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NORMAL RELATIVE INTEGRAL BASES FOR QUARTIC
FIELDS OVER QUADRATIC SUBFIELDS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS*

Abstract

Let L be a quartic number field with a quadratic subfield K. In 1986
Kawamoto gave a necessary and sufficient condition for L to have a normal
relative integral basis (NRIB) over K. In this paper the authors explicitly
construct a NRIB for L/K when such exists using their previous work on
relative integral bases. The special cases when L is bicyclic, cyclic and pure
are examined in detail.

1. Introduction

Let L be a quartic number field with quadratic subfield K=Q(+/¢), where
Q denotes the rational number field. Then L=Q(+¢, Ya+b+v ¢c), where

a+b+ ¢ is not a square in Q(~/¢), and where a, b and ¢ may be taken to be
integers with both ¢ and the greatest common divisor (a, b) squarefree. Let
O (resp. Og) denote the ring of integers of L (resp. K). In this paper we
assume that L has a relative integral basis (RIB) over K, and determine when
L has a normal relative integral basis (NRIB) over K. Those L which have a
relative integral basis (RIB) over K have been characterized in [9]. It is shown
in [9, Theorem 2] that such L have a RIB over K of the form {1, £}, where

_0 Ve
1.1) IC—-—Z‘ _Z’—EOL’
(1.2) 0=0,1, v ¢, 14++/c, 1+;/c or ‘1“;‘/‘
depending on congruence conditions involving a, b, ¢,
(1.3) p=a+bvc,
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(1.4) #Og=RS? where R and S are
integral ideals of O, with R squarefree,

1.5) d(L/K)=RT? where T?*=0k, 20k,
105, (2 30+v ) or (2 5=V O
depending on congruence conditions involving a, b, c,
1.6) S=T<y>, where yeK\{0}.
It is convenient to define the nonnegative integer r by
1.7 27 a*— b,
and the integers a’ and b’ by
(a’+b'v¢)/2, if ¢=1 (mod4),
(1.8) 17 rZZ{ .
a'+b'vVc, if ¢=2, 3 (mod 4).

When c¢=1 (mod 4), as u/y*<0g, a’, b’ are integers with a’=b’ (mod 2).
If ¢>0, we let ¢, denote the fundamental unit (>1) of K=Q(+~/ ¢ ), and set

(1.9) N(c)=norm of e, ==+1
and

+1, if e.=(+u+"c)/2 for odd integers ¢ and u,
(1.10) F(c)= _

—1, if e;=t4+uvc for integers ¢t and u.

In Section 2 we prove the following theorem, which extends a theorem of
Kawamoto [5, Theorem 7].

THEOREM 1. Let a, b, ¢ be integers with (a, b) squarefree, ¢ squarefree, and
a+bv'¢ not a square in Q(~/¢). Set L=Q(~ ¢, Ya+bvc) and K=Q(~/¢).
Suppose L has a relative integral basis over K. Define p, v, r, a’, b, N(c), F(c),
t and u as in (1.3)-(1.10). Then L possesses a NRIB over K only in the cases
listed below. In each case an integer w of K is given so that {w, @'} is a NRIB.
[For compactness we write x=y(m) for x=y (mod m).]

c=2(4)
(i) a=1Q2), b=02), a+b=14), o’'=14),
(ii) a=12), b=02), a+b=14), a'=34), >0, N(c)=—1,
(iii) a=24), b=04), a+b=c@B), a'=14),
(iv) a=24), b=04), a+b=c@®), a’'=34), ¢>0, N(c)=—1.

tHuvc +2£7” Qi) (v)

w=%+i2?‘fi (i) (i) 0=""7%



c=3(4)
(i)
(ii)
(i)
(iv)
(v)
(vi)

c=5(8)
(i)
(ii)
(iii)
(iv)
(v)

c=1(8)
(1)
(ii)

a=1(2),
a=1(2),
a=1(2),
a=04),
a=0(4),
a=004),

a=1(2),
a=1(2),
a=1(2),
a=6(8),
a=6(8),

a=12),
a=2(8),
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b=04),
b=0(4),
b=0(4),
b=2(4),
b=234),
b=2(4),

a’'=14),
=3(4), c=-—1,
a’'=3(4), >0, 1=002), u=1(2),

a=c+1(8), a’'=14),
a=c+1(8), a’'=34), c=—1,
a=c+18), a’'=34), ¢>0, t=02), u=1(2).

v

‘/” (i) (iv) w_—+‘/” (i) (v)

2

i “ZW +‘g_r/‘ (iii) (vi)

b=02), a+b=1(4), a’'=b'=002),

b=0(2), a+b=1(4), a'=b'=112), c=-3,

b=02), a+b=1@4), a'=b'=112), ¢>0, F(c)=1,

b=2(4), a—b—c=3 or 1516), c¢=-3,

b=2(4), a—b—c=3 or 15(16), ¢>0, F(c)=1.

_2 ’\//,t () wzl-l—(—l)‘;"’"”\/c \//z (i) (iv)
- t—=b'u)/2

___t+( 1)‘ ; 2ya¢ x/,a (i) (¥)

b=0(2), a+b=1(4),

b=2(4), r (even)=6, (a®—b%c)/2"=1(4).

”‘ (i) (i)

In Sections 3, 4 and 5 we investigate the special cases when L is cyclic,
bicyclic, and pure respectively. We determine when the existence of a RIB and
a squarefree relative discriminant are both necessary and sufficient for the
existence of a NRIB.

THEOREM 2. If L is a cyclic quartic field with quadratic subfield K, then
L/K has a NRIB if and only if L/K has a RIB and d(L/K) is squarefree.

THEOREM 3. Let ¢ be a squarefree integer, and set K=Q(v'¢). Let L be
a bicyclic quartic field containing K. Then L=Q(~¢c, v/ a) for some squarefree

integer a with a#c. As L=Q(~ ¢, vac/(a, ¢)?), we can choose between a and
ac/(a, ¢)* when c#+—1 so that ct a.
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If ¢=—-3, —1, or ¢>0, N(c)=—1, then

L/K has a NRIB&= L/K has a RIB and d(L/K) is squarefree.
If ¢<—3 then

L/K has a NRIB&= L/K has a RIB, d(L/K) is squarefree,
and a=1 (mod 4).
If ¢>0 and N(c)=1 then

L/K has a NRIB&= L/K has a RIB, d(L/K) is squarefree,

and

(a, ¢)=1, a=1 (mod 4)
or

(a, ¢)=1, ¢=3 (mod 4), a=3 (mod 4), t=0 (mod 2), u=1 (mod 2)
or

(a, ¢)#1, ¢=1 (mod 4)
or

(a, ¢)#1, ¢#*1 (mod 4), (a(’ltc) =1 (mod 4).

THEOREM 4. If L is a pure quartic field then L=Q(~ b~/¢), where b
and ¢ are squarefree integers with (b, ¢)#(%2, —1) and ctb if c+—1. Set

K=Q(¢). Then
L/K has a NRIB& L/K has a RIB and d(L/K) is squarefree.

Kawamoto [5, Propositions 10 and 11] has different formulations of Theorems 2
and 3. Massy [6], [7] has given a necessary and sufficient condition for a
quadratic field K to be a subfield of a cyclic quartic field L possessing a NRIB
over K.

2. Proof of Theorem 1

Let L=Q(V ¢, Ya+bv ¢) and K=Q(+v ¢), where a, b, ¢ are integers such
that (a, b)) and ¢ are squarefree, and a-+bv ¢ £K2. We suppose that L
possesses a RIB over K, and take the RIB in the form {1, x}, where £ is given
by (1.1).

Before proving Theorem 1, we prove four lemmas. We denote the group
of units of O by Ug.

LEMMA 1. Let the fields L and K be as specified above. If the relative
discriminant d(L/K) is not squarefree, then L/K does not possess a NRIB.

Proof. Let {1, £} be the RIB for L/K specified above, and suppose that
L/K possesses a NRIB, say, {a+ Bk, a+B«’}, where a, O, and &’ denotes
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the conjugate of # over K. As {a+pBk, a+pr’} is a RIB for L/K, there exist
A, $=0g with

2.1) 1=2(a+ BE)+gla+Bk’).
Taking the conjugates of (2.1) over K, we obtain
(2.2) 1=Xa+Bt’)+¢la+BE).

From (2.1) and (2.2), we see that A=¢. Then (2.1) gives 1=42a+ B(k+£")), so
that 2a+4-B(k+r")eUgk. Next, we have

a+pBe a-+Bk’|?

a+ Bk’ a+pe ¥
=((a+ pr)*—(a+pe))* Ok
=p*r—£')’2a+ Bk+£"))* Ok
=p%e—£")Ok.

d(L/K)=

Now suppose that d(L/K) is not squarefree. Thus there exists a prime ideal
P of Og with P?|d(L/K), so that

(2.3) P2 B (k—k')*Ok .
Let @ be a prime ideal in O, lying above P. Then, from (2.3), we see that
P|Bk—£")O L.
From (1.4) and (1.5), we deduce that P|20%, so that ®|20;. Hence we have
P(Be—&")+2a+ B0,
contradicting that 2a+ B(x+£")EUk. Od

LEMMA 2. Let the fields L and K be as specified above with relative integral
basis {1, k}, where k is defined in (1.1). Then L/K has a NRIB if and only if
there exists A&Uy such that

(2.4) 2|12—-6,
where 8 is given by (1.2). When (2.4) holds, a NRIB for L/K is
e Ve i_z/_?}
2 2y 2 29 )°

Proof. Suppose L/K has a NRIB, say, {a+ S, a+p&’}. Then, exactly as
in the proof of Lemma 1, we deduce that e=2a+ B(k-+£")=2a+B0cUk. As
{ae™'+ Bk, ae™'+Be '’} is also a NRIB for L/K, we may take =1 without
loss of generality, so that
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(2.5) 2a+p0=1.
s {a+pk, a+pk’} is a RIB for L/K, there exist p, r€Ox such that
k=p(a+ pr)+r(at+Br’),

and so, by (1.1), we have

Vi

2.6) 2+ o(a +ﬁ +B ) (a+,82—,827‘fl)

Equating coefficients of +/p/2y in (2.6), we obtain 1=(p—7)B, showing that
BeUxk. We define AUy by 2=1/8, and, from (2.5), we deduce that 2|21—6,
and a NRIB for L/K is

{Aa+Bk), Aa+ ")} ={2a+k, 2a+k'}

N Vi
‘{2 0+2+ £ 220 g zrﬂ}

A AN 2 Vp
={3+ 5 % 2 “z‘f}'
Conversely suppose that AU x with 2|A—#. Then we have a=(1—8)/2€ 0.

We claim that {A/24++/ /2y, 4/2—~ ¢ /2y} ={a+k, a+x'} is a NRIB. This is
clear as

1= @t 0+ ate)

2T
and

A+6
x—( a )( +£)— ( )(a+/c’) O

The next lemma summarizes some elementary properties of the form of
the units of O when ¢>0. The proof of the lemma is an easy exercise in
elementary number theory.

LEMMA 3. Let ¢ be a positive squarefree integer.
If ¢=2 (mod 4) then F(c)=—1, N(c)==1, and every unit of Ox is of the
form x-+y~c, where the integers x and y satisfy

x=1 (mod 2), y=0 (mod2), if x*—cy*=l,
x=1 (mod 2), y=1 (mod?2), if x*—cy?=-—1.

If ¢=3 (mod4) then F(c)=—1, N(c)=1, and every unit of Og is of the
form x+y+c, where the integers x and y satisfy
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x=0 (mod 2), y=1 (mod 2)
or
x=1 (mod 2), y=0 (mod 2).

If ¢=5 (mod 8) and F(c)=1, then N(c)==x1 and every unit of Ok is of the
form (x+y+/¢)/2, where the integers x and y satisfy

x=y=1 (mod 2)
or

x=0 (mod 4), y=2 (mod4), x’—cy’=-—4,
or

x=2 (mod 4), y=0 (mod4), x>—cy?=4.

If ¢=5 (mod 8) and F(c)=—1, then N(c)==1 and every unit of Og is of
the form x+y~/c, where the integers x and y satisfy
x=0 (mod 2), y=1 (mod2), if x*—cy:=—1,

or
x=1 (mod 2), y=0 (mod?2), if x*—cy*=1.

If ¢=1 (mod 8) then F(c)=—1, N(c)==x1, and every unit of Og is of the
form x+y~c, where the integers x and y satisfy

x=1 (mod 2), y=0 (mod4), if x*—cy*=l,
x=0 (mod 4), y=1 (mod?2), if x*—cy’=—1.

In Lemma 4 we make use of Lemma 3 to determine A€Ug satisfying (2.4)
when such A exists.

LEMMA 4. Let ¢ be a squarefree integer.
If ¢=2 (mod 4) then §=0,1, ~/¢ or 14+~/¢, and there exists AUy with
212—0 if and only if

=1 (A=l
or
0=1+~"¢c, ¢>0, Ni)=—1 (A=e¢,).

If ¢=3 (mod4) then =0, 1, /¢ or 1++/c, and there exists AUy with
2|A—0 if and only if

0=1 A=1)
or
0=+"¢c, ¢>0, t=0 (mod2), u=1 (mod2) (A=¢,)
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0=+'c,

c=—1 (A=+v-=I).

If ¢=5 (mod 8) then 8=0, 1, or (b'++~¢)/2, and there exists AcUyg with
2|A—0 if and only if

=1 (A1=1)

or

or

b=""

0= 5

_vHVe

b++¢c

, ¢=—3

(-

, ¢>0, and F(o)=1 (x:

1+(—1)<1-°'>/w_—3)
2

t+(—1)“‘”'“>/2u«/—5)
5 .

If ¢=1 (mod 8) then 6=0,1, 1++/¢)/2, or (—1++/¢)/2, and there exists
AUk with 2|2—0 if and only if

=1 (A=1).

Proof. The values of @ corresponding to the residue class of ¢ modulo 4
or 8 follow from [9, Theorem 2]. The remaining assertions of the lemma
follow easily from Lemma 3.

We are now ready to prove Theorem 1.

Proof of Theorem 1.

{1, &}.

squarefree.

following cases:

Case 1: a=1 (mod 2),
Case 2: a=2 (mod 4),
Case 3: a=1 (mod 2),
Case 4: a=0 (mod 4),
Case 5: a=1 (mod 2),
Case 6: a=6 (mod 8),
Case 7: a=1 (mod 2),
Case 8: a=2 (mod 8),
Case 9: a=2 (mod 8),

(mod 2),
(mod 4),
(mod 4),

(mod 2),
(mod 4),
(mod 2),
(mod 8),

O =t~ S~ S
L L L
MOoOMONO OO

b=6 (mod 8),

SO OO 6 6 6o

L 1 | e L

¢=1 (mod 8),

O

Recall that we are assuming that L/K has the RIB
Suppose further that L/K has a NRIB. By Lemma 1 d(L/K) is
Appealing to [9, Theorem 1] a, b, ¢ must fall into one of the

a+b=1 (mod 4),
a+b=c (mod 8),

a=c+1 (mod 8),
a+b=1 (mod 4),
a—b—c=3 or 15 (mod 16),
a+b=1 (mod 4),
7 (even)=6,

(a®—b*c)/27=1 (mod 4),
r (even)=6,

(a*—b%*c)/2"=1 (mod 4).

We emphasize that if a, b, ¢ do not satisfy one of Cases1 to 9 then d(L/K) is
not squarefree and L/K does not possess a NRIB.
the above cases making use of Lemma 4 to determine the additional constraints
on a, b, ¢ in order for L/K to have a NRIB.

We now examine each of



Thus, by Lemmas 2 and 4, L/K has NRIB in this case if and only if

or
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Cases 1 and 2. By [9, Theorem 2] we have

{ 1, if a’=1 (mod 4),
1447, if a’=3 (mod 4).

a’=1 (mod 4)

a’=3 (mod4), ¢>0, N(c)=-—1.

The NRIB’s are respectively

and

Then, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

or

or

1ive i_«/_??}

2 2y 2 2

{t+u«/? Ny ttuve «/Z}
) 2y I”

Cases 3 and 4. By [9, Theorem 2] we have

{ 1, if a’=1 (mod 4),
"\ VT, if ¢’=3 (mod4).

a’=1 (mod 4)
a’=3 (mod 4), c¢=-1,

a’'=3 (mod4), ¢>0, =0 (mod2), u=1 (mod?2).

The NRIB’s are respectively

and

{H—u\/?L\/Z t+uvc V)
5 T 2 72N

Case 5. By [9, Theorem 2] we have

1, if a’=b'=0 (mod 2),
0=y b'++c
2 I

if a’=b"=1 (mod 2).

301
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Then, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

a’'=b"=0 (mod 2)
or
a’=b'=1 (mod2), c¢=-—3
or
a’'=b'=1 (mod2), ¢>0, F(c)=1.

The NRIB’s are respectively

( Ve i_:/_??}
2 2r02 2 )
{1+<—1><*—b'~w? Y 1+<—1><'-b'>/w7_Q}
4 2y’ 4 2r I’
{t+(—1)“""“”2u«/7+ﬂ t+(—1)“""“”2u\/?__:/£}
4 2y’ 4 2y I
Case 6. By [9, Theorem 2] we have
b+
6= 5

Thus, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if
a’'=b'=1 (mod2), ¢c=-—3

or
a’=b'=1 (mod 2), ¢>0, F(c)=1.
The NRIB’s are respectively
{1+(——1)“"b"/2«/7+3/E 1+(—1)“""”2«/?_«_/£}
4 2y’ 4 2r IV
tH(=D)E 02y A g (=D
{ +——y _—} .
4 2y 4 2r
Cases 7,8, 9. By [9, Theorem 2] we have §=1. Thus, by Lemmas 2 and
4, L/K has a NRIB namely,

3. L cyclic: Proof of Theorem 2

Let L be a cyclic quartic field with unique quadratic subfield KX, and assume
that L/K has a RIB. By Lemma 1 we know that if d(L/K) is not squarefree
then L/K does not possess a NRIB. Thus to complete the proof it suffices to
prove that if d(L/K) is squarefree then L/K has a NRIB. It is known (see
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[8]) that L may be taken in the form L=Q(~A(D+B~/D)), where A is
squarefree and odd, D=B*+C? is squarefree (B>0, C>0), and (4, D)=1. Then,
appealing to [8, Lemma 2], we see that d(L/K) squarefree implies

D=1 (mod4), B=0 (mod2), A+B=1 (mod 4).
Further, by [8, Theorem 3], as L/K has a RIB, we can take the RIB as

1 S —
{1, —2—(1+\/A(D+B«/D ))}
Thus L possesses a NRIB over K, namely,

S0~V ADTBVD)), 5(1+VADTBVD))} . O

4. L bicyclic: Proof of Theorem 3

If L/K has a NRIB then clearly L/K has a RIB and, by Lemma 1, d(L/K)
is squarefree.

Now suppose that L/K has a RIB and d(L/K) is squarefree. There are
nine possibilities for the pair (¢, a) (mod4). The second assumption by [9,
Theorem 1] eliminates four of these and leaves only the five possibilities

@1 (¢, @)=, 1), @ 1), 2, 2) (with a=c (mod 8)), (3, 1), (3, 3) (mod 4).

Further, the first assumption by [9, Theorem 2] guarantees the existence of an
element y in Og with S=yOg. Recalling that the only primes which ramify
in K are the odd prime divisors of ¢ and the prime 2 if ¢%1 (mod 4), we see
from (1.4) that S?=(a, ¢)Ok. Thus

4.2) r*=(a, ¢)0, for some unit 6 of Ok.

It is now convenient to treat cases.

¢=—3. From (4.1) we have a=1 (mod 4), and by Theorem 1 (¢=5 (mod 8),
(i), (ii)) L/K has a NRIB.

c=—1. Here §==+1 or +i. From (4.1) we have a=1 (mod2). Further
(a, ¢)=1 as y*=(a, ¢)@ cannot hold with §=+4. Thus ==+1, y*==+1, a'+b';
=a/y*=+a, so a’=1 (mod2). Hence by Theorem 1 (¢=3 (mod4), (i), (ii))
L/K has a NRIB.

¢>0, N(¢)=—1. As N(c)=—1, we have ¢#3 (mod 4). Thus, by (4.1), we
have (¢, a)=(1, 1), (2, 1) or (2.2) (mod 4). Clearly, from (4.2), we see that we
may assume without loss of generality that §==+1 or =+¢,.

When ¢=2 (mod4), 6 is of the form x+y+v'¢ with x odd, so from
a’+b'~ ¢ =a/(a, c)f), we see that a’ is odd. Hence, by Theorem 1 (¢=2
(mod 4), (i)-(iv)), L/K has a NRIB.

When c¢=1 (mod 8), we have a=1 (mod 4), and by Theorem 1 (¢=1 (mod 8),
(i)) L/K has a NRIB.
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When c¢=5 (mod 8) we must examine # more closely. Clearly §=7y*/(a, ¢)
>0 so that §=1 or &.. Further

N(@)=N()*/(a, c)*>0

so that #+#¢, as N(e)=—1. Hence §=1, and y*=(a, ¢). As y=Ox we have
y=(r+s+/¢)/2, where r, s are integers with »=s (mod 2). Thus

r’+sic=4(a, ¢), 2rs=0.

If »=0 then s?¢=4(a, ¢) so c|a, a contradiction. If s=0 then »*=4(a, ¢) so
(r/2)*=(a, c). But (a, ¢) is squarefree, so r/2==1, (a, ¢)=1, and y*=1. Thus
(a’+b'v ¢)/2=a, so a’'=b'=0 (mod2), and by Theorem 1 (¢=5 (mod 8), (i))
L/K has a NRIB.

¢<—3. Here §=+1. From (4.2) we have y*==+(a, ¢). We show that the
plus sign must hold and (a, ¢)=1, for otherwise (remembering that ¢ and (a, ¢)
are squarefree) we have [Q(v/'*(a, ¢)): Q]1=2 and v£(a, c)=r€Q(~/¢), so
¢=-—(a, ¢) and thus c|a, a contradiction. Hence y*=(a, ¢)=1. Note that this
rules out the case c=a=2 (mod4). (There is no RIB in this case.) Now by

(1.8) we have
a, if ¢#1 (mod4),

a’—l—b’ﬁ:{
2a, if ¢=1 (mod4).
From Theorem 1 (examining cases), we see that L/K possesses a NRIB only
when a=1 (mod 4).

¢>0, N(c)=1. From (4.2) we see without loss of generality that §=+1 or
0=+e. As 0=y*/(a, ¢)>0, we have =1 or §=¢.. If (a, c)*1 we show that
f=e. Otherwise =1, [Q(+/(a, ¢)): Q]1=2 and v(a, c)=y=Q(+/¢), so (a, ¢)=c
contradicting ¢+t a. If (a, c)=1 we show that #=1. Otherwise O=¢.=y?
contradicting that e, is a fundamental unit.

If (a, c)=1 then =1 and y*=1. Hence, by (1.8), we have

a, if ¢z#1 (mod4),

a'—i—b’«/?:{
2a, if ¢=1 (mod4).

From Theorem 1 (examining cases) we see that L/K possesses a NRIB only
when

a=1 (mod 4)
or

c=3 (mod4), a=3 (mod4), (=0 (mod2), u=1 (mod?2).

If (a, ¢)#1 then §=¢, and y*=(a, c)s,. Hence, by (1.8), (1.10) and Lemma 3,
we have
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a .
m(z‘—ux/?), if c=£1 (mod 4),

or
¢=5 (mod 8), F(c)=1,

(72‘.’5@_1N7), if ¢c=5 (mod8), F(c)=—1 or ¢=1 (mod §).

Again by Theorem 1, after an examination of cases, we see that L/K possesses
a NRIB only when

a'+b'v ¢ =

_at
(a, ¢)
We note that Theorem 3 extends work of Brinkhuis [1] and Gras [2].

¢=1 (mod 4) or c¢=*1 (mod 4), - =1 (mod 4). O

5. L pure: Proof of Theorem 4

Let L be a pure quartic field so that L=Q(v b+/¢), where b and ¢ are
squarefree integers with (b, ¢)#(+2, —1) and c¢+b if c#=—1. Set K=Q(+ ¢).
Suppose L/K has a RIB and that d(L/K) is squarefree. By Theorem 1 of [9]
and the tables in [3] or [4] the latter assumption implies that

¢=7 (mod 8), b=2 (mod 4).
The first assumption guarantees the existence of y€Ox and §&Uxk such that
2(b, ¢)=70.

We show that #=+1 is impossible. Suppose O=+1 then a’+b'vc¢=
by ¢ /+2(b, ¢) so a’=0. As L/K possesses a RIB, by Theorem 2 of [9], we
see that a’ is odd, a contradiction.

We now treat two cases according as ¢<0 or ¢>0. If ¢<0 we must have
c=—1, 8==+i. Thus a’=Fb/2=1 (mod 2) and L/K has a NRIB by Theorem 1.
If ¢>0 we have without loss of generality 6= +¢,. Further §=2(b, ¢)/7*>0 so
O=¢.. Also N(e))=N(0)=4(b, ¢)*/N(y)*>0 so N(e;)=1. Hence a’=bcu/2(b, c).
As L/K possesses a RIB, by Theorem 2 of [9], a’ is odd, so that #=1 (mod 2),
and thus t=0 (mod2). By Theorem 1 (¢=3 (mod4), (iv), (vi)) L/K has a
NRIB. O

6. Examples

We conclude this paper with some examples.

Example 1. We consider L=Q(~'—17+18+/5). The quadratic subfield of
L is K=Q(+'5). It was shown in [9, Example 2] that L/K possesses a RIB.
Here a=—17, b=18, ¢=5, u=—17+18v' 5 =((—1+3+/5)/2)}, R=S=((—1+3+5)
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/2), T=Q), y=(—143v5)/2, e&,=(1++'5)/2, t=u=1, FG)=1, (a'+b'v ¢)/2=
p/7*=(—143v5)/2, a’=—1, b'=3. Thus by Theorem 1 (¢=5 (modS8), (iii))
L/K has a NRIB, which can be taken as

{1—-\/_5_J_i\/———1+3\/§ 1—«/?_1\/—1+3«/§}
4 2 4 2 2 '

’

Example 2. We take L=Q(~—5, v—1) and K=Q(~/—5). Here a=-—1,
b=0, ¢c=—5, pu=—1, R=S=T=0k, y=1, L/K has a RIB by [9, Theorem 2],
and d(L/K) is squarefree. However, a=%1 (mod4) so, by Theorem 3, L/K
does not possess a NRIB.

Example 3. Let a and b be integers with (a, b) squarefree and a+b2 not
a square in K=Q(). Then L=Q(+a+bi) possesses a NRIB over K if and
only if
a=1 (mod 2), b=0 (mod4)
or
a=0 (mod 8), b=2 (mod 4).

Example 4. Let a and b be integers with (a, b) squarefree and a-+b+v—3

not a square in K=Q(~/—3). Then L=Q(~ a+b~/—3) possesses a NRIB over
K if and only if

a=1 (mod2), b5=0 (mod2), a+b=1 (mod4)
or
a=6 (mod 8), b=2 (mod4), a—b=0, 12 (mod 16).
Example 5. L=Q(~/—7, +/5) has a NRIB over K=Q(~/—7), namely,
{1—|~\f5~ —+/5 }
2 72 )

Example 6. This example was considered by Kawamoto [5, Remark 12].

L=Q(~3+2+/6) has a RIB over K=Q(+/6), namely
[, S(1+ve+v3Tave)},
but, by Theorem 1, L does not have a NRIB over K. Compare Sze [10, Theo-
rem 1].
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