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THE ZERO, POLE AND ORDER OF MEROMORPHIC
SOLUTIONS OF DIFFERENTIAL EQUATIONS
WITH MEROMORPHIC COEFFICIENTS*

ZONG-XUAN CHEN

Abstract

In this paper, we investigate the complex oscillation of non-homogeneous
linear differential equations with meromorphic coefficients under substracting
the condition that all solutions of differential equation are meromorphic
functions.

1. Introduction and results
Consider non-homogeneous linear differential equations of the form
(1.1) fOFb  fE O+ - +bf=Hz) (k=1)

where b,_, (j=1, ---, k) are rational functions, H(z) is a meromorphic function.
Z.-X. Chen and S.-A. Gao proved in [3].

THEOREM A. Let b,_, (=1, ---, k) be rational functions having a pole at
oo of order ny,_,=20, k=1, H(z) be a meromorphic function, o(H)=p satisfying

(1.2) 14maxn,_;/j<B<co.
1595k

If all solutions f of the differential equation (1.1) are meromorphic functions,
then

(2) o(f)=p. ) )

(b) A(1/H=AQA/H), 21/ )=iAA/H). If AH)>A1/H), then A(f)=A(H).

(¢) If B>max{A(H), A1/H)}, then all solutions of (1.1) satisfy A(f)=A(f)=
a(f)=p, except at most a possible one. The possible exceptional one f, satisfies

Af0)<B
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THEOREM B. Let by, (=1, -+, k) be rational functions having a pole at
oo of order n,_,=0, k=1, H(z)#0 be a meromorphic function satisfying o(H)=
BE14-maxis;sk ne—;/J. If all solutions f of (1.1) are meromorphic functions,
then

(@) B=o(f)S1+maXis,se Ne-ji/J.

(b) A1/f)=i1/H), i(_l/f)———i(l/H). If A(H)>A(1/H) then A(f)=A(H).

(©) If o(f)>B, then A(f)=4f)=a(f).

In this paper, we use the same notations as in [1], i.e. A(f) and 2(f) to
denote respectively the exponents of convergence of the zero-sequence and the
sequence of distinct zeros of f(z), A(L/f) and A(1/f) to denote respectively the
exponents of convergence of the pole-sequence and the sequence of distinct
poles of a meromorphic function f(z), o(f) to denote the order of growth of
f(z). And we use the standard notations of the Nevanlinna theory (e.g. see [5]).

By a fundamental theory of the differential equation with complex -coeffi-
cients, we know that all solutions of linear differential equation with entire
coefficients are entire functions. But a solution of linear differential equation
with meromorphic coefficients is not always a meromorphic function. For
example, f,=exp{l/z} +e® and f,=e® are all solutions of the equation

f”+(23+22)f/+(z+1—%_%)f:(23+22+z+2—~21;—;23—)9’

but f, is not a meromorphic function. Therefore in Theorems A and B, the
condition that all solutions of (1.1) are meromorphic functions is very rigorous.
In this paper, we will substract this condition in Theorems A and B to generalize
Theorems A and B.

We will prove the following theorems.

THEOREM 1. Suppose that b._, (j=1, -, k) are rational functions having a
pole at oo of order n,_,=0, k=1, H(z) is a meromorphic function, o(H)=}
satisfying (1.2). If (1.1) has a meromorphic solution f, then

@ o(H)=. o

(b) A/ H)=A1/H), 2Q/)=aQ/H). If A(H)>A1/H), then Af)zA(H).

(¢) If p>max{A(H), A(1/H)}, then all meromorphic solutions of (1.1) satisfy
A(H)=Af)=a(f)=P, except at most one f, satisfying A(f,)<p.

THEOREM 2. Suppose that b,_, (=1, ---, k) are rational functions having a
pole at oo of order n,_,=0, k=1, H(z)%0 is a meromorphic function satisfying
o(H)=p<14+maxs;se ne-j/7. If (1.1) has a meromorphic solution f, then

(@) B=o(f)S14+maxis;se ne-j/Jj.

(b) A1/H)=a1/H), 21/ )=a1/H). If AH)>A1/H), then A(f)=A(H).

©) If a(f)>B, then A(f)=Af)=a(f).

Example having an exceptional solution in Theorem 1(c).
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The equation

l1+sin’z | (dz+l)sinz | 42° )ezz

f”+f’—2(z+l)f:( cos’z | cos’z cos z

satisfies the additional hypothesis of Theorem 1 (¢). And the equation has
exceptional solution f,=(1/cos z)e**, where a(fo)=2, A(L/fo)=1, A(fo)=0<a(f,).

2. Lemmas and preliminaries

THEOREM C (Borel, see Theorem 5.13 in [7] or 2.6.18. Lemma in [2, P. 21]).
Suppose that Q(z) 1s canonical product formed with {z,; n=1, 2, -} (z,#0) and
AQ)y=p< 0. Set On={z:|2—2.|<|2a|7%}. (@(>P) is a constant) then for any
given >0,

|Q(2)| =exp{—|z|#*¢}
holds for z&\ J5<1 On.

THEOREM D (See [6, P. 197 or 2.3.6*% in [2, P. 13]). Suppose that w(z) is a
finite order entire function, p(r) is the maximum term of the power series of
w(z), then

lrig}° log M(r, w)/log pu(r)=1.

LEMMA 1. Suppose that H(z) is a meromorphic function, ¢(H)=[<oo, then
for any given >0, there is a set E,C(1, ) that has finite linear measure and
finite logarithmic measure, such that

| H(z)| <exp{rf*e}
holds for |z|=r&[0, 1]UE,, r—co.

Proof. 1f H has only finitely many poles, then Lemma 1 holds obviously.
Now assume that H(z) has infinitely many poles. Set H(z)=h(z)/[z*1-Q(z)],
where %, is nonnegative integer, h(z) is an entire function, Q(z) is the canonical
product formed with the nonzero poles {z,: j=I, 2, ---; |z;| =7,, 0<r<r,< -}
of H(z), hence a(h)<o(H)=p8, o¢(Q)=AQ)<p.

For any given ¢>0, set O,={z: |z—z;|<r;y¥F+»} (=1, 2, -} and O=
U1 0,. Set

Ey=\) (ry—r7 +eim, pyry 8rem),
J=1
Since
(2.1) %11/7’9+512=d<oo ,
=
we know that linear measure of E,, mE,=2d<co. For |z|=r¢&E,\U[0, 1], we

have from Theorem C
|Q(2)| Zexp{—rf+er2}.
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Hence
| H(z)| <exp{2rf*</?} /rt1<exp{rf*e}

holds for |z|=re& E,\J[0, 1], r—oco.
Now we prove the logarithmic measure of E,, ImE,;<c. From
Im E,= 3} [log(ry+7; /%)~ log(r,—r; #+/9)]
=

o 2,,J—<ﬂ+e/2)
= J§1 10g<1+‘r' j_r]_(lg:;m‘) ’

and for sufficiently large 7,

2ry Brer»
log(1+ ri—ry Brem )

J

—(B+¢/2
2ry Bred

IA

<2p7Breln
7]._7]—(/9*'5/2) =277 ’

we have Im E;<co by (2.1).

LEMMA 2. Suppose that g(z) is a transcendental entire function, 6(g)=a< oo,
then there is a set E,C(l, o) that has infinite logarithmic measure such that

lim log l(;g M@, &) _ lim 10;%' vg(r) —p
reE. ogr reE, 087

where v, (r) denotes the centralindex of g(z).

Proof. By g(g)=a, there exists {r,} (r,— o), such that

2.2) lim 08 log M(rs, g) _
P log 7,

Setting E,C(1, 4-0), E, has the following properties: (a) If the sequence {r,}
satisfies (2.2), then {r,}CE,. (b) If a sequence {r,}CE, (r,— ), then (2.2)
holds for {r,}. Now we affirm that logarithmic measure of E,, Im E,;=c. In
fact, if lm E,=0< o, then from the definition of E,, we have
(2.3) m IOg 1Og M(T’, g)
700 log r
rE(1,0)—Ey
Now for a given {r;} C(l, o), r,— oo, there exists a point & [ry, (6+1)r,1—E,.
From

=a,<a.

log log M(r7, g) _ log log M(r;, g) _ log log M(r7, £)_

log 7 = log[(6+Dr,] = logrn+log(d+1)’
we have
s _ log log M(/rn, 8) _ i log log M(r;, )
Fosoo log 77, o 10g 77, +l0g(041)

—_ "
< i log log M(”rn;,_g)
o0 log 7
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— log |
< Tm _P_g_l;g_ML@_
req, toy-Eg ogr
Since {r,} is arbitrary, we have a<a,. Thisis a contradiction, hence Im E,=.
By o(g)=a< > and Theorem D, we have

m log M(r, g)~1

2.4 =
@.4) 7o log p(r) ’

where p(r) is the maximum term of the power series of g(z), u(r)=|a, o |75
By (2.4), for sufficiently large 7,

log M(r, g)<2log u(r)<2log*|a,,|+2v,(r)-logr.

From
log log M(r, g) < log v,(r) | log”log™| a,,|+2log 2+log log r
log = logr log ’
we have
a= lim °8 lc}gM(r, 2) lim log lolgM(r, i)
reE, ogr reE, 08T
< lim 108%:(") _ o Mza,
r2g, logr o zg=, logr
i.e.
lim E~———lg yg(?’) =
2p, 087

LEMMA 3. Suppose that g(z) is an entirve function with o(g)=oo, then there
is a set E,C(1, o) that has infinite logarithmic measure such that

(2.5) lim EIEM___OO
rzz, logr

Proof. Using the same proof as in the upper half part of Lemma 2, we
can prove Lemma 3.

LEMMA 4 (see [4]). Suppose that u(z) is a meromorphic function with a(u)
=B<o0, e>0 is a given constant. Then there exists a set E,C(l, o) that has
finite logarithmic measure, such that
| u9(z)

u(z)

hold for all z satisfying |z|=r&[0, 1JUE,.

(2.6) lér"ﬁ‘““ =1, -, k)

LEMMA 5. Suppose that u(z) is a meromorphic function with o(u)=[<co,
(m is integer), ¢>0 is a gwen constant. Then there exists a set E3C(1, o) that
has finite logarithmic measure, such that for all z satisfying |z|=r&[0, 1]UE,,
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we have

2.7) [u(z)-(u=(z))™ | SpmB-1+,

Proof. First we use the mathematical induction to prove

(2.8) (—‘) —_(11 o ag,. ]m)( )11 ( (m)>l1n

where a,..,,» iS a constant, ji, -+, jn satisfy 17,42 jo+ - +m-jp=m. For
m=1, (2.8) holds obviously. For m, assume that (2.8) holds. So, we have for
m+1,

(%>(m+1>:[(%)‘m’:l'z[%mgm)aul-u;m(%)h'.'(%ﬁ)‘)m],

u' u'\1 yu™N\m 1
=— 2 ag )( ) ( ) +— 2 agegm
u g U™\ g u U gpamy L
ol e R I e A )
. ‘
d=1\ U U I Uu u
!

L u® N U werH s, w ™ \om
—i( ) CO ) ()

1 u' N1+t U™ Nim 1
—— 2 a(,]...]m)(7) ( ) +— 2 a<j1...,m)

U 0yim) u U @yamd

LBy
Ay e (Y

where the indexs satisfy 1:-(J;+1)+2-73+ - +m-jp=m+1, or 1-7,+ - 4
d-(Ja—D+(d+1D)-Ggp+ D)+ -+ +m-jo=m-+1. Therefore (2.8) holds.
Now by (2.8) and Lemma 4, it is easy to see that Lemma 5 holds.

LEMMA 6. Suppose that b, -+, br_;, HEO are meromorphic functions, a(H)
=pB< oo, that there are a set EsC (1, +oo) that has finite logarithmic measure
and a constant number C,>0, such that for |z|=r&[0, 1J\UEs,

(2.9) lbj)| <7t (j=0, -, k—1)
hold. If an entive function g(z) solves the equation
(2.10) g® 4-bp1g* V4 o +bg=H,
then a(g)<<co.
Proof. Assume that o(g)=co, p(r)denotes the maximum term of the power

series of g(z), v,(7) denotes the centralindex of g(z). By Lemma 3, we know
that there is a set E,C (1, «) that has infinite logarithmic measure such that
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@2.11) lim 208 2:(/2) _ |
o0 log(r/2)
r€Ey

Since v,(r) is a step function in », we can assume that ¢, (=0, 1, ---, 0=t,<t,
<t,< ---) are discontinuous points of v,(r). AstE(t), t,,,), we have p@t)=] @y, |
-1, where centralindex v, (f)=m is fixed constant. Hence

pO=mlanlt™ =y v, )/t

holds for te(t,, t,,,). Since p(f) is a continuous function, we have for r>2

log s(r)—log (1)= ['(t)/ (01t

=[vaoma>{ waoiezy,er2 102,
By Cauchy’s inequality, it is easy to know that u(r)<M(r, g). So,
2.12) v,(r/2)-log 2<log M(r, g)—log p(1).
For a given large a such that
(2.13) a>max{C,, B} +k&,
by (2.11), (2.12), we obtain
(2.14) ve(NZv,(r/2)2(r/2)*=Car”,
(2.15) M(r, g)=C;-exp{C,r°}
for r€E,, r—, where C,, C,;, C, are positive constants.

From the Wiman-Valiron theory (see [6], (8], (9]) we have basic formuias

216) L8 (2O 1oy =1, B

where |zl=7, |g(2)|=M(r, g), r&£E, SEédTr<°°'

By Lemma 1, we have
2.17) | H(z)| <exp{rf+/2}

for |2|=re[l, +c0)—E,, SE %<oo.
1

Now, we take sufficiently large |z|=r&E,—(E,\UE,UE,), |g(2)|=M(, g),
fogarithmic measure Im{Z,— (£, (UEUE,)]=co. (2.10) and (2.16) give
H(z)

(2P ooy (22) T Wkot+ - 0=
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”e(r) H(z) br_s
(2.18) (I1+o(1)= S 2 (1+0(1))
bk 2 bo
e )(1+0(l)) _—yi‘l(r)

By (2.13)-(2.15), (2.17), we have

|H(z)| _ |H(2)| B+ ay _,
(2.19) 2@~ M, g)g——exp{r am—Cyre} -0,
by(2) =0 e h—
(2.20) ayry| 0 =0 kD)

hold for |z|=reE,—(E\UE,UE,), r—oco. And (2.14), (2.19) and (2.20) give

l H(Z) bi_1, blz 2 b
g@) Vi) v (7) Vi)

:0( b 1)_0(7 1 k+1)

2.21)

1+0(1))— 1+o(1)—

On the other hand, by (2.14), we have

vg(r)

(2.22) (o) | = Cora™* >r%

for r€F, r—co. And (2.21) contradicts (2.22) by (2.18). Therefore g(g)<co.

LEMMA 7. Suppose that b.., (=1, ---, k) are rational functions having a
pole at oo of order n,_,=0, k=0, H(z)%£0 is a meromorphic function with o(H)
=p. If (1.1) has a meromorphic solution f, then

(@) If 1+maxsjse nx-;/7]<B<oo, then a(f)=8.

(b) If B=14+maX;s,seney/j, then B<a(f)<14+maXis,se ne-j/7.

Proof. We have a(f)=p from (1.1). By (1.1) and fact that b,_, (=1, ---, k)
have only finitely many poles, we know that if |z| (<o) is sufficiently large,
then either f and H are both analytic at z, or f has a pole at z of order m,
if and only if H has a pole at z of order m;+%. So,

(2.23) 21/f)=21/H).

From
n(r, )=n(r, H)+0Q1) and n(r, H)<(k+Ln(r, /)+0Q),

it follows that

(2.24) A1/ )=A1/H).

Set f(2)=g(z)/(z™2-u(z))=g(z)/u,(z), where m, is a nonnegative integer, g(z)
is an entire function, u(z) is a canonical product (or polynomial) formed with
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the nonzero poles {z,: /=1, 2, -~} (|zj|=7r,, 0<r<r,< ) of f, uy(2)=z™2u(z),
then A(u)=0(u,)=41/f)=21/H)<p.

Now we suppose that o¢(f)=a>B. By f=g/u, and o(u,)<pB, we have
o(g)=0(f)=a. For any given ¢ (0<2¢<a—p), by Lemma 1, it follows that
there is a set E,C(l, +) that has finite logarithmic measure, such that

(2.25) 11/u(2)| <exp {rf*¢}

holds for |z|=r¢[0, 1]UE,, r—oc. From (2.24), (2.25) and the fact that the
poles of f can only occur at poles of H except at most finitely many poles, it
follows that

(2.26) | H(z)| <exp{rf+s}
holds for |z|=r&[0, 1]UE,, r—oo. By f(z)=g(z)/u.(z), we have for n=1, ---, k

o SR ) B o () E ()

f g 1

where Cj (j=1, ---, n) are the usual notation for the binomial coefficients. (2.27)
and (1.1) give

(k) (k-1) ' H.
(2.28) g d et 4 B, =

g g g g
where

1\W 1 \U-D 1\
(2.29) dioy=Ciru(,-) +bu Gzt )"+ o Fbessr Chopn(,) +busy

(]:ly Tty k)

By o(u;)<p and Lemma 6, there is a set E,C(1, o) that has finite logarithmic
measure, such that for |z|=r&[0, 1JUE,, for j=1, ---, k, we have
(2.30) luy(2)(ur(2)) @ | <p? Bt

(a) Suppose l4+maxXis,se n:-;/J<f<co. Now we prove o(f)=a>p fails.
From (2.30) and

(2.31) ne-,<j(B—1) =1, -, k),

we have for |z|=r¢&[0, 1]UE,;, r—oo.

(2.32)  |ba_g(@ui()(ur'(z)y 1| Symr-gt 0O B0 B (g=], . ).
(2.29) and (2.32) give for |z|=r&[0, 1JUE;, r—co

(2.33) ldx_s(2)|=0@7 E1)  (j=1, -+, k).

By Lemma 6 and (2.28), (2.33), we have ¢(g)=a<c. From Lemma 2 and
0(g)<oo, there is a set E,C(1, o) that has infinite logarithmic measure such
that
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(2.34) lim 128 108 M, 9 _ yim 1820 _,
reE, ogr res, 087

From the Wiman-Valiron theory, there is a set E,C(1, ) that has finite
logarithmic measure, such that for |z|=r¢&E,, |g(2)|=M(r, g), (2.16) holds.
By (2.34), we have

(2.35) M(r, g)=exp{r*=¢}

for |z|=reE,—(E,JVE,UE,U[0, 1]) and sufficiently large r. From (2.26),
(2.35) and |u,(2)| <exp{rf*e}(Jz| =r—c0), and f+e<a—e, we get

uy(2)-H(z) | _ | ui(2)- H(2) Bre_a-sy _,
(2.36) ‘ 5 _} P ‘gexp{Zr ra=ep 0
for |z|=reE,—(E,VE,JE[0, 11), |g(2)|=M(r, g), r—co. By (2.34),
(2.37) v (r)=rerom

holds for |z|=reE,—(E,\VE,JE,J[0, 1]), r—oo. Since the logarithmic meas-
ure of E,—(E,VE,JE,J[0, 1]), Im[E,—(E,\UE;\UE,U[0, 1])]=o0, and by (2.16),
(2.28), (2.33), (2.36), we obtain

(2.38) (1‘-’;@)'%1+o(1>>+0<rﬂ-“s>(ig—§’—))""<l+o<1>>+ S

OG- 31206801 1 o(1)) 4 04 #=19)=0(1)

for |z|=reE;—(E,\VE,VE,J[0, 1), |gz)|=M(r, g), r—o. By (2.37), (2.38)
and 0<2e<a—B, for |z|=reE,—(E,\VE,JVE,J[0, 1]), |g(2)|=M(r, g), r— o,
it is easy to see that there is only one term (v,(#)/2)*(1+0(1)) with the degree
k(a—1) being the highest one among all terms of (2.38). This is impossible.
Therefore, a(f)=p.

(b) Suppose that S<1-+maxXisjse nr-;/7. Now we prove 14+maXs,<; nr_;/J
<o(f)=a fails. We set 14+maxX,sjs nx_;/J=m<a, then

(2.39) ne,<jm—1) (=1, -, k) and B=m.
By B<m and (2.30), (2.39) we have for |z|=r¢& E;U[0, 1], r—c>

(2.40) |be-o(2)u(2)(uT'(2)) 00 | Spr-gr om0 (Bite
érq(m-lww—q)(ﬁ-“e)
<o (=1, -, ).

(2.29) and (2.40) give for |z|=r&E, [0, 1], r—oo

(2.41) ldi ()| =0 "710)  (j=1, -, k).
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By Lemma 6 and (2.28), (2.41), we have o(f)=a<c. Using the same reasoning
as in (a), it is easy to know that (2.34)-(2.37) hold. Since Im[E,—(E,JE;UE,
U[0, 1])]=c and (2.16), (2.28), (2.36), (2.41), we have

2.42) (LY o0 o2 o+ - +

O(r"’“’“"'”e’——v"z(r)(1+o(l))+0(r”"""”’)——‘0(1)

for |z|=reE,—(E,\\VE,UE,J[0, 1]), |g(z)|=M(r, g), r—co. From (2.37), (2.42)
and a>m, for |z|=reE,—(E,JE,UE,J[0, 1]), |g(@)|=M(r, g), r—oo, it is
easy to see that there is only one term (v,(r)/z)*(14o0(1)) with the degree
k(a—1) being the highest one among all terms of (2.42). This is impossible.
Therefore, B<a(f)<m.

LEMMA 8. Suppose that B is a positive integer and f>1, B,_, (=1, .-+, k)
are rational functions having a pole at o of order n,_,=j(B—1), U%£0 is a
meromorphic function with o(U)<B. If the equation

(2-43) y(k)+Bk_1y(k—l)+ e +Boy:U

has a meromorphic solution y, then a(y)=J except at most one possible exceptional
meromorphic solution v, with a(y,)<p.

If y=£0 is a meromorphic solution of the equation
(2.44) YE 4By y* D4 . +Biy=0

that is the corresponding homogeneous differential equation of (2.43), the a(y)=4.

Proof. Set o(y)=a, then a=c(U)=d by (2.43). Now assume that o(y)=
a>d. Set y(z)=g(z)/u,(z) where g(z), u,(z) are functions defined in the same
way as in Lemma 7. Using the same reasoning as in Lemma 7, we have
a(u,)<d and

(2.45) lu,(2)| Lexp{r?*e} (|z|=r— o).

And there is a set E,C(l, ) has finite logarithmic measure such that (2.16)
holds for |z|=r&[0, 11UE,, |g(z)|=M(r, g). For any given ¢ (0<2e<
min{a—d, B—d}), there is a set E,C(l, +oo) that has finite logarithmic
measure such that for |z|=r&E,U[0, 1], r—

(2.46) |U(z)| <exp{rt*s.

By Lemma 5 and the hypotheses, there is a set E,C(1, +o0) that has finite
logarithmic measure such that for |z|=r¢&[0, 1]UE,,

(2.47) (@) (ur'(@)? | 7@ o (=1, -, k).
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Substituting y=g/u, into (2.43), we get

(k-1)

(k)
(2.48) g D iD=
g g

U’ul
g

where
(2.49) Dk—j"—_Ciul(ul_l)“’+Bk—lc‘£:{ul(ul_l)(]‘l)+ +Bk_,Hcllz_ﬂlu‘(ul—l)’-f—Bk_,
(=1, =, k).

Since (2.47), (2.49) and B, _;(2)=Cy_;-22®b(1+0()) (Cx_,#0 is constant) (1=
1, -, k), and f>d+e, we have

(2.50) Dy _,=C_;Z*(1+0)) (=1, -, k).

for |z|=r&E;Ul0, 1], r—oo.

By (2.48), (2.50) and Lemma 6, we know that g(g)=a<c. By Lemma 2,
there is a set E,C(l, +oo) that has infinite logarithmic measure, such that
(2.34) holds. Using the same reasoning as in Lemma 7, we have

‘ ui(2)-U(z) l:l ui(2)-U(z)
g@ || M, g)

for |z|=reE,—([0, 1JUE,\VE,UE,), |g(2)|=M(r, g), r—co. By (2.48), (2.50),
(2.51), and (2.16), we get

@2.51) { <exp {27t —ri=s) 0,

2.52) (Kﬂz(ﬁ)k<1+o<1))+ck_lzﬂ-l(igg?)k"<1+o(1))+ S

Ciz =0 @0 N1y o(1))4 ot D1 +o(1)=0(1)

for |z|=rek,—([0, L]JUE\UE,UE,), |g@|=M({, g), r—w. By (2.34), we
have

(2.53) y(r)y=retom

for |z|=reE,— ([0, 1JUE,UE,JE),), |g@)|=M(, g), r—. By (2.53) and ¢
arbitrarily small, we see that the degrees of all terms of the left of (2.52) are
respectively

k(a—1), (k—j)a—D)+j(B—1) (=1, -, k).

From the Wiman-Valiron theory, we get a=g, i.e. d(y)=0(g)=5.

Using the same manner as above, we can prove that if y(z)z0 is a mero-
morphic solution of (2.44), then a(y)=p.

If y, and y, (y.¥%y,) are both meromorphic solutions of (2.43) with ¢(y;)<p
(=0, 1), then a(y,—y,)<B. But y,—y,%0 is a meromorphic solution of (2.44),
we have ¢(y,—y,)=p by the proof given above. Therefore, (2.43) has at most
one exceptional meromorphic solution y, with ¢(y,)<p.
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LEMMA 9. Suppose that b,_, (j=1, -, k) are rational functions having a
pole at o of order n,_,=20, k=1, H(z) 1s a meromorphic function, o(H)=p<co.
If f is a meromorphic solution of (1.1), then

(2.54) max {A(f), A1/ )} Zmax {2(H), A1/H)}.

Proof. Set f=g/u,, where g and u, are functions defined in the same way
as in Lemma 7. Using the same method as in the proof of Lemma 7, we know
that (2.28), (2.33) hold. By Lemma 6, we have g(g)<co, hence o(f)< .

Using the same reasoning as in Lemma 7 of [3] we can prove (2.54) holds.

LEMMA 10 (see [3]). Suppose that b,_, (=1, ---, k) are rational functions,
H=£0 is a meromorphic function with o(H)<co. If f is a meromorphic solution
of (1.1) such that o(H)<a(f)<oo, then A(f)=A(f)=a(f).

3. Proof of Theorem 1

(a) By Lemma 7, we have o(f)=5.

(b) By (2.23) and (2.24) in proof of Lemma 7, we have 2(1/f)=2(1/H),
A1/ H)=A1/H). 1t AH)>A(1/H), we have A(f)=A(H) by Lemma 9.

(¢) If B>max{A(H), A1/H)}, then set H=Ue?, where U=z*(v,/v,) (s is an
integer), v, and v, are canonical products (or polynomials) formed respectively
with the nonzero zeros and nonzero poles of H, o(U)=max {A(H), A(1/H)} <B,
p is a polynomial with deg p=g.

Now set f=ge?, then f(z) and g(z) have the same zeros and poles. From

(3.1) fm={gmtmp g+ 3 Chlp') +Hyo(p)g " fe?
=
where m=2, 3, -, k, H,_((p’) are differential polynomials in p’ and its deriva-

tives of total degree j—1 with constant coefficients. It is easy to see that the
derivatives of H,_.(p’) as to z are of the same form H,_,(p’). Substituting
f=ge?, H=Ue? into (1.1), we have by (3.1)

(3.2) g® 4B, g% V4 - +Bog=U
where
J
B}z—J:bk—j+(k~]+l)bk—]+1p,+ n;gbk—]+nCl’zl—;+n(]>’)n+Hn—l(pl)

(3.3) (J=2, -+, k, bpy=1)
By i=by1+kp’

Since B>1-+maXis,s nk-;/7, the degree j(8—1) of the term b CUp"Y=Cip'y
(n=7) is the highest one in the first equality of (3.3). Hence B:_, (j=2, -+, k)
must have a pole at oo of order j(f—1). By degp’'=p—1>n,_,, the rational
function B,_, has a pole at c of order 1-(8—1). By Lemma 8, we see that all
meromorphic solutions of (3.2) satisfy o(g)=f except at most one possible
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exceptional meromorphic solution g, with a(go)<B. If a(g,)<B, then A(g,)<B.
If o(g)=p, by ¢(U)<p and Lemma 10, we have 2(g)=4(g)=0(g)=p. Therefore,
all meromorphic solutions f=ge? of (1.1) satisfy 2(f)=A(f)=0(f)=p except at
most one possible one f,=g,e? satisfying A(f,)<p.

4. Proof of Theorem 2

(a) By Lemma 7, we have 8<o(f)<1+maxXigjsi nr-;/J.
(b) Using the same reasoning as in the proof of Theorem 1 (b), we have (b).
(¢) If 6(f)>0o(H), then by Lemma 10, we have A(f)=A(f)=a(f).
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