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COMPLETE MAXIMAL SPACELIKE SUBMANIFOLDS

QING-MING CHENG* AND SUSUMU ISHIKAWA

Abstract

We generalize Simons’ method to spacelike submanifolds of M2*?(c)
(1=¢9=p) and characterize the totally geodesic submanifolds of Sq’”P(c) (1=
g=<p) under the pinching conditions on scalar curvature, Ricci curvature and
sectional curvature, respectively.

1. Introduction

Let M?*?(¢c) be an (n-+p)-dimensional connected indefinite Riemannian
manifold of index ¢(1=¢<p) and of constant curvature ¢, which is called an
indefiite space form of index ¢. According to ¢>0, ¢=0and ¢<0, it is denoted
by Sz*?(c), R?*? or H}*?(c). A submanifold M™ of an indefinite space form
MZ3*?(c) is said to be spacelike if the induced metric on M™ from that of
M?*?(c) is positive definite. R" can be embedded in S7*!(c) as a complete
totally umbilical spacelike submanifold. But it can not be embedded in the
unit sphere S™(c) as a totally umbilical submanifold. Hence it is very interest-
ing to investigate complete spacelike submanifolds in M 2?*?(c).

When p=¢q, we know that complete maximal spacelike submanifolds in
Sa*?(c) or R3*? are totally geodesic (cf. [3]). Hence the class of all such
submanifolds are very small. But if ¢<p we shall see that the: class of com-
plete maximal spacelike submanifolds is very large. In fact, if M" is a com-
plete minimal submanifold in sphere S™(c)(m>n) of constant curvature ¢ em-
beded in S7"*%(c) as a totally geodesic spacelike submanifold where m—n+g¢=p,
then M™ is a complete maximal spacelike submanifold in S7"?(¢). In [1], Alias
and Romero studied the compact maximal spacelike submanifolds in S?*?(c).
They proved that if M™ is a compact maximal spacelike submanifold in S?*?(c)
with Ricci curvature Ric(M™)=(n—1)¢, then M™ is totally geodesic. And they
indicated that to get a Bernstein type result, the bound on the Ricci curvature
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is best possible. But their statement can not guarantee this fact. In fact, ac-
cording to the theory of minimal submanifold in sphere, we know that there
are no n-dimensional compact minimal submanifold in S™(¢) of which the Ricci
curvature satisfies (n—2)c<Ric(M™)<(n—1)c. Hence the set of examples which
they supposed is empty if (n—2)c<Ric(M™)<(n—1)c.

The purpose of this paper is to generalize the Simons’ method to complete
spacelike submanifolds in M?*?(c) and to get the following theorems. In parti-
cular, we obtain the best possible bound on the Ricci curvature of a complete
maximal spacelike submanifold in the de Sitter space S%*%c).

THEOREM 1. Let M™ be an n-dimensional compact maximal spacelike sub-
manifold in the de Sitter space S;*?(c)(1=q=<p). If

ne i 2n¢'}
2—1/(p—q)’ 3 )’

ngax{

then

(1) M™ is the totally geodesic submanifold in SE*?(c), or

2) p—q=1, M™" lies in the totally geodesic spacelike submanifold S™*'(¢) of
S#*1*Y(c) and is isometric to the Clifford torus S*((n/k)c)XS™ *((n/(n—k))c) or

@) n=2 and p—q=2, M? lies in the totally geodesic spacelike submanifold
S*(c) of Sg*«c) and is dsometric to the Veronese surface where S is the squared
norm of the second fundamental form of M™".

Remark 1. When M™ is an n-dimensional complete maximal spacelike sub-
manifold in the de Sitter space S?*?(¢)(1<¢=<p), and S satisfies the condition
nc 2nC}

sup S<max{m, 3

we can prove that M™ is the totally geodesic submanifold in S}*?(c).

THEOREM 2. Let M™ be an n-dimensional compact maximal spacelike sub-
manifold in the de Sitter space S7*v**(c). If the sectional curvature K of M™ is
positive, then M™ is the totally geodesic submanifold in S}*¢*'(c).

Remark 2. The Clifford torus S® *((n/(n—£k))c)X S*((n/k)c) in S**'(¢) can be
embedded in S7*%*!(¢) as a compact maximal spacelike submanifold with non-
negative curvature and it is not totally geodesic. Hence, the bound on the sec-
tional curvature is best possible.

THEOREM 3. Let M™ be an n-dimensional complete maximal spacelike sub-
manifold in the de Sitter space S3*%*c). If Ric(M™)=(n—2)c, then M™ is totally
geodesic submanifold in ST**(c) or M™ is a maximal spacelike Einstein submanifold
with Ric(M™)=(m—2)c and the parallel second fundamental form.

Remark 3. Let n=2k. The Clifford torus S*(2c)xS*(2c) of S™**!(c) can be
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embedded in S%*%*(c) as a compact spacelike maximal submanifold with Ric(M™)
=(n—2)c and the parallel second fundamental form. It is open for authors
whether there exist the other compact maximal spacelike submanifolds in S?*%(¢)
with Ric(M™)=(n—2)c.and the parallel second fundamental form except the
Clifford torus S*(2¢)X S*(2¢c).

Acknowledgement. Authors would like to express here their gratitude to
the referee for his valuable suggestions.

2. Preliminaries

Let M2*?(c) be an (n+ p)-dimensional connected indefinite space form of
constant curvature ¢ whose index is ¢(1=<¢<p) and M" an n-dimensional con-
nected Riemannian manifold immersed in M7*?(c). We choose a local frame

of orthonormal vector fields {e, ..., e,.p} adapted to the indefinite Riemannian
metric of M?*?(¢c) and the dual coframe f{w, ..., w;.p} in such a way that,
restricted to the submanifold M™, {e,, ..., e,} are tangent to M® Then the

connection forms {wsp} of M?*?(c) are characterized by the structure equations
n+p
dw,=— 321 EpW 4/ \Wp, ®spt+wp=0
(21) n+p n+p
dwsp=— 2 €cWacNOcp— 5 2 &c€pKapepwe/N\wp,
0=1 2 ¢'p=1

K apcp=c€46p(04p0pc—04c08p),

where ¢,=1 for 1SA<n+p—q, e4=—1 for n+p—q+1<A<n+p and K,pcp
denotes the components of indefinite Riemannian curvature tensor of M ?*?(c).

The canonic forms {w,} and connection forms {w.p} restricted to M™ are
also denoted by the same symbols. We then see

(2.2) ®,=0, a=n+1, ..., n+p,
and {e,, ..., e,} is a local frame of orthonormal vector fields adapted to the in-
duced Riemannian metric on M" and {w,, ..., w,} is its dual coframe on M?™",

It follows from (2.1), (2.2) and Cartan’s Lemma that
(2.3) waz=éh%wi’ [’l{‘;:—‘h%.

The second fundamental form I7 and the mean curvature vector h of M* are
defined by
n+p n

(2.4) = 3 leah;"jwiw,ea,

a=n+11,)=

and
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1 n+p n
5) h=s s (B e
respectively. The mean curvature H of M™ is defined by
1 ntp s n 2
@.7) H“‘n‘\/az%l(% h%)..
If H=0, we recall that M™ is maximal. Let
n+p n
S= 2 X2 (hy)?
a=n+11,)=1

denote the squared norm of the second fundamental form I of M® The con-
nection forms of M™ are characterized by the structure equations

(2.8) dwi:_ Jzz:lwi_,/\(()j, wi,-—}—wj,-:O,
7 1 =»
(2.9) d(l)i]:'_Elwik/\wkj——gkalR:jklwk/\wl

where R,;,, are the components of the curvature tensor of M", that is,

n+p-gq
(2.10) szkt=c(5i15jk —5“5;1)‘*‘ a§+1 (h$sh$—h$h)

n+p
—_ aha _haha
o, (hERS—hoAg).
Letting R,, and » denote the components of the Ricci curvature and the scalar
curvature of M™ respectively, we have from (2.10)

@.11) Rn=tn—Dcdut 3 (( £ hte)hsi— 5 hhss)
= e (B0 Zhis)

and

@12) ren(-Det 3 (Zhe) - 3 3 ko

- 3 (Bt 3B ey

a=n+p-q+1

respectively. We also have

n+p

1
(2.13) dwap=— Tz%}ﬂ &1War NWrg— 0}
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(214) Ra,Bt] - 2 (htlh lj_hjlhl%t)-

By taking the exterior differentiation of (2.3) and defining A%, by

(3

(0 n n+p
(2.15) Z hinor=dhiy— 2 hiwr— 2 hjwsi— 3 phfwa,

we get the Codazzi equation
(2.16) h$je=h;=hfw.

We take the exterior differentiation of (2.15) and define h%y, by

(2- 17) z=21 hfjkzwt’:dhfj/e— lgl h?j/@zi—‘ é h%'zw)t;

n nt+p
— l=21 hfjla)”,—‘ﬁ;ﬂ Sﬁh’gjk(l)lga .
Hence, the Ricci formula for the second fundamental form is given by
n n n+p
(2.18)  hfu—hSu=— mz_}1 h$iRmiri— El L ﬁ§+1 eghBiRpani.
The Laplacian Ahg, of hg is defined by
n
Ahff]: El h?jkk.

From the Codazzi equation (2.16) and the Ricci formula (2.18) we get, for the
maximal submanifold M™ in M2?*?(c),

n n n n
(2-19) Ah = ; fex = g k §=lhngm«.jk— . §=lh7niRmkjh
n+p
- Elﬁgﬂeﬂh sz,BaJk
n n n ntp
=— k)gzl himRmje— k;ﬂ]ﬂ hiRmrin— El ﬁ§+15ﬂh§eiRﬁajk-

Thus we get

LEMMA. For the squared norm S of the second fundamental form of the
maximal submanifold M™ in M2?*?(c), we have

1 ntp n 2y ntp  n

7AS—— 2 2 ( G+ 2 2 hHARY
a=n+11,7. a=n+11,7=1
nt+p n n+p n+

P
= = (hf/k)g— P py hgjhngmtjk

a=n+11.7, k=1 a=n+11.7. k- m=1
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n+p i heha R n+p n P
a ha a
a§+11,1,k,m=1 ylitmittmkik a'ﬁ§n+11.;.2k=1 A

3. Proofs of theorems

We define S, and S, by

nrp-q n+

Sii= 3 él (hgf)z’ Sy = Ep é (htq]')2»

a=n+lz, a=n+p-q+lt,3=1

respectively. Then

S:Sl+52-
Proof of Theorem 1. Since
n+p n n+p n
2 hfjhganjh:-C DI (hfj)z
a=n+11,2,k,1=1 a=n+11,3=1

n+p n
+ = 2 zle,ehi‘jhfz(h'?kh%—h%h%).

a,B=n+11.7, k1

n+p n n+p n n+p 7
> hGhERupe=c X X (hy)t—nc B 2 (h)?
a=n+11.7.k,1=1 a=n+11,7=1 a=n+11, =1
n+p n
+ = > sﬁhfjh?i(hekh%j—h‘%jh%k)
a, f=n+11,7.k l=1
and
SH eshphiR b hah A (hihdy— hish
& a R- .= — 3 «he (h$ — N & ,
a‘ﬁ=n+1t,1'2k=1 Bllrjlt kil Bajk P A S Bllaj lu( 12200 %) 12 lk)

we conclud, by using Lemma in the section 2,

1 n+p n n+p n
§AS= PN (h)*+ne 35 2 (h)?
a=n+11.7, k=1 a=n+117, k l=1
n+p

— =3 eshthihihl—hih)

a, B=n+12.7.k 1=

n+p n
- S ephyhg(hBihfy—hE;hE)

a, B=n+117, k. I=1

n+p n
+. 2 > eghfhhu(hishf—hihGy)

a, f=n+11,7, k. l=1

n+p n n+p n
= 3 (hg)*+ne = > (h§)?
a=n+11,7, k=1 a=n+11,3, k. 1=1
n+p

— 'SV epltrace(H Hp)]*— :;:ﬂsﬁN(HaHﬁ—HﬁHa)

a, f=n+1
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where H,=(h%). Here we denote N(A)=trace(A*A) for the nXn-matrix A=
(a.;) and the transposed matrix A* of A. Then we know N(H,Hz—HpH,)=0
for any a and 8. Moreover, we put S,p=>7 ,=1h&hé,, then the (p X p)-matrix
(Sep) is symmetric. So we can choose {en.i, ..., @a.p} such that (S.p) is
diagonal.

Now we divide the proof of Theorem 1 into two cases.

Case 1. p—¢=1. From (3.1), we have

1 n+p n ntp n n+p
(82 5AS= 3 3 (kfwitne 33 e+ 3 NH.Hz—HgHa)
a=n+11,2, k=1 a=n+11, =1 a, B=n+2

n+
+ ﬂ2p+2[trace(HaH,g)]Z——N(Hn“)z

a=n+

n+p n n+p
zne Y 3 (h)—NHao)+ 3 NCH.)

>ncS—S2.

From the assumptions in Theorem 1 and the Stokes formula, we get S=0 or
S=nc. If S=0, then M™ is totally geodesic. If S=n¢, from the above (3.2),
we know S,=0on M?", ie., h,=0 on M" for a=n+2, ..., n+p. Hence M™
lies in the totally geodesic spacelike submanifold S™**(c) of S7**!(¢) (see Theorem
1 in [6]). Thus M™ becomes a compact minimal hypersurface in S®*!(¢) such
that the squared norm S of the second fundamental form is equal to n¢. From
the result due to Chern-do Carmo and Kobayashi [2], we know that M™ is
isometric to the Clifford torus. We complete the proof of Theorem 1 in this
case.
Case 2. p—q¢>1. In this case, we have
n+p n

Fas="5 3 rine 3 5 Gy

a=n+11,2. k= a=n+1l1 3=1

+ S NHHz—HeHo)+

a, B=n+p-q+1

SV [trace(H,Hp)]*
B=n+p-g+1

n+p-q n+p-q
- ﬁg-" HN(HaHﬂ—'HﬂHa)_ ﬁ§n+1 [trace(HaHp)]Z.

From a Lemma due to Li-Li in [4], we get

ntp-q ntp-q 3[rte-a =n 2
- /E,nﬂ N(H,Hs—HgH,)— . ,Enﬂ [trace(H Hg)1*= — —2—[a=2n:+1 1?22,1 (hg’j)z] .

Hence, we get

1 3 n+p
3.3) 7Asg(ncS——z—SZ)Jr S N(H,)".

a=n+p-q+1

From the Stokes formula, the assumptions in Theorem 1 and (3.3), we get S=
(2/3)nc or S=0. If S=0, then M™ is totally geodesic. If S=(2/3)nc, we know



SPACELIKE SUBMANIFOLDS 215

he,=0 on M" for a=n+p—q, ..., n+p. Hence M™" lies in the totally geodesic
spacelike submanifold S**?-%¢) of S»*?(c) (see Theorem 1 in [6]). Thus M™"
becomes a compact minimal submanifold in S®*?-%(¢) such that the squared norm
S of the second fundamental form is equal to (2/3)nc. From the result due to
Li-Li [4], we know that n=p—¢=2 and M " is isometric to a Veronese surface.
Theorem 1 holds in this case. We complete the proof of Theorem 1.

PROPOSITION. Let M™ be an n-dimensional compact maximal spacelike sub-
manifold in the de Sitter space SF**'(c). It the sectional curvature K of M™ is
nonnegative, then M™ is totally geodesic or M™ is a compact maximal spacelike
submanifold with parallel second fundamental form.

Proof of Proposition. For any fixed @, we can choose e, ..., e, such that
h§=2%0;;. 'Then we have

Il
|
R
>
R
>0

i
=
3
S
a
[
=M=
—
>
~R
p—_
<
=
o
=
[

n n
2 (A5—A°Ko=nK, 33 (hi)®,
k=1 1, k=1

where K, denotes the infimum of the sectional curvature of M™ Since the
both sides of the above inequality do not depend on the choice of the ortho-
normal frame {e,, ..., ¢,}, we have

n+q+1 n n+g+l n
(3.4) — 2 2 hGhaRuu— X 3D hHhfiRixe
a=n+l1 7,k l=1 a=n+tl1,72, kl=1
n+q+l g
= nK, 3 3 (hyyznk.sS.
a=n+11, =1
From Lemma and (3.4), we get
]_ n+gq+1 n n+q+1 n
5AS= 3 3 (hw)i— X 2 hGhEn R
2 a=n+l1,7, k=1 a=n+113, k- m=1
n+q+l n n+q+l n
- 2 > hGHhEiRpe— 2 > eshiihhiRpaje
a=n+11,72, k m=1 a, f=n+11,7, k=1
n+q+1 n n+q+1 n
=3 2 (= 2 2 hfhinRunga
a=n+l1, 2, k=1 a=n+11,), k, m=1
n+q+1 n 1 ntet+:
- 2 2 hfjhgtiRmkjk_— 2 sﬁN(HaHﬁ—HﬂHa)
a=n+11,J, kb, m=1 2 a, f=n+1
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1

=ZnK,S+ 2

nt+q+l
o 2y NCHH—H5Ho)
=nK,S.

Since the sectional curvature of M™ is nonnegative, we have K,=0. Hence,
from the Stokes formula, we obtain S=0, i.e., M" is totally geodesic or S is
constant and A2%,=0. We complete the proof of Proposition.

Proof of Theorem 2. From Proposition and its proof, it is obvious that
Theorem 2 holds.

Proof of Theorem 3. From the assumptions of Theorem 3 and Myers
Theorem, we know that M™ is compact. According to (3.1), we get

Fas= 5 % rtne 53 Gy
- E‘ZI & N(H, Hy— HyHo)— ﬁ:l ¢ s[trace(H, Hp)]*
zne 3 33 (hi)'—N(Ha o)+ N o)
Hence we have
(3.5) %ASg(nc—ersg)s

where S,=N(H,,,), S;=N(H,..) and S=S,+S,. By using (2.11) and the as-
sumption Ric(M™)=(n—2)c in Theorem 3, we have

c— 3 A1+ 3 (h1r 0.
Thus
(3.6) nc—S;+S,20.
From (3.5) and (3.6), we conclude

3 (h*=0

a=n+l1,2 k=1

and S=0 or nc—S,4+S;=0 and S is constant. If S=0, then M" is totally
geodesic. If S0, then all of the above inequalities become equalities. Hence,
the Ricci curvature is equal to (n—2)c. We complete the proof of Theorem 3.
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