3z

3 + - + adz
d e

°Ud a n d ad Φ 0, then we can see

(a3a
2 + b2)z

d
2)z3 + ^

is linearizable at the origin. The map

(a2, a3,...,ad)\-+ (a2a + A\(a,b,a2,a3,..., ad)b, a3a
2 + b2, a^a3,..., ada

d~ι)

is holomorphic on {(a2,a3,... ,ad); Σn=2n\an\ < 1 a n ( * ^ ^ 0} which is an open
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subset of Cd~ι. Note that the Jacobian of the map (#3,.. .,a d ) •—• (a3a
2 + &2,

«4i/3,... ,ada
d~~ι) is not zero. Therefore {faAx,b\fe<%d} is at least a rf - 2

dimensional holomorphic subfamily of &^d and all of the elements are line-
arizable at the origin. Consequently we have completed the proof of Main
Theorem in Section 1. •

In Proof of Main Theorem, we do not use Perez-Marco's result. Combining
Perez-Marco's result and the argument in Proof of Main Theorem, we have the
following.

THEOREM 4.2. Fix λ = e2πιoί (u.φ&). The cubic polynomial Pλ,A0(
z) = λz +

Aoz2 + z 3 is non-linearίzable at the origin if the pair (α, Ao) satisfies the full-
dimension property: For some d > 3, the holomorphic map

(3) (a,b,a2,...,ad) π->

(a2a + A\ (a, b,a2,a3,..., ad)b, a3a
2 + b2, a4a

3,..., ada
d~x)

has a maximal rank d — 1.

Proof. Suppose that P^A0 *S linearizable at the origin. Then the image of
the map (3) is a d — 1 dimensional holomorphic subfamily of 0>χtd consisting of
elements linearizable at the origin. It contradicts Perez-Marco's result. •

COROLLARY 4.1. If any pair (a,A0) (aφ £& and Ao e C) has the full-
dimension property, it holds that a cubic polynomial with an irrationally indifferent
fixed point with multiplier e2πι^ is linearizable there if and only if β is a Brjuno
number.
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