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MEROMORPHIC FUNCTIONS SHARING THREE VALUES

OR SETS CM

PING Li

Abstract

In this paper, by using a lemma about common 1 -points, the author studied the
relationship between two meromorphic functions which share three values or three sets

CM, and generalised a result obtained recently by E. Mues [4], and weaked the

condition of a theorem in [10].

1. Introduction

Let / and g be two non-constant meromorphic functions in the complex
plane C and a be a value in the extended complex plane C. We say that /and g
share the value a CM (IM) provided that / — a and g — a (I// and l/g, resp.)
have the same zeros counting multiplicities (ignoring multiplicities) in the case of
a G C (a = oo, resp.). For a positive integer or infinity k let

here p is the multiplicity of α-point of/. Then /and g share the value a IM can
be expressed as E(a, oo , /) = E(a, oo , g) . E(a, 1 , /) = E(a, 1 , g} means that / and
g have the same simple ^-points. Let

Ef{a} = {z I f ( z ) — a\ counting multiplicities}

and

Ef{a} = {z I f ( z ) = a\ ignoring multiplicities}.

Then / and g share the value a CM (IM) can be expressed as Ef{a} — Eg{a}
(Ef{ά} = Eg{a}}. A natural generalization of the concept "sharing a value" will
be "sharing a set". The following two notations are natural and obvious.

Ef(S) = (J Ef{a}, Ef(S) = U
aeS aεS
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where S denotes^an arbitrary set in C. For two meromorphic functions/, g and
a subset S in C, we say that / shares S CM (IM) with g provided that

Ef(S) = Eβ(S) (Ef(S) = Eg(S}).

It is well known [5] that if two non-constant meromorphic functions / and g
share four values CM, then/is a Mόbius transformation of g. In the case that/
and g share three values CM, / may not be a Mόbius transformation of g,
however, /can still be, if some other appropriate condition is added. There have
been published many papers to talk about meromorphic functions sharing three
values CM (see, [2], [1], [11], [9] and [7]). In 1983, Ueda [8] proved that if/and
g share 0,1, oo CM and if there exists an 0^0, l,oo such that £(0,fc,/) =
E(a,k,g) for some k > 2, then/is a Mόbius transformation of g. The bound 2
for k here is best possible. For examples, functions

e3γ — 1 e~3γ — 1
(1) / = - r and 0 = - r^ } J y ~

share 0,1,oo CM and satisfy £(3/4,1,/) =£(3/4,1,0). Functions

eγ — 1 e~γ — 1

share 0,1, oo CM and satisfy £(0,1, /) = £(0,1,0), where a is one of the solution
of

Recently, E. Mues [4] proved the following theorem.

THEOREM A. Let f and g be non-constant meromorphic functions sharing
0,1, oo CM. Suppose additionally that there exists an a ^0,1,00 such that
£(0, I,/) — £(0,1,0). 7/y w «0ί α Mόbius transformation of g, then there exists
a Mδbius transformation L permuting {0,1, 00} such that Lof and Log have the
form (1) with L(a) = 3/4 or Lof and Log have the form (2) and L(ά) is a
solution of (3).

For functions sharing sets, Gross-Yang [3] asked whether there exist two sets
S\ = {a\,a2\ and S2 = {b\,b2} such that for any two non-constant entire
functions / and g the conditions £/ (S/) = Eg(Sj)(j =1,2) imply / = g or not.
F. Gross and C. C. Yang studied the question for the case a\ + a2 = b\ + b2, and
H. X. Yi [10] improved Gross-Yang's result in the following manner.

THEOREM B. Let f and g be non-constant entire functions with finite order and
Si = {01,02}, ^2 = {b\,b2} satisfying a\ φ 02, b\ Φ b2, a\ + a2 = b\ -f b2 = c}

aλa2 Φ b\b2. If Ef(Sj) = Eg(Sj)(j — 1,2), then f and g assume one of the fol-
lowing relations'.



140 PING LI

(i) f = g,
(ϋ) f + g = c,

(iii) (f - 0 (g - 0 = ± (ai

 2

 α2) , with (a{ - a2)
2 + (61 - b2)

2 = 0,

(iv) (/ - aj)(g - ak) = (-l)J+k(aι - a2}
2 (j,k= 1,2), with 3(aι - a2)

2

(v) (/ - bj)(g - bk) = (-l)J+k(bι - b2)
2(j,k= 1,2), with (a\ - a2)

2

In this paper, noting that the assumptions of Theorem A leads to
r, !/(/ — a)) — S(r,/), we will replace the condition ^(α, I,/) = £(#, l ,g f ) by

Nη(r,l/(f — a)) = S'(r,/), and give a generalization of Theorem A. Also we
will remove the limitation to the order in Theorem B.

We assume that the readers are familiar with the basic notations and results
in value distribution theory. We use *S(r,/) to denote the quantity o(Γ(r,/)),
r — > oo, r $ E, here and in the sequel, the letter E is a set of r e (0, oo) with finite
linear measure not necessarily the same at each occurrence. N^(r^\/(f — a))
denotes the reduced counting function^ of α-points of / with multiplicities less
than or equal to k. Similar notation N(k(r, !/(/ — a)) is also used to denote the
reduced counting function of α-points of /with multiplicities more than or equal
to k.

2. Lemmas and results

The following lemmas will be used in the proofs of our theorems.

LEMMA 1 (see [6]). Let f\ and /2 be two non-constant meromorphic functions
satisfying

V f\f{ ~ 1 ̂  not identically zero for arbitrary integers s and t (\s\-\-\t\ > 0), then
for any positive number ε, we have

1; /ι,/2) < εT(r) + S(r; /ι,/2),

where N^(r^ 1; f\,fι) denotes the reduced counting function off\ and f2 related to
the common \-points of fι and /2, and T(r) = Γ(r,/ι) + Γ(r,/2), S(r; /ι,/2) =
o(Γ(r)) α s r^ oo, r £ £.

LEMMA 2 (see [6]). Let /ι,/2,. . . ,/n ^ non-constant meromorphic functions
satisfying
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and

S(r), iΦj, i,j= 1,2, . . . , / ι .

Lei αo,^ι, . . . ,α m (m<ri) be meromorphίc functions satisfying T(r, a^ = S(r),

ι=l

= a\ = = am = 0, where S(r) — 0(!Γ(r)), as r —> co and r φ E, and

LEMMA 3 (see [4]) and ([12]). Let f and g be meromorphίc functions sharing
0, 1, oo CM and suppose that f is not a Mδbίus transformation of g. Then we have

Γ(r, /) < 2N\r,-—-\ + S(r, /), /or α ̂  0,1, oo.

Now we state and prove the main theorems.

THEOREM 1. Let f and g be non-constant meromorphίc functions sharing
0, l,oo CM. Suppose additionally that f is not a Mδbius transformation ofg and
that there exists an a Φ 0, l,oo such that

T(r, /) < cN{2(r,-^—}+ S(r, /),

here c > 0 ίs a constant, then there exist a non-constant entire function y, a non-
zero constant λ and two integers s, t (t > 0) which are mutually prime, such that

_ ,/
~λ

tf '

with θ = -t/s φ\,a.

Proof. Since /and g share 0,1 and oo CM, there exist two entire functions α
and β such that

Obviously, α, β and β — α are not constants, otherwise, / is a Mόbius trans-
formation of g. By Nevanlinna second fundamental theorem, it is quite easy
to get T(r,f)£3T(r,g) + S ( r , f ) and T(r,g) < 3Γ(r,/) + S(r,g\ and thus
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S ( r , f ) = S(r,g). We use S(r) to express S(r,/) or S(r,g). Formulas in (6) are
equivalent to

(7) L-r*, ί^ = ,;

from which, we deduce that

(8) T(r,e*)£T(r,f) + T(r,g) + 0(l)

<4Γ(r, /) + S(r),

and

(9) 7>y) < 10Γ(r, /) + S(r).

Hence we have S(r,eα) < 5(r) and S(r,eft) < S(r). On the other hand, from (6),
we have 5(r) < S(r;e",eβ). Hence

(10) S(r) = 5(r;^y).

Let zo be a multiple α-point of /but not a zero of α;, /?r and β' — af. Then
from

e α -Λ^ + Λ - l
(11) /-« = - ̂ — [ - ,

we see that

(12) eα(zo) - aeβ(zo) + a - 1 = 0,

(13) α'(zoKz») - aβ'(zϋ)e = 0,

which lead to

)9'(zo)-α'(zo)'

Let

=

(15)( j

Then from (10) and (15), we get

r(r,FO =
(16)

Γ(r,F2) =

and thus
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Since F\(ZQ) — 1, ^2(^0) = 1, we have

(17) N

From (16), (8), (9), (17) and the assumption, we get

(18) T(r,Fι) + Γ(r,F2) < 14c7V0(r, l;Fι,F2) + S(r;Fl,F2).

It is obvious that

±}=S(r,FljF2), ι = l , 2 .
Λy

Hence by Lemma 1, we see that there exist two non-zero and mutually prime
integers s,t(t> 0) such that F{F{ = 1, i.e.,

(19) e-«( }

from which, we can see that ////? = soc' + ̂ '. On the other hand, from the
second equality in (19), we have

If α' 'If! φ —t/s, then we have

,.14
and thus

(20)

where c\ is a non-zero constant. Above identity can be rewritten as
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from which, we get

(21) e/* = C2(e«-cι),

where CΊ is also a non-zero constant. Formulas (20) and (21) imply T(r,e*) =
S(r) and T(r,eβ) = S(r). And thus from (6), we get T ( r , f ) = S(r)9 a con-
tradiction. Hence

If a = -t/s, then a = a'/β'. Hence e"M = 1 and e^o) = 1. In the case
that ZQ is a zero of e* — ae$ + a—\ with multiplicity not less than 3, we have

α"(z0) + (α'(zo))2 - a[β" (Zo) + (/^o))2] = 0.

This and α = a! /β' lead to α(α — l)β'(zo) = 0, which contradicts the assumption
about ZQ. Hence a Φ -t/s.

Let sa + tβ = co, it is obviously a constant, and let 7 = a/t. Then / and g
can be expressed as

g f r - 1 g-fr - 1
-

where /I = £?<*/'. From (19) and (22), we have

__
~λ

tf '

where θ = —t/s = at /β' φ 1, which completes the proof of Theorem 1. Π

The following is an example which shows the existence of / and g in
Theorem 1.

Example 1. Let γ be a non-constant entire function, a — (20 + 4V2i)/21,
and

e^ - 1 e~^ - 1

• ~~ *y - Γ ~ e-y -
Since

β-a=(e —)('-' 3

we have N(2(r, \/(f - a}) = l/3Γ(r,/) + S(r,/).
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The conditions in the following theorem are stronger slightly than those in
Theorem 1, but the conclusion is more clear.

THEOREM 2. Let f and g be non-constant meromorphίc functions sharing
0, l,oo CM. Suppose additionally that f is not a Mδbius transformation of g and
that there exists an a φ 0, l,oo such that

1

then f and g assume one of the following forms:

(i) f = —, q = —, with a — -w J

 eγ — I ' v e-γ — I ' 4'

ey _ i e-y _ i 4
(ii) / = —^ g = —^ with a — -

jf = j—— , with a = — 3 and Λ,3 = 1;
Ie . y ~ 1

_ e-2? - 1 . _ 1 2 _

(v)r = t^-v g = ±e-*y~-ϊ w/ίA A * ! ^4fl(1 ~"μ = 1;

^2y _ j £~2^ — 1
(vi) / = -. g — -j , with λ2 φ 1 and a2λ2 = 4(a — 1);

λe^ — 1 ' —1' 1

ey _ 1 e-y _ i

(Vii) f =

 e-2γ _ 1' 0 = g2y _ ̂  WZΪ/Z Λ = 4;

/ -N /- ^7 - ! e~2γ ~ l / !(vm) / = -, f̂ = —, with a — -\
e~y — 1 £7 — i 4

_ ^-1 g-y-1 l - α ,2
, g = j——-, with λ Φ —— and (I - a) + 4aλ = 0,

^"' ^ ^-y- 1' * \ey - 1
w/z^re y w α non-constant entire function.

Proof. Since TV^r, (!/(/-α)) = S ( r , f ) , by Lemma 3, we have Γ(r,/) <
27Vr(2(r,!/(/ - α)) + 5(r,/). Hence by Theorem 1, /and 0 assume the forms in
(4) and #, s, ί, 0 satisfy the equality (5). Since s and t are mutually prime, there
exist two non-zero integers p and q such that ps + qt= 1. From this and the
proof of Theorem 1, we get

(23) eγ = λpeq«e-pβ.

At point z0, we have eα(zo) = (1 - a)/(I - 0) and eβM = (1 - ά)θ/a(\ - 0), and
thus

(24)

Now we discuss three cases below.
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CASE 1. t > -s> 0.
If t = 2, then s = — 1, and thus p = 1, q = 1 and θ = 2. From (5), we get

a2λ2 = 4(0-1). a^θ = 2 and a2λ2 = 4(a - 1) imply λ2 Φ 1. Hence / and g
assume the form (vi) in Theorem 2.

Now we suppose that t > 3. Let

(25) f:=^rϊr
Since 7V1}(r,!/(/- a)) = S(r,f), from (11), (23) and (24), we see that
N(r, φ) = S(r,f). Since e* — ae^ + a — 1 is a polynomial in eγ with degree t > 3
and non-zero constant term a — 1, it is quite easy to see that m(r,φ) = S(r, /).
Hence we have T(r,φ) = S(r,f). Formula (25) can be rewritten as

φ(ety - aλe~sγ -f a - 1) = e3γ - (λp + 2μ)e2y -f (μ2 + 2μλp)eγ - μ2λp.

From this and Lemma 2, we get t — 3 and

and thus
/Λ^7\ Λ —c y / Λ n . Λ \ ?V i / 2 i <Λ 1 P\ V(27) — α/t£ y = —(λp -f 2μ)e y + (// + 2μλp)ey.

By Lemma 2 again, we see that — s = 2 or —5- — 1.
If -5- = 2, then from (27), we have

aλ = λp + 2μ, u + 2λp = 0.

Since t = 3 and —51 = 2, by the definition of p, q, we have p = q = 1. Hence
from (26) and the above formulas, we get

λ3 = l, a = -3, μ = -2λ.

Therefore

6 1 t 1
/ =

which assume the form (iii) in Theorem 2.
If — s= 1, then from (27) and by Lemma 2, we have

λp + 2μ = 0, -aλ = μ2 + 2μλp.

By the definition of /?, q, we have /? = 2 and # = 1. From (26) and the above
formulas, we get

μ=--λ , a = -λ , -λ +-λ =1.

Hence

_ <?3y -\tfey +|A3 - 1 _ e3y - I iV - \λ6 _ (eΊ - λ2)(eγ + ̂ λ2)2

-* ~a~ λe? - 1 ~ λey- 1 ~ λei - 1 '
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Since N^(r, \/(f — a)) — S(r,/), the above formulas lead to A3 = 1. Hence
a — 3/4 and / = (e3γ — l ) / ( λ e γ — 1). Select an entire function γl such that
e* = λe\ then

g"3^ - 1 3

~ *yi - Γ

which assume the form (i) in Theorem 2.
CASE 2. -j > t > 0.
If —s = 2, then f = 1, and thus from (4), we have

eγ - aλe2? + a - 1

Since N^(ry !/(/ — a)) = S ( r , f ) , from the above formula, we get

l

and

7

If λ = 1, theji a =1/2. Therefore/ - a = -(eγ + l)/2(eγ - 1), which contradicts
T(rJ) < 2N(2(r, !/(/ - Λ)) + ̂ (r,/). Hence λ * 1 and /, g assume the form
(v) in Theorem 2.

Now we consider the subcase — s > 3. Similar to Case 1, we can prove the
function φ in (25) still satisfies Γ(r, φ) = S ( r , f ) . By Lemma 2, we can get
—s = 3, and

(28) -aλφ = 1, p(0 - 1) - -μ2λp,

and thus

(29) φetγ = -(λp + 2//)^2y + (μ2 + 2//^)ey.

If t = 2, then from the above formula and by Lemma 2, we have

Since s = —3, / =; 2, by the definition of p, q, we see that p — q — —1. Therefore,
from the above equalities and (28), we get a = -1/3, and λ2 = 1. Hence /and g
assume the form (iv) in Theorem 2.

If / = 1, then p = -I, q = -2. From (29), we have

λp + 2μ = 0.

This and (28) imply that

α = ̂ , , = -1, , = -̂ , 4^-
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Then we have

Since N\)(r, !/(/ — α)) = S(r,/), we can get A = 1, and thus a = 4/3. Hence /
and g assume the form (ii) in Theorem 2.

CASE 3. t > 0 > -s.
In this case, we express / — a as

If s + t = 2, then s=t=l, and

Since N \ ) ( r , l / ( f — a)) = S ( r , f ) , the numerator in the above formula is a
complete square form. Therefore

And then

Hence / and g assume the form (ix) in Theorem 2.
For the subcase s + t > 3, let

4- (a - \)esy -λa

Similar to Case 1, we can prove that T(r, ψ) = S ( r , f ) . And then it is not
difficult to prove that / and g assume the forms (vii) and (viii) in Theorem 2.
The proof of Theorem 2 is then completed. Π

THEOREM 3. Let f and g be non-constant meromorphic functions and
Si = {αι,α2}, S2 = {^1,^2}, 3̂ = {00} satisfying a\ φ a2, b\ φ b2, aι+a2 =
bι+b2 = c, aλa2 Φ b2b2. Let d = (l/fah - flιfl2))((flι - <*2)/2)2. If Ef(Sj) =
Eg(Sj) (j = 1,2,3), then f and g assume one of the following relations:

(i) f = gι
(ii) f + g = c;
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0 with d ̂

^ with d = 1;

C tf 1 - #2 y , C , #1 — #2 _v .,, , 1
(v) / - - ± — - — eγ and g = -± — - — e γ with d = -,

where γ is a non-constant entire function.

Proof. Since Ef(Sj) = Eg(Sj) (j = 1,2,3), there exist two entire functions α
and β such that

- 02) = ..
'(g-aι)(g-a2) ' (g-bl)(g-b2)

from which we have

(g-ai)(g-a2)

and

(32) -g g - | - 2 j, t
1 J "

Since «ι 4- ^2 = ^i -f ^2 — c> we see that / = g or / 4- g = c as long as one of
e* = 1, eβ = 1 and e* = eβ hold. In the following, we suppose that e* φ 1,
eP Φ 1 and e^ φ 1.

Since /and g share *S, (/ = 1,2,3) CM, by the second fundamental theorem,
we have

T(r,f) < N ( r , f ) +

= N(r, g)+N r, — —} + N (r, -- + S(r, f)
9-a\J \ g-a2

Similarly, we have T(r,g) < 3Γ(r,/) + S(r,g). Hence S(r,f) = S(r,g). Write
S(r) := S(r,f) = S(r,g). From (30), we can get

T(r, e«) < 8Γ(r, /) + S(r), T(r, e") < 8Γ(r, /) + S(r).

Therefore

T(r,a)<S(r), T(r,β)<S(r).

From (31) and (32), we can easily get
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(W\ aiU2 ~ ̂ 2 — β^ ~ e"
( ' (0-bι)(g-b2)~~e^T'

Therefore the poles of g are multiple zeros of e@ — e*, and thus the zeros of
β' — a!. If β' — α' = 0, then ea~P is a constant different from 1. Hence g have
no poles in this case. If β1 — α' φ 0, then

N(r,g)<N(r,^—\ < T(r,at - β1) + 0(1)

In both cases, we have

(34) N(r,g) = S(r).

Similarly, we have

(35) N ( r , f ) = S(r).

Let

Since

(37) ^-1 = (

we see that F and G share 0, l,oo CM. Let

(38)
^ }

-aιa2

It is quite easy to verify that d ^ 0, l,oo. From the two equalities in (36), we
deduce that

<39> F~d

Hence 7V1}(r, \/(F - d)) = Nl}(r, l/(G- d)) = 0. From (35), (37) and the
second fundamental theorem, we get
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Hence N(r, \/(F - 1)) Φ S(r,F). Similarly, N(r, l/F) Φ S(r,F). By Theorem
2, one of the following cases holds:

(A) F = e2? + ey + 1, G - e^ + e"* + 1, rf = |.

(B) F = -eV +1), G = -e-v(e~y + 1), d = ̂

(C) F is a Mόbius transformation of G,

where γ is a non-constant entire function.
In Case A, we have F - d = (e? + 1/2)2, G - d = (e^ + 1/2)2. Hence

- = (aιa2 -

Since d = 3/4, we have (a\ — a^f — !>(b\bι — a\a-ι). Combining this and
#ι + #2 = b\ + 62, we get a\aι — b\bι = (b\ — bi)2. Hence

Similarly, in Case B, we have

+ 2j' " -~ Γ ' 2 ; '

2 2

and

. 1 , . ( ,2
d = — , CL\dι — O\L>2 — ~(tt\ ~ #2) '

4

Hence
r I I \ £

9 = ̂ ±(a\-a:

Now we discuss Case C. Since F is a Mόbius transformation of G, and F
and G share 0,1, oo CM, furthermore N(r,F) = S(r,F), 7V(r, l/F) ^ S(r,F) and
7V(r, 1/(F— 1)) ΦS(r,F), we can see that there exists a dΊ ^0, l,oo such that
ί/ι,oo are exceptional values of F. Since A^i)(r, 1/(F - d)) = 0, by the second
fundamental theorem, we can deduce that d\=d. Hence oo,c/2 are two
exceptional values of/. Similarly, oo,c/2 are two exceptional values of g. We
have assumed that ea φ 1, which is equivalent to F ^ G. Hence we have

and rf =

which imply that
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Hence

a\ - d2 v c a\ - a2 _y
-- = — ~

which completes the proof of Theorem 3. Π
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