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Abstract

The local scheme for an equilibrium state of an analytic planar dynamical
systems is investigated. Upper bounds of the numbers of elliptic and hyper-
bolic sectors are derived. Methods of singularity theory are applied to obtain
appropriate estimations in terms of indices of maps explicitly constructed from
a vector field.

I. Introduction

The study of geometric differential equations was founded by H. Poincare
in his classical "Memoire" [PCR1] (see also [PCR2], [PCR3]).

At 15 years distance, Poincare's ideas was followed by Bendixson's whose
attention was mainly turned to the local phase-portrait around a critical point.
In his major paper [BDX] Bendixson derived the index formula

where deg(F) is the index of a stationary point of a planar vector field and β,
SC are respectively the numbers of elliptic and hyperbolic sectors. This equality,
known in bibliography as the Poincare-Bendixson formula, gives an interesting
application of topological methods to planar differential equations.

Under some additional assumptions one can give another Poincare-Bendixson
formula

where ne, nh are respectively the numbers of internal and external tangent
points of a vector field to a C, Jordan curve going around a stationary point.
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Consider an autonomous system

χ=Pm(χ, y)+φ(χ, y)=P(χ, y)
(l.i)

! y=Qm(χ, y)+Φ(χ, y)=Q(χ, y)

where Pm and Qm are homogeneous polynomials of degree ra>l,
φf ψ=o(rm), r=Vx2+3>2, for which the origin is an isolated singularity.

It is proved in [BDX] that

(1.2) €<2-m

and

(1.3) Jί<2-m+2.

In further developments, Berlinskii showed in [BER1], [BER2] that one has
always

(1.4) £ < 2 m—1 and e+JC<2-m+2.

He also gave an example such that

£ = 2 m - l .

Moreover, it was proved that

(1.5) if <SΦθ then e+M<2-m.

Problems concerning estimations of the number of separatrices of an equilibrium
state, the number of parabolic regions and the total number of regions in the
neighbourhood of an isolated critical point have also been considered by
Sagalovich in [SAG1], [SAG2] and Schecter and Singer in [S.S.I], [S.S.2],

The following simple example

(1.6)
I $=2.χ y(x*'k+y% k)

shows that the difference between estimation of the number of elliptic regions
given by Berlinskii (2 m—1—4-£+3) and the real number of elliptic sectors
(<£=2) can be made arbitrarily high.

The aim of this paper is to compute the numbers ne, nh and consequently
to give upper bounds for the numbers β and M in terms of indices of maps
constructed explicitly from a vector field (P, Q). We would like to notice that
using methods developed in this article we obtain for the problem (1.6) that

After this introduction our paper is organized in the following way. In
Section 2, we recall relevant material on the Poincare-Bendixson theory. Next,
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in Section 3 we formulate and prove propositions which allows us to express
numbers ne and nh in terms of indices of maps constructed directly from a
vector field (Prop. 3.1).

Subsequently, we derive the upper bound for the number of pairs (β, JC),
which can appear in the Poincare-Bendixson formula (Rem. 3.1). At the end
of this section we apply our theorems to the Conley index theory for planar
dynamical systems. Namely, our results allow us to verify if a sufficiently
small disc centered at an equilibrium point is an isolating block. In such a
situation we give a formula for the Conley index (Prop. 3.3) (cf. [A. F. S.] and
[SFR1]).

In order to illustrate theory derived in this article we consider in Section 4
two examples. For planar polynomial dynamical systems we construct suitable
maps and compute their indices. We use, as a tool, a computer program
written by Andrzej Lecki (Gdansk University) which is able to compute the
local indices of polynomial map-germs / : (Rn

t 0)->(Rn, 0). This program is
based on Eisenbud and Levine results [E. L.] and is briefly described in [SFR2],
The advantage of methods presented here is that our results can be described
in comparatively simple way.

Acknowledgement. This paper was partially written during the first two
authors stay at the Centre Recerca Matematica of the Institut dΈstudis Catalans.
We would like to express our gratitude to Professor Manuell Castellet for his
support and hospitality and to Professor Jaume Llibre for many stimulating
conversations.

2. Pleliminaries

Consider the following planar system

(2.1)
$=Q(χ, y)

where F=(P, Q): (R2, 0)-*(i?2, 0) is a continuous vector field and assume that
at each point (x, y)^R2 sufficient conditions to the existence and uniqueness of
the solutions of (2.1) are fulfilled.

Let C be a positively oriented Jordan curve of class C1 in R2 with the
property that a vector field F does not vanish on C and that F is tangent to C
at only a finite number of points (xt> yt)^C for * = 1, •••, k.

The solution arc (x(f), y(f)) of (2.1) with (*(0), jy(0))=(x0, y«)^C is said to
be internally (or externally) tangent to C at (x0, y0) if there exists an ε>0 such
that (x(t), y(t)) is interior (or exterior) to C for 0 < | f | ^ e .

Let us denote by Ne the set of points (xt, yτ)<^C, the solution arc (x(t), y(t))
of the equation (2.1), (x(0), y(Q))=(xt, yx), is internally tangent to C at (xt, yt).

Similarly, the set of points (xt, yt)^C, the solution arc (x(t), y(t)) of the
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equation (2.1), (x(0), yφ))—(xι, yτ), is externally tangent to C at (xt, yx) will be
denoted by Nh. The number of elements of set Ne, Nh we will denote by ne

and nh, respectively.
If the field F: (Ω, 0)-^(R2, 0) has an isolated zero at Oe/?2 and there are

no other zeros in Ω then the Brouwer topological degree of F will be shortly
denoted by deg(F) instead of deg(F, Ω, 0).

We recall the following famous Poincare-Bendixson theorem which gives a
relation between the index of an isolated singular point of a vector field F and
numbers ne and nh.

THEOREM 2.1 (Poincare-Bendixson). Let ΩaR2 be a simply connected bounded
set with boundary dΩ which is a positively oriented Jordan curve of class C1

satisfying all conditions stated above. Then,

2-deg(F)=2+ne-nh. D

A solution (x(t), y(t))Φ(0, 0) of (2.1) defined on an interval [0, ω) (or an
interval (—ω, 0]) for 0<cw^oo is called a positive (or negative) null solution if
(*(*), y(t))-+(O, 0) as t-^ω (or -ώ). When the solution of (2.1) with (x(0), y(0))
=(0, 0) is unique, then necessarily ω=oo.

Let C be a positively oriented Jordan curve surrounding (0, 0)ei?2. A
solution (x(f), y(t)) of (2.1) is called a positive or negative base solution for C if
(x(t), y(t)) is defined for either ί^0 or t£0, (*(0), 3I(0))GC, (x(t), y(t)) is interior
to C for tΦO, and (x(0, y(0) is a null solution.

Let (xi(t), yi(t)), (x2(t), y2(t)) be base solutions for C. The open set S of
the interior of C with boundary consisting of (0, 0), the arcs (x^t), yi(t)),
{xzit), yS)) and the (oriented closed) subarc Cί2 from (*i(0), 3̂ i(0)) to (x2(0), y2(0))
will be called the sector of C (determined by the ordered pair (xi(t), yi(t)),
(x*(t), y2(t)). It is not excluded that (xi(0), 3^I(0))=(JC8(0), jy2(0)) so that C12 can
be C or reduced to a point.

Consider the case that there exists a solution (xo(t), yo(t)), —oo<t<oof of
(2.1) which is interior or on C for all t and (xo(Wi), 3>o(f+fi))=(*iOO, 3>i(0) for
ί^0, (xo(f+f8), 3Ό(ί+^))=(x2(0, ys(0) for ί^0, for some tu U (^ίi)

The point (0, 0) and the arc (xo(t), yo(t)), — oo<ί<oo, form a Jordan curve
/ with interior /. If S contains /, then it is called an elliptic sector. When
h=t2 (so that (xx(0), 3Ί(0))=(*2(0), 3>2(0))=(x0(ίi), 3^oft)); and C12 reduces to the
point (#o(ίi), 3Ό(̂ i)), then S is elliptic and coincides with /. When t1^t2, S can
contain points not in /.

A sector 5 with the properties that it is not an elliptic sector and that
SκjCί2 contains no base solution is called a hyperbolic sector.

Let us denote by e (resp. M) the number of elliptic (resp. hyperbolic) sectors
(cf. [HRT]). Using this notation one can express another Poincare-Bendixson
theorem in the following way.
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THEOREM 2.2 (Poincare-Bendixson formula). // the origin is the only zero
of F in Ω then

2-deg(F)=2+e-M. D

3. Main results

Throughout the paper we shall assume that F is an analytic vector field,
i.e. functions P, Q are real analytic and that C—dΩ is a small circle centered
at Oei?2.

Define an analytic function S: (R2, 0)—>(#, 0) by the formula

S(x, y)=x-P(x, y)+y Q(x, y).

Clearly, S has a critical point at the origin. Moreover, F(x, y) is tangent to C
at (x, y ) e C if and only if S(x, y)—0. Thus, if S=Q then each solution arc is
a circle.

If SφQ then the set S~\Q)ΓΛΩ— {0} consists of a finite (possibly zero) number
of analytic branches, i.e. connected components, emanating from 0<BR2, where
Ω is a sufficiently small disc.

It is proper to add that each branch of S~1(Q)Γ\Ω— {0} is diffeomorphic to
an open interval and is transversal to every small circle centered at Oeiv?2.
Hence our initial assumption that F is tangent to C at most at a finite number
of points is satisfied.

Define a map Δ: (R2, 0)-+(R, 0), Δ(x, y)=d(ω, S)/d(x, y), where α>(x, y)=
x2+y2. As a consequence of the more general result proved by the third author
in [SFR1] we claim that the number of branches of zeros of S emanating from
the origin is equal to the local index of the map H=(A, S): (R2, Q)-+(R2, 0)
multiplied by two.

PROPOSITION 3.1. Assume that S has an isolated critical point at Oei?2 then

ne+nh=2-deg(H).

Proof. Since S has an isolated critical point at the origin we may assume
that the gradient VS^O everywhere in Ω, except at the origin. Hence, if
(x, y)(=S-1(0)Γ\Ω— {0} then S changes a sign at (x, y). Because S'^O) is
transversal to every small circle then a restriction of S to C also changes a
sign at each (x, y)^CnS~l(0). Therefore n e +w Λ =card Cr\S~1(0)=2'aeg(H). D

The above formula has been originally proved by Kenji Aoki, Takuo Fukuda
and Wei-Zhi Sun in [A. F. S.] (for a generalization to higher dimensions see also
[A.F.N.]).

The authors are awared of the fact that there are other possible ways to
find a formula for the sum ne+nh. Using methods developed in [ARD] and
[WLL] one can prove the following.
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PROPOSITION 3.2. // S has an isolated critical point at 0<ΞR2 then

ne+nh=2-2-deg(VS). D

From the Poincare-Bendixson formula and Propositions 3.1, 3.2 we get.

THEOREM 3.1. Let F=(P, Q): (R\ 0)-> (R\ 0) be an analytic vector field
having an isolated zero at Oei?2. Then

nβ=deg(#)+deg(F)-l,

nΛ=deg(//)-deg(F)+l,
or equivalent I y

ne=deg(F)-deg(VS),

nh=2-deg(F)-deg(yS). D

Notice that having determined numbers ne and nh we are able to give
upper bounds for numbers β and M which appear in Poincare-Bendixson formula.
In particular we obtain the following inequalities

(3.1) max(0, 2 deg(F)-2)^£^deg(tf)+deg(F)-l,

(3.2) max(0, 2-2 deg(F))^:gdeg(//)-deg(F)+l,

or equivalently

(3.3) max(0, 2 deg(F)-2)^<?^-deg(V5)+deg(F),

(3.4) max(0, 2-2 deg(F))^^-deg(VS)-deg(F)-h2.

Remark 3.1. Taking into account the above inequalities we get at most

2-deg(F)+deg(Z/) pairs {β, M) in a case deg(F)^l,

deg(F)+deg(//) pairs (e, M) in a case deg(F)^l,

or equivalently

3-deg(F)-deg(VS) pairs (<?, M) in a case deg(F)^l,

l+deg(F)-deg(VS) pairs (e, M) in a case deg(F)^l,

which can appear in Poincare-Bendixson formula. D

Now let us look more precisely at numbers ne and nh.
Put
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1. Np (~)={(xt, 3>t)eiVe such that vectors (xt, yt) and F(xt, yτ) give a positive
(negative) orientation},

2. nί> (" )— the number of elements of Ni'{~\
3. Ni'(~)={(xι, yτ)^Nh such that vectors (xlf y%) and F(xt, yt) give a posi-

tive (negative) orientation},
4. ni> (~ ) =the number of elements of Ni>{~\

Obviously ni-\-n7=ne and ni-\-ni=nh.
Our purpose is to express numbers ni, nj, ni, n^ in terms of indices at 0

of some explicitly given mappings.
Let us define

K(x, 3θ=det|£ y

A=d(K, S)/d(x, y) and G=(Δ, 5). Since VS(0)=0 then Δ(0)=0, and then G :
{R2, 0)-K#2, 0).

LEMMA 3.1. // 5 has an isolated critical point at the origin then O^R2 is
isolated in G~\0) and

Proof. If (x, y)^Cr\S~\0) then F(x, y) is tangent to C at (x, y), and then
K(x, y)φΰ. Clearly, the number of branches of S~\Q)ίΛΩ— {0} on which K is
positive (resp. negative) is equal to nt+nt (resp. nj+n^).

According to [SFR1], Oei?2 is isolated in G'\ϋ) and nt+nt—n7—nl=
2 deg(G). The function 5 changes a sign in some neighbourhood of every
point (x, y)e5" 1(0)nC which implies the second formula. D

We have obtained the following system of linear equations

?2e++^=deg(F)+deg(#)-l,

ni+nx=l-deg(F)+deg(i/),

Equivalently we can write

nt— n7+ ni- nl=2 deg(G),

nt— n^
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Obviously the above systems are not singular and therefore we have.

THEOREM 3.2. Under the assumptions of Lemma 3.1 we derive

^β+-~(deg(//)+deg(G)+deg(F)-l),

W=y (deg(/y)-deg(G)+deg(F)-l),

nί=~(deg(#)+deg(G)-deg(F)+l),

n*=~(deg(#)--deg(G)-deg(F)+l),

or equivalently

nί=~(-deg(7S)+deg(G)+deg(F)),

ne=j (-deg(VS)-deg(G)+deg(F)),

n ί = γ (-deg(7S)+deg(G)-deg(F)+2),

nϊ=~(-degO7S)-deg(G)-deg(F)+2). D

The number of elliptic sectors determined by arcs of solutions of (2.1) which
give a positive (resp. negative) orientation at their tangent points to C we will
denote by £+ (resp. β~).

The number of hyperbolic sectors determined by arcs of solutions of (2.1)
which give a positive (resp. negative) orientation at their tangent points to C
we will denote by M+ (resp. SC).

Remark 3.2. Let if be a simply connected bounded set with boundary
dΩ=C and assume that F~1(0)Γ\Ω= {0}. If the origin is an isolated critical
point of 5 then

+ ( F ) l . •

Results presented in this paragraph have natural applications to the Conley
index theory. Loosely speaking, Conley's generalized Morse index assigned to
a compact isolated invariant set S is the homotopy type of a pointed topological
spaces, i.e. a space with distinguished point in it. Very roughly, it is defined
in the following way. Let N be a neighbourhood containing 5 compactly in its
interior. An index pair <iV\, iV2> is a pair Nίf N2 of compact subsets of N
satisfying several conditions:
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1) relative to N they are invariant under forward flow i.e. for i—l, 2 Vxo^Nt

and Vt>Q, the point x(t, x0) (i.e. the point on the orbit starting at x0, after
time t has elapsed) is either in Nt or is not in N,

2) ScintCiVAWπiV,)],
3) N2 is roughly the set of points through which orbits eventually leave N

under the flow, i.e. if some point x in Ni eventually (its orbit) flows out
of N then it first passes through N2.

The generalized Morse index of S is the homotopy type

(cf. [CON], [SMR]). (Recall that two spaces A and B are homotopy equivalent
if there exist two continuous mappings φ: A-*B and ψ: B->A such that φ°ψ
and ψ°φ are homotopic to the identity in B and A, respectively.)

Proposition 3.1 can be treated as a criterium which allows us to verify if a
sufficiently small disc centered at Oei?2 is an isolating block for the origin
considered as a stationary solution of (2.1).

Using this proposition together with Poincare-Bendixson theorem (Th. 2.1)
one can compute numbers ne and nh. As an immediate consequence of defini-
tion of isolating block (cf. [CON]) we obtain the following.

PROPOSITION 3.3. // 5 has an isolated critical point at the origin then a
sufficiently small disc centered at the origin is an isolating block for O^R2 iff

Moreover, if deg(VS)<l then, the Conley index of the origin is a homotopy
type of pointed space which is a wedge of one-dimensional spheres and the number
of spheres is equal to — deg(VS).

In the case deg(VS)=l the origin is an attract or {or repeller) and therefore
the Conley index is a homotopy type of a pointed zero-dimensional sphere {or two-
dimensional sphere). •

It is understood in the above proposition that the Conley index is equal to
the trivial pointed space [*, * ] , if deg(VS)=0.

4. Examples

Theory developed in this article can be applied as it is shown in the exam-
ples below.

In the first example we consider a dynamical system for which our results
allow us to determine the numbers of elliptic and hyperbolic sectors whereas
methods known till now give only some estimations of the numbers 6 and 3ί.
On the other hand, it is not true that we can always determine 6 and Si.

In the second example we apply our results to the Conley index theory. We
compute the Conley index of the origin which is an isolated invariant set of a
given dynamical system.
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Example 4.1. Let us consider the following dynamical system

x=P(x, y)=x9+x5 - y4-3- xΊ - y2-3- xz - y&+xz > y*-3 x - y1

Q(x, y)=3 x« - y-x4 - yz+3- x2 > yΊ-y*+3' x* - yh- x4 - yΊ.

We then have

F(x, y)=(P(x, y), Q(x, y))

and

S(x, y)=xlo+x6-y4-3 x8 y2-3-x4 y«-3 x2 jy l o+3 x6 y2

-x4 y4+3'X2'y8-ylo+3-xG>y6.

By Bendixson's inequalities (1.2), (1.3) we obtain the following estimations

and

which can be slightly improved by BerlinskiPs results. Namely, inequalities
(1.4) give us

and

Using the computer program mentioned in introduction we derive

and therefore by Theorem 2.2 we have £ ^ 4 . In this situation we can apply
(1.5) to obtain the following five pairs {β, M) which can appear in Poincare-
Bendixson formula:

(4,0), (5, 1), (6, 2), (7, 3), (8,4).

Now we apply once more the computer program in order to derive the index
of the polynomial H defined in the beginning of the previous section

deg(#)=2.

Thus by Theorem 3.1 we have

ne—4 and nh=0

and consequently by (3.1), (3.2) we obtain

£ = 4 and <#=0.

Example 4.2. For the dynamical system

X=zP(Xj -y) = χ 5_3. χ 3. 3 ; 2 + χ 3. : v 4_3. χ . : y 6

y=Q(x, y)=-3'X6'y3-3 x4'y1 + x4'yδ+x2'y3-3'X2>y5+y'1

we have
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F(x, y)={P(x, y), Q{x, y))

and

S(x, y)=xG~-

Applying again the computer program we obtain

deg(F)=-3 and deg(?5)=-3

and, by Theorem 3.1,

ne—0 and nh—%.

From Proposition 3.3 we conclude that a sufficiently small disc centered at the

origin is an isolating block for {0}. Moreover, the Conley index /ι({0}) is a

homotopy type of the wedge S1VS1\/S\
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