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Abstract
We study Chen-finite type surfaces of revolution in E3 which contain two affine

circles through each point. First, we prove that they can be obtained by revolving an
ellipse on a suitable axis and then we show that only the 2-dimensional sphere is of finite
type.

1. Introduction

Euclidean submanifolds of finite type were introduced by B. Y. Chen in the
late seventies and it has been a topic of active research since then (for details
see [3] [4]). An Euclidean submanifold is said to be of Chen finite type if its
coordinate functions are a finite sum of eigenfunctions of its Laplacian, [3].
Compact Euclidean submanifolds are characterized by both a polynomial cri-
terium and also by satisfying a variational principle, [4]. B. Y. Chen posed in
[5] [6] the problem of classifying the finite type surfaces in the 3-dimensional
Euclidean space E3. In fact the only known finite Chen-type surfaces in E3 are
portions of spheres, circular cylinders and of minimal surfaces and it was B. Y.
Chen who made in [6] the following conjecture.

CONJECTURE. The only compact surfaces of finite type in E3 are the spheres.

The conjecture is still unsolved but it has been confirmed by different authors
by proving that finite type tubes, finite type ruled surfaces, finite type quadrics,
finite type cones and finite type cyclides of Dupin are surfaces of the only known
examples in E3, [4]. However, for another classical family of surfaces in E3, the
surfaces of revolution, the classification of its finite type members is not known
yet. Particular cases of this problem were consider in [7], [8] and [9]. In [7] two
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families of finite type surfaces of revolution with generating curve satisfying
certain algebraic conditions are classified. In [8] the conjecture was confirmed
for surfaces of revolution with finite type coordinate functions. Finally in [9],
authors gave the classification of surfaces of revolution with constant mean
curvature.

Our purpose here is to classify a family g of compact finite type surfaces
of revolution M2 which is determined by satisfying the following geometric
property:

(P) There are at least two affine circles {ellipses) contained in M2 e g through
each point p e M2.

As a motivation for the study of the above property we remind that in 1822
C. Dupin defined a cyclide to be a surface M2 in E3 which is the envelope of a
family of spheres tangent to three fixed spheres. All compact cyclides of Dupin
in E3 can be obtained by inversion of a torus of revolution and, therefore, they
contain four metric circles through each point [2], In 1980 R. Blum gave an
example of compact cyclides with 4, 5 and 6 metric circles through each point [1]
and K. Ogiue and N. Takeuchi [10] proved that a compact surface of revolution
which contains at least two metric circles through each point, is a Hulahoop
surface. Hulahoop surfaces have 4, 5 or infinitively many metric circles through
each point.

In order to achieve our goal, we begin with defining the elliptical hulahoop
surfaces as those surfaces of E3 obtained by revolving an ellipse around a suitable
axis. We first prove

PROPOSITION 1. Let M2 be a compact surface of revolution in E3 which
contains at least two ellipses through each point, then it is an elliptic hulahoop
surface.

This result is analogous to the one proved in [10] for metric circles, but their
method can not be applied here so that we need to furnish a different argu-
ment. Note also that our family includes the hulahoop surfaces of [10]. Then
we will prove

PROPOSITION 2. The only elliptic hulahoop surface of finite type is the sphere.

As a consequence

COROLLARY 1. The only compact finite type surface of revolution which
satisfies (P) is the sphere.

This confirms Chen's conjecture.



SURFACES OF REVOLUTION 75

2. Preliminaries

Let x: Mn —> Em be an isometric immersion of a compact Riemannian
manifold into the w-dimensional Euclidean space. The inmersion (MΛ,JC) is said
to be of finite Chen-type k if the position vector x admits the following spectral
decomposition

k

(1) x = xo

where xt are 2sw-valued eigenfunctions of the Laplacian of {Mn,x): Axt = λtxt.
The following minimal polynomial criterion is a useful tool to decide

whether a submanifold is of finite Chen-type [3].

PROPOSITION 3. An isometric inmersion (Mn,x) of a compact Riemannian
manifold in Em is of finite Chen-type, if and only if there exists a nontrivial
polynomial Q(t) such that Q(A)(x — xo) = 0, where Δ is the Laplacian of (Mn,x).

Now, we want to define the elliptic hulahoop surfaces of E3. These are
surfaces of revolution which are obtained by revolving an ellipse around an axis
which is not perpendicular to the plane containing the ellipse. They can be
obtained in the following way: Choose the x,y,z axes so that the first two are
parallel to the axes of the ellipse E{a,b,r,s)r, s>0 given by

(x-a)2 (y-b)2

r2 + s2

which is supposed to be contained in the cy-plane. Rotate the ellipse around its
centre by an angle β e [0,π/2] and denote by E(a,b,r,s,β) the resulting ellipse.
Finally we denote by E(a,bJris,β1(x) the ellipse obtained by tilting E(a,b,r,s,β)
around a diameter parallel to the x-axis by an angle α e [0,π]. It can be easily
checked that the final ellipse is parametrized by

{ x = a-\-rcosβcosθ — .ssin/?sin0,

y~b + cosα(rsin/?cos# 4- scosβάnθ),

z = sin α(r sin β cos θ + s cos β sin θ),

with 0e[O,2π].
Now let H(a,b,r,s,β,cc) be the surface which is obtained by revolving

E(a^b1r1s1β,oί) around the z-axis. Then one can check by lengthly computation
that H is a regular surface, if and only if, either

(i) 0 Φ a Φ nil,

0 / b2d2 + a2 cos2 cue2 + labe cos α - r2s2 cos2 α,

0 > e2 - a2c2 or
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(ii) α = π/2, b Φ 0,

0 > e2 - a2c2 or

(iii) α = π/2, b = 0,

rf2 < 02 or

(iv) α = π/2, a = b = 0, r = s or

(v) α = π/2, a = b = 0, β = 0

where rf2 = r2 cos2β + s2 sin2 β c2 = s2 cos2jff + r2 sin2βsinde= (s2 - r2) sin jff cos £.

3. Proofs of the results

First we give:

Proof of Proposition 1. Since it is a compact surface of revolution, M2 must
be either a topological sphere or a topological torus.

First, we consider the simply connected case. Let po be any point of M2.
Since there are two ellipses through po, at least one of them, Eo, is not a latitude.
If the latitude Co through po is not transversal to Eo, we can take a point on
Eo, p\, as close to po as necessary, so that the latitude C\ through p\ cuts Eo
transversally. Take p2 = Eo n C\ - {p\}. Let Π be the perpendicular bisector
of the segment pϊpi. Since pipϊ forms a chord of C\, Π must contain the axis of
revolution. Thus we can consider γ = Tln M2 as the plane generating curve of
M2. Let us denote by N the part of M2 which is generated by the points of Eo.
Clearly Π n N is a closed segment β of γ. By regularity, one can see that β must
be symmetric with respect to Π and then it can be checked by direct computation
that β must be a piece of a conic. Now by using a similar argument for the
border points of β and using regularity and simply connectedness of M2, we can
conclude that M2 must be a ellipsoid of revolution.

Now, let us assume that M2 is of genus one. Let 5£ and M be homotopy
classes corresponding to a latitude and a meridian respectively. Then J&? and J(
generate the fundamental group π\{M2) of M2. It is known [11] that an ellipse
contained in M2 must be in one of the following homotopy classes Θ9 «£?, M9

S£ + Jt or 5£ - Jί, where 0 is the trivial homotopy class. We wish to prove that
M2 satisfies the following property:

(*) There exists α point p e M2 such that one of the ellipses through p which is
not a latitude, does not belong to ΘKJ £?.

In fact, take po e M2 and suppose it is not a point satisfying (*), and consider an
ellipse Eo through po which belongs to 0 u S£. Then through almost every point
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of iso there passes a latitude Co which cuts Eo in two different points. By using
an argument analogous to that of the simply connected case, we can see that
there is a closed piece of a conic β which is included in the copy of the generating
curve of M2, γ, which passes through /?o Take now a point p\ of the border of
β. If M2 satisfies (•*) at p\, we have done. If not, we obtain for p\ the same
conclusion as for po and, therefore, by regularity, there exists a closed piece of a
conic, which we also denote by β, that passes through po and p\ and is contained
in γ. By repeating the process we see that either exists a point where M2 satisfies
(*) or γ must be an ellipse through po, but the latter contradicts the election of
po This shows (*). Then there exists an ellipse E which belongs to one of Jί,
S£ + Jt or S£ — M. This means that M2 is swept by E under rotation.

Q.E.D.

Now, suppose that we have an elliptic hulahoop surface H(a,b,r,s,β,oc)
(satisfying some of the regularity conditions (i) to (iv)). If we put

(3) q{θ) = (a + r cos)S cos (9 - .

+ (b + r sin/? cos α cos θ + s cos β cos α sin θ)2

then we observe that H(a,b,r,s,β1oc) is obtained by revolving the curve of the
xz-plane given by

ix={q{θ))X'2

(4) | j = 0,

y z =

with 0e[O,2π).
For a surface of revolution parametrized by

(5) x = (u(θ) cos φ, u(θ) sin φ, v(θ))

one can check by a straight-forward computation that the Laplace's operator is
given by

1 d2 IV u'u" + υ'v"\ d 1 d2

[ ) hdθ2 \uh h2 jdθ u2dφ2

where h = (u')2 + (t/)2.
By using (6) for the parametrization given in (4), one can see that the

Laplacian of H(a1b1 r,s,β, α) for an / e C°°(fΓ(έϊ,fe,r,j,jS, α)) which depends only
on θ satisfies

where # denote the discriminant of the first fundamental form.
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Proof of Proposition 2. We do our discusion in terms of the regularity
conditions (i) to (iv). We first consider the case r Φ s, then g(θ) can be expressed
as

(8) g(θ) = I (r2 - s2)(cos2 β(s2 cos2 α - r2) 4- sin2 β(s2 - r2 cos2 α)) cos 40
o

+ - (r2 — s2)rs sin/? cos/? sin2 α sin 40

- - (r2 - s2)r{a cos/? 4- 6 sin/?cos α) cos 30

- - (r2 - s2)s(-a sin/? 4- Z> cos/? cos α) sin 30

Considering g and # as polynomials in cos0, sin0, we observe that 1 <
deg(#) < 2 and that deg(#) = 1, if and only if, β = 0 and r = scosα, where deg(#)
means degree of q. Also we have deg(#) = deg(#) 4- 2.

One can obtain by induction the following formula for the higher order
Laplacian of the function z given in (4)

k _ Akcosmθ + Bksmmθ+pk[?) Δ z - - ^ j K > υ

where Ak,BkeR do not vanish simultaneously and /?jt(sin0,cos0) is a poly-
nomial of degree at most m{k) — 1 with

m(k) = (3 deg(<7) + 4)* - (deg(9) + 1).

If H(a,b,r,s,β,aί) were of finite Chen-type, we might use Proposition 3, (4) and
(9) to obtain that for some keN

p k + ck-ιpk_xg
3 + + cip^{k~l) + ••• + « ) ( * - zo)g3k-1 = 0

where cy e R, ^7(sin0,cos0) is a polynomial of degree m(l) and therefore Pig3^k~^
is a polynomial of degree (3 deg(#) 4- 6)k - (deg(#) + 1) — 2/, / = 0, ...,&.

Thus the coefficients Cj must vanish for j = 0,. . . ,k — 1, which contradicts
the assumption on the finiteness of the Chen-type.

Let us assume now r = s and a Φ 0. Without loss of generality we can take
β = 0. In this case

(10) 0(0) = ^ + 4r2 sin2 α cos2 θq

= 2r2(b2 + r 2 sin2 α - α 2 cos2 α) cos 20

— 4abr2 cos α sin2 0 + 8αr3 sin2 α cos 0

+ 2α 2 r 2 ( l + sin2 α) 4- 2Z>2r2 + 2r4 sin2 α

then deg(#) = 2 and 1 < deg(gf) < 2 with deg(#) = 1, if and only if, b = 0 and
r 2 sin2 α = a2 cos2 α.
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Again from (4), (7) and by induction one can check after a long computation

where ( )' is meant for the derivative with respect to θ,

ak = (-23r2asmoc)(-l)k-1 1 4 7 ... (1 + 6(k - 1))

and p/c is a polynomial in sin0, cos0 of degree 2k + 1 + (2fc — 2) deg(#), A: > 1.
If H(a,b,r,s,β,<x) were of finite Chen-type fc, then by using Proposition 3,

(4) and (11) we would obtain

(12) q q V = /?(sin (9, cos θ)

with p{sm θ, cos θ) a polynomial in sin0, cos0. Consider the monic complex
polynomials Pq^Pq^P^P^Pp determined by the following relations

(e<*)Y(0)=β 2 P ? , (A

(13)

{eiθ)mp{θ)=ε,Pp{eiθ),

where m = 2(1 + deg(g))k + 2 - 3 deg(g) and ε, e C. It is obvious that ε2 = 2iεi
and 84 = deg(gf)/ε3. Then from (12) we have

If one observes deg(P^) = deg(iV) =2deg(gf) from (12) we get

(15) -Aε\P2 + 2r2sin2αεi(Γ2 + \)Pq(T) = e3T
2P4g(T)

with T = e2iθ. By differentiating ^(0) and 4g(θ) we have

(16) 2Pq,(T) = -2Pq(T)

(17)

From (14), (15), (16) and (17) we see that P4g must have double roots only.
As we said before, 1 < deg(#) < 2. If deg(#) = 2, then as a consequence of

what we have just said, we could write

(18)

ωi,α)2 e C. But by identifying the coefficients of both polynomials we see that
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this is impossible unless

(19) b = 0 and α2 = r2sin2α.

This means that our //(a,£,r,£,/?, α) is a sort of anchor ring and we might
do similar computations to those of [5], to see that none of them are of finite
Chen-type.

If deg(#) = 1, we use an analogous argument to see that the only possibilities
for the parameters α,6,r,5,sinα are not compatible with the regularity conditions
(i) to (iv).

Finally we have that the only remaining case is r = s and a = 0. But then
H(a,b,r,s,β,(x) is a round sphere which is of Chen-type 1. Q.E.D.
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