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KILLING VECTOR FIELDS ON TANGENT SPHERE BUNDLES
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Abstract

The tangent bundle TM of a Riemannian manifold (M,g) admits a Riemannian
metric G called the Sasaki metric. The general forms of Killing vector fields on
(TM, G) are determined by Tanno [4]. The total space of the tangent sphere bundle
T*M is the set of all tangent vectors of (M,g) whose lengths are all equal to A(#0),
and it is a hypersurface of (TM,G). In the present paper we study Killing vector fields
on T*M which are fiber preserving. The main theorem of this paper shows that any
fiber preserving Killing vector field on (T#M, G*) is extended to a Killing vector field on
(TM, G). Moreover, we will find a Riemannian manifold (M, g) such that any Killing
vector fields on T'M is fiber preserving.

§1. Introduction

Let (M,g) be a Riemannian manifold of dimension » and V its Levi-Civita
connection. Let z: TM — M denote the bundle projection. For each ue TM,
we denote by V, the kernel of 7| 7). We call it the vertical subspace of

T,TM. The connection map K : TTM — TM corresponding to V is defined by

1
K(4) = lim &(ﬁ(’t))—" for A e T,TM,
where u(t), —e<t<eg, is a differentiable curve on TM satisfying u(0) = u,
u(0) = A, and 7j(u(?)) denotes the parallel displacement of u(f) from 7(u(f)) to
n(u) along the geodesic are joining 7(u(¢)) and n(u) in a normal neighborhood of
n(u). For each u e TM, we denote by H, the kernel of K|, 1,,. We call it the
horizontal subspace of T,TM. At each point u € TM, the tangent space T,TM
is decomposed as a direct sum V, @ H,. Then the Sasaki metric G on TM is
defined by

G(Z, W) = g(n.(Z), 1 (W)) + g(K(Z), K(W)) for Z, W e TTM.

We need some notation to explain the main result of this paper. &% (M) denotes
the ring of all C*-functions on M, (M) the &#(M)-module of all C®-vector
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fields on M. For X € (M), there is uniquely X7 € £(TM) and uniquely
XV € (TM) such that

nXH =X KX*)=0, =n(X")=0, KX")=X.

We call X# the horizontal lift of X and XV the vertical lift of X. For
F e #(M), we define F° e F(TM) by F°(u) =uF for ue TM. X € (M) has
a unique lift X to TM such that (X¢)(F¢) = (XF) for any F € #(M). We call
it the complete lift of X. For each ue TM, there is a unique isomorphism
I, : Vy — TruwyM such that (I,(Z))(F) = Z(F°€) for any Fe #(M) and Ze V,,.
Let C be a tensor field of (1, 1) type on M. Then we define :C € Z(TM) and
*CeX(TM) by

(C), = (I;' o C)(u) (ue TM), *C = (IGC))Y.

For each 1> 0, the set TAM & {ue TM|g(u,u) = A*} is considered as a hy-
persurface of TM and j*: T*M — TM denotes the immersion. Especially we
call T'M the unit tangent bundle of M. We denote by G* the induced metric
on T*M. We define a diffeomorphism f*:T'M — T*M by f*(u)=21-u,
ueT'M. Put oo={ueTM|g(u,u)=0}. For Z'eZ(T'M), we define
Z' € X(TM\ogy) by

Z = (4o (2" o)) forue TM\oo and 1= +/g(u,u).

For Z'e #(T*M), we define Z*e Z(TM\ay) by Z* = (f4);'(z%). Z* is
tangent to T*M and Z*|pu,, = j*(Z*). We often consider Z* to be a vector field
on TM\gy by the correspondence Z* — Z4.

We call X e #(TM) a vertical vector field on TM, if X, eV, for any
ueTM. If X*, eV, for any ue TM\gy, X* € F(T*M) is called a vertical
vector field on T*M. We call Z € Z(TM) a fiber preserving vector field on TM,
if the commutator product [Z, X] is a vertical vector field on TM for any vertical
X e Z(TM). If the commutator product [Z* X*] is a vertical vector field on
T*M for any vertical X* € &(T*M), Z* € Z(T*M) is called a fiber preserving
vector field on T*M.

The main purpose of this paper is to prove that any fiber preserving Killing
vector field on (T*M,G*) is extended to a Killing vector field on (TM,G).
Namely we show the following.

THEOREM. Let Z* be a Killing vector field on (T*M,G*) which preserves
the fiberes. Then there exists a Killing vector field Z on (TM,G) such that Z is
tangent to T*M and Z|py, = jH(Z%).

Conversely, let Z be a Killing vector field on (TM,G) which is tangent to
T*M. Then there exists a fiber preserving Killing vector field Z* on (T*M, G*)
such that jH(Z*) = Z| 4,

Remark. If a Killing vector field Z on (TM, G) is tangent to T*M, then Z
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is automatically a fiber preserving vector field on (TM,G). We will see it in the
proof of Theorem.
This theorem and the result of Tanno [4] imply the following.

COROLLARY. Let
(i) X be a Killing vector field on (M,g),
(i) P be a (1,1)-tensor field on M, which satisfies
(i-1) VP =0, and
(ii-2) g(PU,V)+g(U,PV) =0 for any U,V € Z(M).
Then (X¢+1P)|r1y is considered as a fiber preserving Killing vector field on
(T*M, G*).

Conversely every fiber preserving Killing vector field on (T#M, G*) is of this
form.

Acknowledgments. The author would like to thank sincerely the late
Professor Hitoshi Takagi, who gave him a direction of studying differential
geometry and advised him to investigate Killing vector fields on unit tangent
bundles. The author have been one of students of the late Professor Hitoshi
Takagi, whose memory is living in his heart forever.

The author would also like to thank Professor Kenmotsu for his advice,
encouragement and support during the completion of this work.

Finally, the author would like to thank Professor Tanno, who gave the
author some useful advice and comment for this work.

§2. Fiber preserving vector fields

Let (M,g) be a Riemannian manifold. For a chart (U,¢) of M, a chart
(n~1(U),$) of the tangent bundle TM is naturally defined by

5(7(7)) =@ 2@, YR

where ¢(p) = (x!(p),...,x"(p)) for pe U. Using these charts, the horizontal
subspace H, and the vertical subspace V,, ue TM, of T,TM are expressed by

o) (e}, we(o()eree)

and the components of the Sasaki metric G given by

0 0 Jd 0 0 0
G(@’@) = gij‘l'gabr;gr}fysyt’ G(ﬁ,w) = gLy’ G(@p@) = gij,

where I, i, j,k=1,...,n, denote the Christoffel’s symbols of the Riemannian

1
metric g and there the Einstein convention for the summing is used. Let X be a
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vector field on M. Putting X = X*(9/0x*) on U, we get

0 0 I}
H: k——-— .’F' J— V= k—
X X pr l';]yX e X X '
0 ox* o
Xc_Xk )
N 6x"+y ox! oyk

on n~!(U).

Let Z be a fiber preserving vector field on TM and put Z=
Z¥(8/0x*) 4+ Z*+"(8/dy*) on n~1(U). From the definition of fiber preserving
vector field, we can see that conditions

9 zk_y fork,I=1,...,n
oyt

are a necessary and sufficient condition for Z to be a fiber preserving vector
field. For example, the complete lift X of a vector field X on M, and :C for
a tensor field of (1, 1) type on M are fiber preserving vector field. For a fiber
preserving vector field Z on TM, we define a vector field Z on M by (Z),, =
n.(Z,), ue TM. Let n*: T*M — M denotes the projection. For a fiber pre-
serving vector field Z* on T*M, we define also a vector field on M by
(2D = (@), ((Z4),), ue T'M.

ProrosiTION 1. If Z is a fiber preserving Killing vector field on (TM,G),
then Z is a Killing vector field on (M,g).

Proof In a neighborhood of an arbitrary point uy e TM, we use the
coordinates such that I}}F(n(uo)) =0. Let LzG denote the Lie derivative of G
with respect to Z. From the conditions that (LzG)(d/dx*,0/0x’) = 0, we have
that

0
z* 3 (97 + 9 TETY'Y) + Z (g T TR + gasTiT )

b..s

) d
30 2 (95 + 9T YY) + 55 2 gulyy

0 0
+35 2" (0 + 9aTTay'y) + 55 Z - gLy’ =0,

and hence, we see immediately that (Ly)(a/ax',a/axf),,(,,o, =0. O

This Proposition is not used in this paper, but the method of the proof is
applied to prove the following Lemma 1, (i).

Now we study fiber preserving Killing vector fields on (T*M,G*). We
denote by i(M,g) the Lie algebra of Killing vector fields on (M,g).
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LemMA 1. If Z* is a fiber preserving Killing vector field on (T*M,G*), then
we have that

@) Z’lez(M 9),

(i) Z*|gup € i(T*M, G*) for any p> 0,

(iii) Z}'EI(TM\O'(), G'), where we put G' = G|TM\”0,

(iv) There exists Z* € i(TM,G) such that Z* l7a\ao = z>,

Proof. (i). In a nelghborhood n~!(U) of an arbitrary point uy € T*M, we
use the coordinates such that F (m1(up)) =0. The horizontal lifts (6/6x)

and (8/0x7)¥ of vector fields 6/6x and 9/dx’ on U are tangent to T*M at any
pomt of n~1(U)nT*M, hence they can be considered as vector fields on

(7*)™'(U). Then we see that
0 0
)y, =2 (53

3\ o\
2((55) | (29)
6)6 T}.M 5x1 |](ﬂo)

This implies that Lz:ig =0 at each point 7*(up) of M. We proved the first

statement of Lemma 1.
(i). Let W =Z4|,, a Suppose that 4* and B* are arbitrary fiber pre-
serving vector fields on T°M. At any ue T*M, we have that

(Lw G*) (A% | 1upg> Bl 1ung)

= WG (A% 1upg, B pupg) — G*(IW, A% 1upg], B uag)

Itug)

= G*(A| upg, (W, B¥| 1)
=ZAG(4%, BY) — GH([(/* o (/)24 (f* o ()7, A4™, BFlung)

= G* (A qupgs (0 (SHT).ZH (f* 0 (fH7).BY)
= ZAG(4%, BY) — G*([Z%, 4| upg, B runs) — G*(AP | upgs (22, B | un)-
= Z*G(A4* B*) — G([Z*, 4], B*) — G(4*,[Z*, B)).

Since Z*, A* and B* are fiber preserving vector fields on T*M, there exist Z', 4/,
F(R") and Z™", A4/t Bk e F(R™), i, j, k=1,...,n such that

. 8 i 9
]f(Z‘)=Z‘(x1,. n)a l ZH- (x . n’yl’”.’yn)@?’
Yo J(+1 0 J+n x" 1 n 0
JHA?) =4/ (x,. .. )6x1+A (x'...,x ,y,...,y)—ayj,
) BA _Bk 1 0 Bk+n x" 1 n 0
J*( )_ (xa' )axk+ (x’ <y X )y""’y)ayk’
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Here, we define a function r on TM by r(u) = \/g(u,u) (ue TM). From the

definition of the extended vector fields ?, A* and _157, the vertical parts of ?, A*
and B? are in proportion to the value of the function r, and hence we see that

— 0 apt ly 0
A — 7] ny_2_ 1+n n )
Zr=Z'(x",.. ,x) +). Z ( pee X ay"
— 0 iyl ™\ 0
)'= ! 1. " — J+n oo "z ooy VAT
A A(x7 ?x) +A A ( 7x7 r’ ) r ayl’

— o r Ayt l 0
2 — BF(x] m_~_ 4 L. gktn{ 1 nty Yy
B B(x""’x)ax"_'-l B (x,...,x, pt R )6yk

Then, for any u e T*M, we have

—_— . r
G(4%, BY)|, = (A’B" (9 + 9 TETEY'Y') + 7 A'B g LYy
T j+npk b rY k
+_): A]+nB gjbrksys + (I) A]+nB +ngjk)!

2 2
) r ; b AV A
- ((l - (frl) )A]Bkgjk * (I) {AIBk(gjk +9a T TG = y)

Ay’ : Ay ;
+AJBk+ngkbr}f%+Al+angjbrk§L+A1+"Bk+"gjk})

= (1 - (f)Z)G(A BY)|uiy + ( ,1) G* (4, BY)| pro( ity

and hence

ZAG(4%, BY)|, = ( -~ (%)2)22(41,5‘_)%(“)
+ (%)ZZAGA(AA’Bl Nipio >
@A = (1- (%) )z 43, B0y
+ (%)ZGA([ZA’AA]’B1)|(flo(f#)‘1)(u)$
(
+

(s Z)g(A_% (22 B

2
BY qig g 170
(I) GHAM [Z4 B ro( gty

G(4%, (2%, BY)|, =
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Therefore, we get
(LWG”)(27|T,,M,E|T,,M)
2
u

= (1- (%) ) oL By + (4 ) (LG, B o oy

=0.
The last equality in the above follows from Z* € i(T*M,G*) and (i) of this
lemma. We proved the second statement of Lemma 1.

(iii). Let ®(u) = g(u,u) for ue TM\oo. Then the gradient vector field of @,
grad ® = 2)*(8/dy"), is orthogonal to T*M at any point of T?M. Since we
know L_; grad ® =0, we have that

(L7 G )(4%, grad @) = 0, (L7G')(grad @, grad @) =
for any A% € Z(T*M). The statement (iii) follows from this fact and (ii) of this

lemma. & ket
(iv). Let Z*=Z4 (9/ox*) +Z* " (8/dy*). From (iii) of this lemma we

know that
d
Lz )(ay' 6y’)

on TM\gy, which implies that

—k( 0 0 0
z <5Fg,~j)+<ay12’1 )‘.‘lkj"'(ajz'1 )'gik=0-

Since Z* is a fiber preserving vector field on 7*M, we may suppose that
(a/ay')zl = 0. Differentiating the left hand side of the formula above with
respect to y , we get

#  —ktn 32 R
7 7 L

Putting i =j in the formula (}), we have that

P —kin R
Y 7 R 7 g =
( 33y V4 ) 9k =0 (or ( ey V4 ) Jik 0).

Therefore, putting / =i in the formula (}), we have that

62 —k+n
A T
( oy V4 ) gr =0.
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Hence we get (82/8y'0y')Z* =0 for n < m < 2n. ,, From the definition, Z'" are
in proportion to the value of the function r, Z*" is of the form

—_m

ZF = AT(x, .., x") -y,
where A7’ are some functions on R". Since Z* is a smooth function on
TM\oy, we see that

k

md,. L, x") =28 (xL, ..., x"0,...,1,...,0) e F(R),
for each m with n <m < 2n. Therefore, ZeF (TM\oy) is extended to a

differentiable function on TM, hence Z* can be extended to a vector field Z2 on
TM such that

? _ i, on TM\ay
]?(Z_l)a on oo

where j% : M — TM denotes the natural immersion. This satisfies the equations
L;G =0 on g9. We proved all statements of Lemma 1. O

Before we prove Theorem, we review the results of Tanno ([4], Theorem A.).
For X € (M), we define X* € &(TM) by X* = XV +* (Tx), where Ty is
a tensor filed of (1, 1) type on M such that

g(TxU,V)+g(U,VyX)=0 forany U,V e Z(M).
The general forms of Killing vector fields on (TM,G) are given by

THEOREM A. (Tanno) Let (TM,G) be the tangent bundle with the Sasaki
metric of a Riemannian manifold (M,g). Let
(i) X be a Killing vector field on (M,g),
(ii) P be a (1, 1)-tensor field on M, which satisfies
(ii-1) VP =0, and
(ii-2) g(PU,V)+g(U,PV) =0 for any U,V € X(M),
(ili) Y be a vector field on (M,g), which satisfies
(iii-1) (V2Y)(U, V) + (V2Y)(V,U) =0 for any U,V € ¥(M), and
(ili-2) R(W,Ty(U))V + R(W,Ty(V))U =0 for any U,V,W € F(M).
Then the vector field Z on TM defined by Z = X° + 1P+ Y* is a Killing vector
field on (TM,G). Conversely every Killing vector field on (TM, G) is of this form.

Now, we will prove Theorem.

Proof of Theorem. By (iv) of Lemma 1, we have the necessary condition.
By the results of Tanno, we will prove the converse part of Theorem. Suppose
that there exists a Killing vector field Z on (TM, G) such that it is tangent to
T*M at any point of T*M. By Theorem A, there exists a Killing vector field X
on (M,g), a tensor field P of (1, 1) type on M and a vector field ¥ on M such
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that Z is decomposed as Z = X° + 1P+ Y#. It is easy to see that X° and 1P are
tangent to T*M at any point of T*M. Therefore Y* = Z — X — 1P is tangent
to T*M. Hence, G(Y*#,grad ®)|, =0 for any ue T*M. Put Y = Y*(d/ox).
We have

G(Y*,grad ®)|, = g;Y'y/ for any (y)' € R", guy*y' = 2°.

We see that Y is identically zero on M, which implies Z = X¢ +1P. Since X°¢
and 1P preserve fibers of TM, Z preserves fibers of TM. By Sasaki ([3], II,
Lemma 1), Z|u,, is considered as a Killing vector field on (T*M,G*). In
consequence

Z|pay = (X +1P)|papg,

is considered as a fiber preserving Killing vector field on (T*M, G*). O

§3. An example

When M is the sphere of radius A in the Euclidean space, there is a Killing
vector field on (T*M, G*), which is not fiber preserving [4]. In this section, we
will find a Riemannian manifold M, on which any Killing vector fields on the
unit tangent bundle are fiber preserving.

PRrOPOSITION 2. Let (M,g) be a space of constant curvature c, where the
dimension of M is greater than two and the curvature c satisfies —0.30 <
¢ < 0.32. Then every Killing vector fields on the unit tangent bundle are fiber
preserving.

Proof. We will identify j*(TT*M) with TTM|.,,. For each ue T*M, set

H'=H,nT,T’M, V}=V,nT,T*M.

Then we have T, T*M = Hlf ® V,f for each ue T*M. It is easy to see that a
necessary and sufficient condition that Z e &(T*M) is fiber preserving is

W) (X) eV}, forany X € V), ue T'M,

where {0 < s < ¢} denotes a local 1-parameter group of local transformations
of Z. We need Lemma to prove Proposition.

LEMMA 2. If a vector field Z on T*M is not fiber preserving, then there exist
weT*M, Ype V,fo (Yo #0) and, & with 0 < & < &, such that the horizontal part
of (¥,).(Yo) is not zero on 0 < s < g&.

Proof From the assumption, there exist ue T*M, Y e V(Y #0) and
t>0 such that (y,),(Y) ¢V} . Set

to=sup{s| —e<s<t,(¥,).(Y)€e Vli,(“)}'
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Since y, is continuous, we have f < t. Put
Up = '»l’to(u)v Yo= ('/’zo)*(Y)1 & =1—M.
They satisfy the conditions stated in Lemma 2. O

The shape operator 4* of T*M in TM is computed by Blair [1]:

0 for X € H?
Ax)y=4" w
() {—X/)., for X e V1.
Let R, R and R* denote the curvature tensor of (M,g), (TM,G) and (T*M,G*)

respectively. And let o* denotes the second fundamental form of T*M in
TM. Then the equation of Gauss of T*M in TM is

RNX,Y,Z,W)=R(X,Y,Z,W) + (Y, Z)d (X, W) — (X, Z) (Y, W),

for X,Y,Z, W e TT*M. The curvature tensor R of (TM,G) are calculated by
Kowalski [2].

Now we are in a position to prove the Proposition. Suppose that there
exists a Killing vector fields Z on (T#M, G*) which is not fiber preserving. Then,
by Lemma 2, there are uy € T*M, Yo € VA (Gy(Yo, Yo) =1) and &> 0 such that
the horizontal part of (,),(Ys) is not zero on 0 < s < ¢g. We define a vector
field P(s), along the curve Y (up) of T,M by P(s) = (¥,).(Yo), 0 <s<é&. Let

P(s) =X(s)+ Y(s), X(s)eHy(,, Y()eVq,

be the orthogonal decomposition of P(s). By taking & sufficiently small, if
necessary, we may suppose Y (s) # 0 for 0 < s < ¢, because Y(0) = Yy #0. Put

a(s) = 1/ GH(X(s),X(s)), for0<s< e,
b(s) = 1/G*(¥(s), Y(s)), for0 <s < &,

0, for s =0,
X(s) =
X(s)/a(s), for0 < s < &,

Y(s) = Y(s)/b(s), for0 <s<ég.
Then we have P(s) = a(s)X(s) +b(s)Y(s) for 0 <s<é&. Remark that a(s) is
a continuous function satisfying a(s) # 0 for 0 <s <g. We take a vector_?o
in V2 such that G*(Y,,Y0) =0 and G*(¥o,Yo)=1. Put P(s) = (y,),(Y0),
0 <s<eg, and let
P(s) =X(s) + ¥(s), X(s)eHy,) Y(s)e V.;},(uo)

be the orthogonal decomposition of P(s). If necessary, we take & sufficiently
small, and put
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a(s) = 1/ G*(X(s),X(s)), for0 <s< &,
b(s) = 1/ G*(¥(s), ¥(s)), for0 <s < e,

= J0, when a(s) =0,
()= X(s)/a(s), when a(s) #0,

Y(s) = Y(s)/b(s), for0 <s < &.

Then we have P(s) = a(s)X(s) + b(s)Y(s) for 0 <s < g. Since ¥, is an iso-
metric mapping, we see that

1 = GM( Xy, Yo) = GH(P(s), P(s)) = a(s)* + b(s)>,
1 = G*(Yo, Yo) = G*(P(s), P(s)) = a(s)” + b(s)’,
0 = G*(Yo, Yo) = a(s)a(s)G*(X (s), X (s)) + b(s)b(s) G*(Y (5), ¥ (5)).

On the other hand, from the definitions of X(s), X(s), Y(s) and Y(s), we have
that
0 fors=0
A — b b
G (X(s)’X(S))_{l, for 0 < s < &,
GHY(s), Y(s)) =1, for0<s< e,
GH(X(s),X(s)) <1, for0 <s < &,
GHY(s), Y(s)) =1, for0<s<é.

For each s with 0 < s < &, put k(4,s) = G*(R*(P(s), P(s))P(s), P(s). When M
is of constant sectional curvatures c, it is known that R(U, V)W is of the form

R(U, V)W =c{g(V,W)U — g(U, W)V}, forU,V,WeTM,
and we have that
k(4,s) = (ad@)*{c(1 - G*(X, X)?)

3 g (X), Uy (wo) - g (X), Uy (w0)) - GA(X, X)
— 9(m}(X), ¥, (w0))” ~ g(wh(X), ¥, (0)))}
+ @} a0, KPP + o 00,00}

+ @) {5 ), KD + w(R) v 0))) |

+ aabb{3c(g(w}(X), K(Y)) - g(n(X), K(Y))
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- 9(m(X), K(Y)) - g(n}(X), K(Y)))
— 3 P (2a(r(X), K(Y) - g(eA(X), K(P))
— g(m}(X),K(Y)) - g(z}(X),K(Y))
+9(mh(X), Ys(w0)) - (7 (X), ¥, (w0)) - GH(Y, 7))}
+ (BB/A)*(1 — GX(Y, Y)?).

Especially, we know k(4,0) =1 /,12. In the following we shall suppose that
A=1. Then we get

2

a

k(1,5) <1 —aZ{(l —%02 — (Il + 1)a2) |2

- (2-|3c—%02|+%cz) . +l—%02}.
From this inequality there exists a positive number & > 0 (¢; < &) such that, if
(6 —2v14)/5 < ¢ < =64+ 2V/10, then k(1,5) < 1 for 0 < s < &). But since ¥, is
the isometric mapping, we know that k(1,s) = k(1,0) =1. This gives a con-
tradiction. Since (6 —2v14)/5< —0.3 and 0.32 < —6+2+/10, we proved
Proposition. O

a
a
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