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NORMAL RELATIVE INTEGRAL BASES FOR QUARTIC

FIELDS OVER QUADRATIC SUBFIELDS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS*

Abstract

Let L be a quartic number field with a quadratic subfield K. In 1986
Kawamoto gave a necessary and sufficient condition for L to have a normal
relative integral basis (NRIB) over K. In this paper the authors explicitly
construct a NRIB for L/K when such exists using their previous work on
relative integral bases. The special cases when L is bicyclic, cyclic and pure
are examined in detail.

1. Introduction

Let L be a quartic number field with quadratic subfield K-Q(Vc), where

Q denotes the rational number field. Then L— Q(V c , Vα-l-frVc), where

a+bV^ is not a square in Q(V~c~), and where a, b and c may be taken to be
integers with both c and the greatest common divisor (a, b) squarefree. Let
OL (resp. Oκ) denote the ring of integers of L (resp. K). In this paper we
assume that L has a relative integral basis (RIB) over K, and determine when
L has a normal relative integral basis (NRIB) over K. Those L which have a
relative integral basis (RIB) over K have been characterized in [9]. It is shown
in [9, Theorem 2] that such L have a RIB over K of the form {1, K} , where

α.B -

(1.2) 0=0, 1,

depending on congruence conditions involving a, b, c,

(1.3) μ
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(1.4) μθκ=RS2, where R and S are

integral ideals of Oκ with R squarefree,

(1.5) d(L/K)=RT\ where T2=OK, 2OK,

or

depending on congruence conditions involving α,

(1.6) S=T<γ\ where j e/£Λ{0}.

It is convenient to define the nonnegative integer r by

(1.7) 2r\\a2-b2c,

and the integers a' and b' by

if £=1 (mod 4),
(1-8) , ,_

if CΞ2, 3 (mod 4).

When c = l (mod 4), as μ/γ*^Oκ, a', b' are integers with a'=bf (mod 2).

If c>0, we let εc denote the fundamental unit (>1) of K=Q(V~c~), and set

(1.9) JV(c)=norm of ec=±l

and

f +1, if ec=(f+ttVT)/2 for odd integers t and u,
(1.10) F(c)=] __

I — 1, if εc=t+uv c for integers ί and u.

In Section 2 we prove the following theorem, which extends a theorem of
Kawamoto [5, Theorem 7].

THEOREM 1. Let a, b, c be integers with (a, b) squarefree, c squarefree, and

a+bV~c~ not a square in Q(VT). Set L=Q(V~ϊ, Va+bVc') and K=Q(V~c).
Suppose L has a relative integral basis over K. Define μ, γ, r, a' , b', N(c), F(c),
t and u as in (1.3)-(1.10). Then L possesses a NRIB over K only in the cases
listed below. In each case an integer ω of K is given so that {ω, ω'} is a NRIB.
[_For compactness we write x = y(m) for x = y (mod m).]

(i) α=l(2), ft^0(2), f l+fr=l(4), α'=l(4),
(ii) βΞl(2), b=Q(2)t β+6=l(4), a' =3(4), c>0, N(c)=-l,
(iii) α=2(4), /?Ξθ(4), a+^=c(8), α'=l(4),
(iv) βΞ=2(4), ftΞ

/ N /•••N . V j M ....

(0 (in) ω= - g - + 2 (ll)
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(i) α=l(2), 6=0(4), α'=l(4),
( i i ) α = l(2), 6=0(4), α'=3(4), c=-l,
(iii) α=l(2), 6=0(4), α'Ξ=3(4), c>0,
(iv) α=0(4), 6=2(4), a = c+l(S), α'=l(4),
(v) α=0(4), 6=2(4), fl=c+l(8), α'Ξ=3(4), c=-l,
(vi) α=0(4), 6=2(4), α = c+l(8), α'Ξ=3(4), c>0, fΞ=0(2), u=l(2).

/ \ /• \ c

( i ) (iv) α>=--

(ii) f l=
(iii) α=l(2), ^^
(iv) α=6(8), ^^2(4), a-b-c=Z or 15(16), c=-3,
(v) α=6(8), ^=2(4), a-b-c=3 or 15(16), c>0, F(c)=l

(i) αΞl(2), 6=0(2),
(ii) α=2(8), 6=2(4), r (even) ̂ 6, (α2-62c)/2rΞl(4).

» = + (i) 0.)

In Sections 3, 4 and 5 we investigate the special cases when L is cyclic,
bicyclic, and pure respectively. We determine when the existence of a RIB and
a squarefree relative discriminant are both necessary and sufficient for the
existence of a NRIB.

THEOREM 2. // L is a cyclic quartic field with quadratic subfield K, then
L/K has a NRIB if and only if L/K has a RIB and d(L/K} is squarefree.

THEOREM 3. Let c be a squarefree integer, and set K—Q(\/~c). Let L be

a bicyclic quartic field containing K. Then L=Q(V c , V a ) for some squarefree

integer a with aφc. As L=Q(V c , Vac /(a, c)2), we can choose between a and
ac/(a, cf when cφ—l so that c\ a.
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// £=—3, -1, or c>0, N(c)=-l, then

L/K has a NRIB £=} L/K has a RIB and d(L/K) is squarefree.

If c<-3 then

L/K has a NRIB <==$ L/K has a RIB, d(L/K) is squarefree,

and a=l (mod 4).
If c>Q and N(c)=l then

L/K has a NRIB £=} L/K has a RIB, d(L/K) is squarefree,

and
' (a, c)—l, a=l (mod 4)

or

(a, c)=l, CΞ3 (mod 4), a=3 (mod 4), t~Q (mod 2), W Ξ Ξ ! (mod 2)

or

(a, c)φl, c=l (mod 4)

or

(a, c)Φl, cΞ£l (mod 4), ~— =1 (mod 4).
(a, c)

THEOREM 4. // L is a pure quartic field then L—Q(\rb VT), where b
and c are squarefree integers with (b, c)Φ(±2, — 1) and c\b if cφ—l. Set

K=Q(V~c). Then

L/K has a NRIB £=} L/K has a RIB and d(L/K) is squarefree.

Kawamoto [5, Propositions 10 and 11] has different formulations of Theorems 2
and 3. Massy [6], [7] has given a necessary and sufficient condition for a
quadratic field K to be a subfield of a cyclic quartic field L possessing a NRIB
over K.

2. Proof of Theorem 1

Let L — Q(Vc, Va+bVc) and K-Q(^c), where a, b, c are integers such

that (a, b) and c are squarefree, and a+bV~c^(£K2. We suppose that L
possesses a RIB over K, and take the RIB in the form {1, κ\, where K is given
by (1.1).

Before proving Theorem 1, we prove four lemmas. We denote the group
of units of Oκ by Uκ.

LEMMA 1. Let the fields L and K be as specified above. If the relative
discriminant d(L/K} is not squarefree, then L/K does not possess a NRIB.

Proof. Let {1, κ\ be the RIB for L/K specified above, and suppose that
L/K possesses a NRIB, say, {a+βκ, a+βκ'}, where a, β^Oκ and κr denotes
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the conjugate of tc over K. As {a+βκ, a+βκ'\ is a RIB for L/K, there exist
λ, φ^Oκ with

(2.1) l=λ(a+βκ)+φ(a+βκ').

Taking the conjugates of (2.1) over K, we obtain

(2.2) l=λ(a + βκ')+φ(a+βκ).

From (2.1) and (2.2), we see that λ=φ. Then (2.1) gives l=λ(2a+β(κ+κ'))> so
that 2a+β(κ+κ')^Uκ. Next, we have

d(L/K)=
a+βκ a+βκ'

Oκa+βκr a+βκ

=((a+βκγ-(a+βκ')*)*0κ

Now suppose that d(L/K) is not squarefree. Thus there exists a prime ideal
P of Oκ with P*\d(L/K\ so that

(2.3) P*\β\κ-Kγθκ.

Let 3? be a prime ideal in OL lying above P. Then, from (2.3), we see that

From (1.4) and (1.5), we deduce that P\20K> so that &\2OL. Hence we have

g>\(β(κ-κ')+2(a+βκ')}0L,

contradicting that 2a+β(κ+κ')^Uκ. D

LEMMA 2. Let the fields L and K be as specified above with relative integral
basis {1, K}, where K is defined in (1.1). Then L/K has a NRIB if and only if
there exists λ^Uκ such that

(2.4) 2\λ-θ,

where θ is given by (1.2). When (2.4) holds, a NRIB for L/K is

_ _
"" 2γ ' 2 2γ I '

Proof. Suppose L/K has a NRIB, say, {a+βκ, a+βκ'}. Then, exactly as
in the proof of Lemma 1, we deduce that ε~2a-\- β(tc-\- κf)— 2a+βθ<=Uκ- As
{aε~ljrβε~lιc, aε'1^ βε'1^} is also a NRIB for L/K, we may take ε=l without
loss of generality, so that
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(2.5) 2a+βθ=l.

As {a+βκ, a+βκ'} is a RIB for L/K, there exist p, τ^0κ such that

κ=p(a+βκ)+τ(a+βκ')>

and so, by (1.1), we have

(2.6,

(λ(a+βκ\

λ-θ θ V~ λ-θ-M-g i ^ i V^
""I 2 ~^2^ 2r '

Equating coefficients of V μ/2γ in (2.6), we obtain 1— (p— τ)β, showing that
β<ΞUκ. We define λ^Uκ by λ=l/β, and, from (2.5), we deduce that 2\λ-θ,
and a NRIB for L/K is

2γ ' 2 + 2 2r ί

-JA_μ^ϊ λ y^M
""12"^ 2r ' 2 2r Γ

Conversely suppose that λ&Uκ with 2 |A—^. Then we have a=(λ—t

We claim that {λ/2+V~μ/2γ, λ/2-V~μ/2γ} = {a+κ, a+κ'} is a NRIB. This is
clear as

and

D

The next lemma summarizes some elementary properties of the form of
the units of Oκ when c>0. The proof of the lemma is an easy exercise in
elementary number theory.

LEMMA 3. Let c be a positive squarefree integer.
If c=2 (mod 4) then F(c)=—l, JV(c)=±l, and every unit of Oκ is of the

form x+yV~c~, where the integers x and y satisfy

x=l (mod 2), V Ξ Ξ O (mod 2), if x*-cy*=l,

x = l (mod 2), y = l (mod 2), if x2-cy2=-l.

If c=3 (mod 4) then F(c)=—l, N(c)=l, and every unit of Oκ is of the

form x-\-y\/~c^) where the integers x and y satisfy
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CΞΞO (mod 2), 3;=! (mod 2)
or

x = l (mod 2), y=0 (mod 2).

// c=5 (mod 8) and F(c)=l, then N(c)=±l and every unit of Oκ is of the

form (x+yV c)/2, where the integers x and y satisfy

x = yΞΞl (mod 2)
or

x=Q (mod 4), y~2 (mod 4), x2-cy2=-4:,
or

x=2 (mod 4), y=0 (mod 4), x2-cy2=4.

If c=5 (mod 8) and F(c)=— 1, then N(c)= + l and every unit of Oκ is of

the form x+yV c , where the integers x and y satisfy

x=Q (mod 2), y = l (mod 2), if x*-cy*=-l,
or

x=l (mod 2), V Ξ Ξ O (mod 2), if x2-cy2=l.

If c=l (mod 8) then F(c)= — 1, N(c)=±l, and every unit of Oκ is of the

form x+yV c , where the integers x and y satisfy

x=l (mod 2), j>ΞΞθ (mod 4), if x2-cy2=l,

*ΞΞO (mod 4), y = l (mod 2), if x2-cy2=-l.

In Lemma 4 we make use of Lemma 3 to determine λ^U κ satisfying (2.4)
when such λ exists.

LEMMA 4. Let c be a squarefree integer.

If c=2 (mod 4) then 0=0, 1, VT or 1 + V c , and there exists λ^U κ with
2\λ-θ if and only if

or

~ , 0 0 ,

// CΞ3 (mod 4) ί/zβw 0=0, 1, V c 0r 1 + V c , and ί/iβrβ e^sίs λ^U κ with
2\λ-θ if and only if

0=1 y=l)

ί?r

0 = VT, c>0, ίΞO (mod 2), MΞ! (mod 2) W=εc)



b'+Vc c 3 (λ 1

2 ' d V-1

ύ/+Vy ,>sn ,w T

+ (_l)(l-»')/2.

2
/-3\

J

^_(_l)Cί-6 «)/2MΛ/7"
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or

// CΞ5 (mod 8) then 0=0, 1, or (b'+Vc)/2, and there exists λ<=U κ with
2\λ—θ if and only if

0=1 y=l)
or

θ =

or

If c = l (mod8) then 0=0, 1, (l+vΊΓ)/2, or (-1+VOA

κ with 2\λ—θ if and only if

0=1 y=l).

Proof. The values of 0 corresponding to the residue class of c modulo 4
or 8 follow from [9, Theorem 2]. The remaining assertions of the lemma
follow easily from Lemma 3. Π

We are now ready to prove Theorem 1.

Proof of Theorem 1. Recall that we are assuming that L/K has the RIB
{1, K] . Suppose further that L/K has a NRIB. By Lemma 1 d(L/K) is
squarefree. Appealing to [9, Theorem 1] α, bt c must fall into one of the
following cases:

Case 1: α=l (mod 2), b=0 (mod 2), c=2 (mod 4), a+b=l (mod 4),
Case 2: a=2 (mod 4), b=0 (mod 4), c=2 (mod 4), a + b=c (mod 8),
Case 3: a=l (mod 2), b=0 (mod 4), c=3 (mod 4),
Case 4: α^O (mod4), b=2 (mod4), c=3 (mod4), a = c+l (mod 8),
Case 5: α=l (mod 2), b=Q (mod 2), CΞ=$ (mod 8), a+b=l (mod 4),
Case 6: a^6 (mod 8), b^2 (mod4), c=5 (mod 8), a—b—c=Z or 15 (mod 16),
Case 7: α=l (mod 2), b^Q (mod 2), c=l (mod 8), α+&Ξl (mod 4),
Case 8: fl=2 (mod 8), b^2 (mod 8), c=l (mod 8), r(even)^6,

(a2-^2c)/2r-l (mod4),
Case 9: a=2 (mod 8), 6=6 (mod 8), c=l (mod 8), r (even)^6,

(fl2-&8c)/2r==l (mod4).

We emphasize that if α, 6, c do not satisfy one of Cases 1 to 9 then d(L/K) is
not squarefree and L/K does not possess a NRIB. We now examine each of
the above cases making use of Lemma 4 to determine the additional constraints
on α, b, c in order for L/K to have a NRIB.
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Cases 1 and 2. By [9, Theorem 2] we have

1, if α'Ξl (mod 4),

1H-VT, if α'Ξ3 (mod 4).

Thus, by Lemmas 2 and 4, L/K has NRIB in this case if and only if

α'=l (mod 4)
or

a'=3 (mod 4), c>0, N(c)=-l.

The NRIB's are respectively

/!+^z ι

1 2 ̂  2r ' 2
and

c V~μ
~

I 2 ' 2γ ' 2

Cases 3 and 4. By [9, Theorem 2] we have

1, if α'ΞΞl (mod4),

\Γc, if a'=3 (mod 4).

Then, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

α'ΞΞl (mod4)
or

α'ΞΞ3 (mod4), c=—1,
or

α'ΞΞS (mod 4), c>0, feO (mod 2), MΞΞ! (mod 2).

The NRIB's are respectively

~"' "2

and
ft+uV c .Vμ t+uV c _V μ\
1 2 ^ ' 2 2 ~ l '

Case 5. By [9, Theorem 2] we have

1, if a' = b'=Q (mod 2),

ft/+

0

λ/C, if a'=bf = l (mod 2).
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Then, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

fl'=ft'=0 (mod 2)
or

fl'Ξ&'ΞΞl (mod 2), c=-3
or

a'=b'=l (mod 2), c>0, F(c)=l.

The NRIB's are respectively

/I+^Z A VTn
12^ 2r ' 2 2 Γ

Vμ l + (-l)(1-6')/2VT V7η
1 4 + 2r ' 4 2r Γ

1 4 + 2γ ' 4 2r Γ

Case 6. By [9, Theorem 2] we have

Thus, by Lemmas 2 and 4, L//C has a NRIB in this case if and only if

a'=b'=l (mod 2), c=-3
or

fl' = ft' = l (mod 2),

The NRIB's are respectively

fi+(-i)(1-6')/2vT V7
1 4 "*" 2r '

^+(-i)(t"6>tt)/8uvτ_. V
I 4" 2r

 J 4

Cases 7, 8, 9. By [9, Theorem 2] we have 0=1. Thus, by Lemmas 2 and
4, L/# has a NRIB namely,

πU_
" 2r ' 2 2r J '

3. L cyclic: Proof of Theorem 2

Let L be a cyclic quartic field with unique quadratic subfield K, and assume
that L/K has a RIB. By Lemma 1 we know that if d(L/K) is not squarefree
then L/K does not possess a NRIB. Thus to complete the proof it suffices to
prove that if d(L/K) is squarefree then L/K has a NRIB. It is known (see
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[8]) that L may be taken in the form L=Q(VA(D+BVDy), where A is
squarefree and odd, D=B2+C2 is squarefree (£>0, C>0), and (A, D)=l. Then,
appealing to [8, Lemma 2], we see that d(L/K) squarefree implies

D=l (mod 4), B=0 (mod 2), A+B=1 (mod 4).

Further, by [8, Theorem 3], as L/K has a RIB, we can take the RIB as

Thus L possesses a NRIB over K, namely,

VA(D+BVD~)), -ί(l + V^φ+βVD))} . D

4. L bicyclic: Proof of Theorem 3

If L/K has a NRIB then clearly L//Γ has a RIB and, by Lemma 1, d(L/K)
is squarefree.

Now suppose that L/K has a RIB and d(L/K) is squarefree. There are
nine possibilities for the pair (c, a) (mod 4). The second assumption by [9,
Theorem 1] eliminates four of these and leaves only the five possibilities

(4.1) (c, α)=(l, 1), (2, 1), (2, 2) (with a = c (mod 8)), (3, 1), (3, 3) (mod 4).

Further, the first assumption by [9, Theorem 2] guarantees the existence of an
element γ in Oκ with S=γOκ- Recalling that the only primes which ramify
in K are the odd prime divisors of c and the prime 2 if CΞ£! (mod 4), we see
from (1.4) that S2=(α, c)0K. Thus

(4.2) f-(a, c)θ, for some unit θ of Oκ.

It is now convenient to treat cases.
c=— 3. From (4.1) we have α=l (mod 4), and by Theorem 1 (c=5 (mod 8),

(i), (ii)) L/K has a NRIB.
c=— 1. Here θ — ±l or ±2. From (4.1) we have α=l (mod 2). Further

(α, c)=l as 78=(fl, c)θ cannot hold with 0=±*. Thus θ = ±l, γ2=±l, af+b'i
= a/γz=±a, so α'=l (mod 2). Hence by Theorem 1 (c=3 (mod 4), (i), (ii))
L//f has a NRIB.

c>0, N(c)=-l. As N(c)=-l, we have c^3 (mod 4). Thus, by (4.1), we
have (c, α)-(l, 1), (2, 1) or (2.2) (mod 4). Clearly, from (4.2), we see that we
may assume without loss of generality that θ = ±l or θ = ±εc.

When c=2 (mod 4), θ is of the form x+yV c with x odd, so from

a'+b'Vc =a/((a, c)θ), we see that a' is odd. Hence, by Theorem 1 (c=2
(mod 4), (i)-(iv)), L/K has a NRIB.

When c=l (mod 8), we have α = l (mod 4), and by Theorem 1 (c=l (mod 8),
(i)) L/K has a NRIB.
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When CΞΞ5 (mod 8) we must examine θ more closely. Clearly θ=γz/(a, c)
>0 so that θ—l or εc. Further

N(θ)=N(γ)2/(a, c)2>0

so that θφεc as W(ec)=— 1. Hence 0 — 1, and f—(a, c). As γ^0κ we have

^=(r+SΛ/£)/2, where r, s are integers with r=s (mod 2). Thus

r2+s2c=4(α, c), 2rs=Q.

If r=0 then s2c=4(β, c) so c |α, a contradiction. If s— 0 then r2=4(α, c) so
(r/2)2=(α, c). But (α, c) is squarefree, so r/2=±l, (α, c)=l, and τ 2=l. Thus

(fl'+6VT)/2=α, so a' = b'=Q (mod 2), and by Theorem 1 (c=5 (mod 8), (i))
L/K has a NRIB.

c<— 3. Here 0 = ±1. From (4.2) we have γ2=±(a, c). We show that the
plus sign must hold and (α, c)=l, for otherwise (remembering that c and_(α, c)

are squarefree) we have [_Q(V±(a, c)) : (?]=2 and V±(α, c)=yeQ(Vc), so
c=— (α, c) and thus c |β, a contradiction. Hence γ*=(a, c)=l. Note that this
rules out the case c = a=2 (mod 4). (There is no RIB in this case.) Now by
(1.8) we have

__ f α, if c^l (mod 4),
a'+b'Vc=\

( 2a, if c = l (mod 4).

From Theorem 1 (examining cases), we see that L/K possesses a NRIB only
when α=l (mod 4).

c>0, N(c)=l. From (4.2) we see without loss of generality that θ = ±l or
θ = ±εc. As θ—f/(a, c)>0, we have 0=1 or 0 = εc. If (α, c)=£l we show that

0 = εβ Otherwise θ=l, [(?( V(flΓί)) 91=2 and V(~flΓθ=re(?(V~0, so (α, c)=c
contradicting c \ a. If (α, c)= 1 we show that 0=1. Otherwise θ — ζ,c—γ2,
contradicting that εc is a fundamental unit.

If (α, c)=l then 0=1 and γz=l. Hence, by (1.8), we have

_ ί α, if c^fcl (mod 4),
a'+b'Vc=\

I 2 f l , if c = l (mod 4).

From Theorem 1 (examining cases) we see that L/K possesses a NRIB only
when

α=l (mod 4)
or

c=3 (mod 4), a=3 (mod 4), t=Q (mod 2), u=l (mod 2).

If (α, c)Φl then θ = εc and f^(a, c)εc. Hence, by (1.8), (1.10) and Lemma 3,
we have
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- - ~(t—uV~c), if c=£l (mod 4),
(α, c)

_ or
a'+b'Vc =

c=5 (mod 8),

(ί-WT), if c~5 (mod 8), F(c)=-l or c = l (mod 8).
(α, c)

Again by Theorem 1, after an examination of cases, we see that L/K possesses
a NRIB only when

c = l (mod 4) or CΞ£! (mod 4), - - Γ=l (mod 4). Π
(α, c)

We note that Theorem 3 extends work of Brinkhuis [1] and Gras [2].

5. L pure: Proof of Theorem 4

Let L be a pure quartic field so that L=Q(VbVc), where b and c are

squarefree integers with (b, c}φ(±2, — 1) and c \ b if c=£ —1. Set K=Q(V c).
Suppose L/K has a RIB and that d(L/K} is squarefree. By Theorem 1 of [9]
and the tables in [3] or [4] the latter assumption implies that

c=7 (mod 8), b=2 (mod 4).

The first assumption guarantees the existence of γ^Oκ and Θ<^UK such that

2(b, c)=γ*θ.

We show that θ = ±l is impossible. Suppose 0 = ±1 then a' + b'Vc =

bV~c/±2(b, c) so fl'=0. As L/K possesses a RIB, by Theorem 2 of [9], we
see that a' is odd, a contradiction.

We now treat two cases according as c<0 or c>0. If c<0 we must have
c=-l, 0 = ±ι'. Thus α'= + 6/2ΞΞl (mod 2) and L/K has a NRIB by Theorem 1.
If c>0 we have without loss of generality θ=±εc. Further θ—2(b, c)/γz>Q so
0 = ec. Also N(ec)=J/V(β)=4(ft, cγ/N(γ)*>Q so N(ec)=l. Hence a'=bcu/2(b, c).
As L/K possesses a RIB, by Theorem 2 of [9], α ; is odd, so that w=l (mod 2),
and thus ί=0 (mod 2). By Theorem 1 (c~3 (mod 4), (ivj, (vi)) L/K has a
NRIB. Π

6. Examples

We conclude this paper with some examples.

Example 1. We consider L = 0(V~Ϊ7+Γ8VT). The quadratic subfield of

L is /f=φ(Vl>). It was shown in [9, Example 2] that L/K possesses a RIB.

Here α = -17, &=18, c=5, //^-
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, ε5=(l+vΊΓ)/2, f=u=l, F(5)=l, (fl'+

2, α'=-l, ft'=3. Thus by Theorem 1 (c=5 (mod 8), (iii))
L//Γ has a NRIB, which can be taken as

f l - V 5 , 1 /-1+3V5 1-V5 1 /-1+3V5"]
2 Γ

Example 2. We take L=<3(V-5, \i~=ϊ) and /ί^QίV11^). Here α=-l,
ft=0, c=-5, /£=-!, R=S=T=OK, γ=l, L/K has a RIB by [9, Theorem 2],
and d(L/K) is squarefree. However, α^l (mod 4) so, by Theorem 3, L/K
does not possess a NRIB.

Example 3. Let α and b be integers with (α, b) squarefree and a+bz not

a square in K=Q(i). Then L — Q(-Va+bi) possesses a NRIB over K if and
only if

α = l (mod 2), 6^0 (mod 4)
or

αΞΞO (mod 8), 6=2 (mod 4).

Example 4. Let α and 6 be integers with (a, b) squarefree and

not a square in K=Q(V^=3). Then ^^^(Vα+^V^) possesses a NRIB over
K if and only if

flΞl (mod 2), 6=0 (mod 2), α+^^l (mod 4)
or

αΞθ (mod 8), 6^2 (mod 4), a-b=Q, 12 (mod 16).

Example 5. L=Q(^/~7, V"5") has a NRIB over /f=Q(Vι:7), namely,

rU-Λ/T l-Λ/5"]
I 2 ? 2 Γ

Example 6. This example was considered by Kawamoto [5, Remark 12].

L=Q(V3+2V"6~) has a RIB over /f=C?(Vr6"), namely

but, by Theorem 1, L does not have a NRIB over /Γ. Compare Sze [10, Theo-
rem 1],
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