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ON CONTINUABLE RIEMANN SURFACES

NAONDO JIN

1. Introduction

Let R be a Riemann surface. If there exists a conformal mapping / of R
onto a subregion of a Riemann surface R, then we call R, or more precisely the
pair (R, z), an extension of R. We often identify ι(R) with R and consider R as a
subregion of R. According to this definition R itself is an extension of R. It is
called a proper extension if R\ι(R) Φ0. A Riemann surface is called con-
tinuable if it has proper extensions. A Riemann surface which has no proper
extensions is called maximal.

We want to know where the class of all maximal Riemann surfaces has place
in the classification theory of Riemann surfaces. We know that if R has a small
ideal boundary then R is maximal. For example if R with no planar ends
belongs to the class OHD, OKD, or Oγ, then R is maximal; see [SO, X.5C].

By a neighborhood of the ideal boundary of R we mean the exterior of a
compact set of R. We call a connected component V of a neighborhood of the
ideal boundary an end if it is not relatively compact. Let D be a simply
connected subregion of R. Suppose that its relative boundary dD consists of a
countable number of analytic simple open arcs {y7} such that each yy starts from
the ideal boundary and terminates at the ideal boundary, y} Π yk = 0 if j Φ k, and
{jj} does not accumulate in R. Then a Riemann mapping φ of D onto the unit
disc U is continuously extended over dD and φ(dD) is a relatively open subset
of dU. We denote by / the complement of φ(dD) with respect to δU. We call
D a disc with crowded ideal boundary if / is totally disconnected and is not an
Λfo-set.

In [Sa, Example 2] Sakai showed that there exists a two-sheeted unlimited
covering surface of the unit disc which is maximal, using the following char-
acterization of continuable Riemann surfaces:

THEOREM A [Sa, Theorem 4.1]. Let R be a Riemann surface. Then R is
continuable if and only if one of the following conditions holds for R.
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(a) R has a planar end.
(b) R has a border.
(c) R has a disc with crowded ideal boundary.

As the first step we treat ^-sheeted unlimited covering surfaces R of the unit
disc. In this paper we obtain a sufficient condition of R to be continuable. In
[J] we consider sufficient conditions of R to be maximal.

2. Results

Let R be an open Riemann surface which possesses the Green function
gPo(p). Set R(p0, α) = {p e R,gPo(p) > α} for α > 0. We denote by B(p0, α) the
first Betti number of R(p0ioή. As is known from Sakai's characterization of
continuable Riemann surfaces, we need some informations about the neigh-
borhood of the ideal boundary. First we shall consider a Riemann surface R
which satisfies the following condition (A) for some point p0 e R:

(A) \2B(p0,ct) * . 2 < o o .
Jo α(logα)

We say that R is regular in the sense of the potential theory if gPo (p) tends to 0 as
p tends to the ideal boundary of R, or equivalently R(po,oc) is relatively compact
for every α; see [Ha, p. 84].

Our result is

THEOREM 1. Suppose that R satisfies condition (A). Then R is continuable.
Furthermore if R is regular in the sense of the potential theory, then R has a disc
with crowded ideal boundary.

Remark. Widom [W] considered a Riemann surface which satisfies the
following condition:

(PW) B(Po,a)da<oo.
, 0 0

B(po,ot)d(x
Jo

A Riemann surface which satisfies the condition (PW) is called of Parreau-
Widom type. It is easily seen that if R satisfies condition (A), then R is of
Parreau-Widom type.

Next let n > 2 and R be an ^-sheeted unlimited covering surface of the unit
disc U with the projection mapping π. The pair (R, π) is also called a covering
surface. Let {zv} be the set of the projection of branch points. We consider a
Riemann surface R which satisfies the following condition:
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It is clear that condition (A') is stronger than the Blaschke condition
— \zv\) < oo. Then as a corollary of Theorem 1 we have

THEOREM 2. Let n > 2 and (R,n) be an n-sheeted unlimited covering surface
of the unit disc U and {zv}v>{ the projection of branch points. If {zv} satisfies
condition (A'), then R is continuable.

Remark. By [Sa, Example Γ] it is known that there is a continuable two-
sheeted unlimited covering surface of the unit disc such that the derived set of
{zv} is equal to dU and satisfies, for example, ]£(1 - |zv |) = oo. Then sufficient
conditions of R to be maximal are not obtained by using the absolute values
{|zv|}. Thus we can not obtain the characterization of maximality in terms of
the absolute values {|zv|}.

It is not known whether condition (PW) is sufficient to be continuable or
not.

3. Condition (A)

In this section we shall show some properties of a Riemann surface satisfying
condition (A). We obtain the next proposition about condition (A) (cf. [Ha,
Chapter V]).

PROPOSITION 1. Condition (A) is independent of the choice of p0 e R.

Proof Take any two distinct points p0 and px e R. We may assume that

ά N da

o α(logα)

For sufficiently large M > 0, R(p0, M) = {p e R; gPo(p) > M} and R(p{, M)
are mutually disjoint closed discs. There exists m , 0 < r a < l , such that
mgpι(p) < gpo(p) on R\(R(po,M)ΌR(puλf)). It follows that % , m α ) D
R(pu(x) for 0 < α < M. We know that R(pθJmoί)\R(pι,oί) does not have a
compact component. Therefore there is a natural inclusion H\(R(pι,cή) *-+
H\(R(po,moc)) between singular homology groups. So we have B(po,moι) >
B(p{)a) and

doc fi
^ B(po,moc)— 3 .

α(logα)
2/(logα/m) 2

ά ^ doc fi . d a
B(Pι^)-J, ^ B(po,moc)— 3 .

Jo α(log α) Jo α(logα)

J , ^ (po,)α(log α) Jo α(logα)

It suffices to show that the right side integral is finite. Since (logα)2/(logα/m
tends to
we have

( g )

tends to 1 as α —> 0, there exists K > 0 such that (logα)2/(logα/m)2 < K. Then
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ύ . , doc ή doc

Jo α ( l o g α ) 2 Jo7
(logα)2

<K\ B(po,ot) α

Jo α(logα)

The proof is completed. •

For the Green function gPo(p) we define a meromorphic differential ωPo —
dgPo + idg*Q. We say that q e R is a critical point of gPo if grad gPo(q) — 0 or
equivalently ωPo has a zero at #. We call the order of zeros of ωPo at q the
degree at the critical point q. Obviously the set of critical points is discrete.
Then it is at most countable. The following lemma is useful.

LEMMA 1. Let R be a regular Riemann surface in the sense of the potential
theory. Then R satisfies condition (A) // and only if

Σ Vk

I ^ = L = < G 0 '

where {qk)k>\ *s ίne s e ί °f critical points of gPo(p) and vk is the degree at
q/c. More precisely the following equation holds.

Iog2
9Po(<lk)

Proof Denote by {q\,..., qμ} the set of all critical points in R(p0, α). First
we show that B(po,a) = Σjt=i vk- We may assume that dR(po,oc) contains no
critical points. Consider the double R(po,ά) of R(p0loc) along dR(po,a). Let φ
be the anti-conformal automorphism on R(po,oί).

We know that ga = B(p0,oc), where ga is the genus of R(po,a). We shall
show ga = Ylk=\vk' On the double R(po,oc) the function gPo(p) - α can be
extended symmetrically to a function g(p) which is harmonic in R(po,oc)\
{Po,Ψ(Po)} a n d has a singularity of —log |z| (resp. log|z|) at p = p0 (resp. p —
ψ(Po)). Then the set of critical points of g is {#i,. . . , qμ, ψ(qι),..., φ(qμ)}. The
meromorphic differential ωPo has poles of order 1 at p0 and ψ{p0) and zeros of
order v̂  at q^ and ψ(qk) Since R(pOi(x) is compact, for every meromoφhic
differential on it the degree of divisor is equal to 2ga - 2. Then deg(ω/?0) =
2ga-2 = 2 Σk=ι vk - 2. Therefore we have £α = Σ£=ι vk.

In terms of Stieltjes integral for any ε > 0 we have
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Σ

Since

we have

As ε —> 0, we have the conclusion:

In the general case if R satisfies condition (A), then for every α > 0 B(po,cή
is finite. Hence R(po,<x) can be considered as a compact bordered Riemann
surface with finite punctures. By adding a finite number of points to R(p0, α) for
each α we can construct a regular Riemann surface R in the sense of the potential
theory such that R is a proper subregion of R and E = R\R is a discrete
set. This R is called a regularization of R; see [Ha, pp. 86-87]. Since the
Green function for R is the restriction of that for R to R, we can prove the
following lemma. See Lemma 3A, Theorem 3B, and Theorem 3C in [Ha, pp.
86-90].

LEMMA 2. Suppose that R satisfies condition (A). Then the regularization R
of R also satisfies condition (A). Moreover the following equation holds:

x d(x 1 * / 1

α(logα)'

= I B(Po,*)-\2

Jo
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where gPo{q) is the Green function of R and B(po,oc) is the first Betti number of

H ) { R ( ) }

Proof It is easily seen that if pQ e R then gpo — gPo holds in R. Since
R(p0,oc)f)R = R(p0,a), we have B(po,oc) - B(po,a) is equal to the cardinal
number of R(p0,oc)\R(p0,oc). Thus for any ε > 0 we have

and

, da
)

f
α) J

r . 7 ϊ (po,)
α(logα) Jε α(logα)

L
qeR(pQ,ε)\R(po,ε),gPo(q)<ί

As ε —> 0 we have the required conclusion. •

4. Proof of Theorem 2

Before proving Theorem 1 we shall show Theorem 2 by using Theorem 1.
We prepare the next lemma.

LEMMA 3. Let R and R' be Riemann surfaces. Suppose that there are
regular subregions Ω and Ω' of R and R', respectively, and a conformal mapping φ
ofR\Ω onto R'\Ωf such that φ{dΩ) = dΩf. Then R is continuable if and only if
R' is continuable.

Proof It is enough to show that if R is continuable then R1 is continuable.

Let {R,ι) be a proper extension of R. Then z(Ω) is a regular subregion of

R. Consider a set ( ί \ i (Ω))UΩ' and identify a point p e dι(Ω) with φ o Γι(p) e

dΩ'. Then we obtain an extension R' of Rf. Since R\ι(R) Φ 0, Rf is a proper

extension of R' and hence R' is continuable. Π

Proof of Theorem 2. Let T(z) be a Mόbius transformation which preserves
the unit disc. Then (R, Ton) is also an ^-sheeted unlimited covering surface of
the unit disc. First we shall check that (R, Ton) satisfies the condition
(A7). We know that T{z) is of the form (z - α)/(l - αz) for some OLGU. By
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the Schwarz-Pick lemma we deduce that

2(1 - |«[

|α | ) 2

Since the set {zv} of the projection of branch points satisfies

Σ ΐ ^ H : < c o '

we have

y • < oo

and hence (R,Toπ) satisfies the condition (A').
If Oe{z v } v > l 3 we consider a covering surface (R,Toπ) instead of (R,π)

so that 0 φ {T(zv)}v^.x. Hence we may assume 0 φ {zv}. Since there is p > 0
such that {zv} Π {\z\ < p} = 0, π" 1 ({|z| < p}) consists of n components,
Bu...,Bn. Set BjΠπ~x(/) = lh where / is the closed interval [0,ρ/2] on the real
axis, and Bj = Bj\lj. We identify the upper edge of Bj by the lower edge of
Bj+ι, j — 1,...,«— 1, and the upper edge of B'n by the lower edge of B[. Then
we obtain a new w-sheeted unlimited covering surface R\ of the unit disc with the
natural projection mapping π\ such that p0 — π^ι(0) is a branch point of degree
n—\ and there is a conformal mapping ψ of R\π~ι({\z\ < p}) onto R\\
πγι({\z\<p}) with π = π\oψ. By Lemma 3 it suffices to show that R\ is
continuable.

The Green function gPo(p) on R\ is represented as (l/«)log(l/|πi(/?)|) and
{πγι(zv)}v>ι contains the set of all critical points. It is clear that R\ is a regular
Riemann surface in the sense of the potential theory. Note that

Σ Σ log
T^gW

where {^}^>i ^s ^ e set of critical points of gPo(p) and v̂  is the degree at q^.
Since 1 - \zv\ and —log |zv | are comparable with each other, i?i satisfies condition
(A) by Lemma 1. Hence i?i is continuable by Theorem 1. This completes the
proof. •

5. Proof of Theorem 1

Proof of Theorem 1. By Lemma 2 we may assume that R is regular in the
sense of the potential theory. We say an arc γ is a Green arc if grad gPo Φ 0 on
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γ and dg*o = 0 along γ hold. A maximal Green arc will be called a Green
line. For sufficiently large M > 0, R(pOiM) is a closed disc. In fact the
function Φ(p) = exp(—gPo(p) — ig*o{p)) conformally maps R(po,M) onto
{\z\ < e~M}. For every θ e [0,2π) there exists only one Green line L(0) which
issues from p0 and passes through Φ~ι{e~M+ιθ). A Green line L(θ) issuing from
p0 has at most two end points. One is obviously p0. In case that L(θ) tends to
the ideal boundary of R, we call it regular. In the other case L(θ) terminates at
a critical point of gPo. It will be called critical. It is known that 2(vk + 1)
Green lines meet at a critical point qk of degree Vk It is easily seen that at most
v/c + l critical Green lines L(θ) issuing from pQ terminates at q^. We may
assume that just Vk + 1 critical Green lines issuing from p0 terminate at
qk. Then there exist θ[ι\ ..., 0[v*+1) in [0,2π) such that L{$\ . . . , L(θ{*k+ι)) are
these critical Green lines. Set Ω(/?o) = {p0} U [Jθet0 2π)L(θ). Then Ω(/?o) is a
simply connected subregion of JR, which is called the Green star region. The
function Φ(p) is also a conformal mapping of Ω(/?o). For our later use we shall
consider Ω'(/?o) — Ω(po)\L(π). For simplicity let us set gPo(qk) = Vk The
function Φ(p) maps Ω'(/?o) onto a radial slit disc D, that is,

D = Φ(Ω'(PO)) =

w h e r e Uz = {\z\ < 1} a n d l[j) = {peiθ;e~Vk < p< l,θ = θ[J)}. B y the R i e -
mann mapping φ the simply connected region D is mapped onto the upper
half plane H = {3£ > 0}. We may assume that Uζ = {\ζ\ < 1} contains

\ ( )\ ( )

On the other hand the mapping w — φ(z) = —/logz maps D into a half strip
domain {w; - π < Vlw < π,3w > 0}. Set Z) = ^(/)) and ϊ[j) = ψi^). Then
/̂ y^ = {w = u + iv;u = θ[J\θ <v<Vk} We may prove Theorem 1 only when
the set I is totally disconnected, that is, every point β el is a boundary
component of C\7. Since R satisfies also condition (PW), by Theorem on p. 90
of [Ha]

J'oo

B(p0, Gc)dcc = y^ vkvk < oo

0 k

holds. The length of /[•" is equal to 1 - e~Vk and hence it is comparable with Vk.
Thus we have Σ ^(length of 1^) = Σk vk(l ~ e~Vk) < °° Then we consider D
as a Jordan domain bounded by a rectifiable Jordan curve. It is easily
seen that two boundary elements are defined over every point of lk

J =
{peiθ\ e~Vk < p < 1,0 = 0^} and one boundary element is defined over eιθ e dUz,
θφπ,θ[j).

Recall two general facts about exceptional sets. Let E be a totally dis-
connected compact set in the unit disc U.
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FACT 1 ([SO, XL 3E]). For a set E on a rectifiable Jordan curve, E e ND and
E e NSB aw equivalent.

For an arbitrary point β e E denote by Γβ the family of locally rectifiable
closed curves in U\E which separates β from dU.

FACT 2 (Characterization of A^-sets by extremal length [SN, II. 8]). EG NSB
if and only if every boundary component β is weak, that is, the extremal length
λ(Γβ) = 0.

If we prove that / is not No-set, then Ω'(/?o) is a disc with crowded ideal
boundary. By Facts 1 and 2 it suffices to show that there exists a point β0 e I
such that λ(Γβo) > 0.

Let Γ^ be the family of locally rectifiable arcs γ on H Π Uζ each of which

connects (—1,/?)\/ and (/?, 1)\/. By the symmetry of Uζ, it is easily seen that

λ(Γβ) = 2/L(Γ^). Since extremal length is invariant under any conformal

mapping, λ(Γβ) = λ((φ o φ~ι)(Γt)). By Caratheodory's theorem ψ o φ~ι is

extended continuously over dD. One can see that the family (φ o φ~ι)(Γt)

consists of locally rectifiable arcs γ in D which connects some l^ in the right of b

and another ϊ^ in the left of b, where b = (φ o φ~ι)(β) e [—π,π\.
Set f(x)=xlog(l/x) for ;ce(0, oo). Remark that 0<f(x)=xlog(l/x)<l/e

if x e (0,1 ),/(*) < 0 if x > 1, and lim^-.o/ί^) = 0. Since i^ satisfies condition
(A), by Lemma 1

4

Hence there exists ko e N such that ^ < \ if A: > A:Q and

holds.
First we treat the case ko = 1. Consider the intervals

on the w-axis and denote them by J^λ Then we have
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<2π,

where m\ is 1-dimensional Lebesgue measure. Hence (—π,π)\(J*Li( ̂ t U ••
U/^ + 1 ) ) * 0. Take bo e (-π,π)\U^ = 1 (^ 1 ) U u4V*+ 1 )) Set£0 = (^ o φ~ι)(bo)
e I. We shall show that λ(Γ^) > 0 or equivalently λ({ψ o ̂ "^(Γ^)) > 0. We

define a linear density pψ(w) on the annulus A^ = {vk < \w - θψ\ < vk/f(vk)}
as follows:

if w e A {

k

J )

otherwise.

Set p(w) = supy kρk\w). Since &o ̂  ( 4 U Jm and every γ e (ψ o φ~ι)(ΓβQ)

connects two slits ίk and ί^ which lie on each side of bo, a subarc of γ connects
the inner and the outer circles of Aιj\ Hence

p(w)\dw\ > f p{j\w)\dw\
9f(vk)

= 1

or p(w) is admissible for {φ o φ~ι)(T^). By the definition of extremal length

We have

j ' ^ I I (/)
k=\ τ=1 JJAY'

oo VAΓ + 1 f 2 π {ΎuΓ) 1

ί/̂  "* ^rdr
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_ 1

log

2πe

This is finite by (*). Therefore λ(Γ~β) > 0.
In case of ko > 1 we can take bo e (-π, ̂ \ ( J ^ o ( / ^ ' U U/^ + 1 ') as

above. Set β0 = (φ o φ~ι)(bo). We shall define a subfamily Γi of (^ o ^"^(Γj)
as follows:

Γi = {γ e (φ o φ~ι)(Γ^o); γ connects some l[j) and 1{J'] for k,m < k0}.

Set Γ2 = (^o^~1)(Γj*)\Γi. It is known that

1 1 1

One can easily show that λ(Γ\) > 0. Define a linear density p[J\w), j —
l,...,Vjt+l, k > ko and p(w) = sup; ,k>k0Pk (w) a s above. Since p(w) is ad-
missible for Γ2, we deduce that λ(Γ2) > 0. This completes the proof. •

Remark. By this proof it follows that for almost all b e (—π, π) with respect
to the Lebesgue measure the boundary component (φoψ~ι)(b) is not weak.
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