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2-TYPE SURFACES IN A HYPERSPHERE

TH. HASANIS AND TH. VLACHOS

0. Introduction

Submanifolds of finite type were introduced by B.Y. Chen in [4]. This
class of submanifolds is extremely large, including minimal submanifolds of the
Euclidean space and minimal submanifolds of hyperspheres. In the last decade
many researchers dealed with the study of finite type submanifolds.

In the present paper we study finite type surfaces in a hypersphere. We
will review the definition of finite type submanifolds. Let M™ be an n-dimen-
sional submanifold of the unit hypersphere S™ of the (m-+1)-dimensional Euclidean
space E™*! equipped with the induced metric. Denote by A the Laplacian
operator of M™ with sign convention such that A=—d?/d¢* on the real line E.
This operator can be extended in a natural way to E™*'-valued maps on M™.
The submanifold M™ is said to be of finite k-type if the position vector x
admits the spectral decomposition

x=x0+xtl+ +x"k ’

where x, is a constant vector and X, (y=1, -+, k) are non-constant E™"-valued
maps on M™ such that

Axljzzljxlj) thER; 11,1<"' <lzk-

If the constant vector x, is the center of the hypersphere S™ then M" is said
to be mass-symmetric in S™.

In terms of finite type terminology the well known Takahashi’s Theorem
[14] asserts that the submanifold M™ of S™ is of 1-type if and only if it is
minimal in S™ or in a hypersphere of S™. Moreover minimal submanifolds of
S™ are mass-symmetric in S™. From this point of view mass-symmetric 2-type
submanifolds in S™ are the simplest submanifolds next to minimal submanifolds
in S™,

In [8] it was proved that a surface in S°® is of 2-type if and only if it is a
portion of a Riemannian product of two circles of different radii. Moreover in
[9] it was proved that a hypersurface of S™ is of 2-type if and only if the
scalar curvature and the mean curvature are constants.
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The following interesting problem has been posed in [5] by B.Y. Chen:
Do there exist mass-symmetric 2-type surfaces which lie fully in an even-
dimensional hypersphere ?

In [1], M. Barros and B.Y. Chen proved that a compact stationary mass-
symmetric 2-type surface in S™ is flat and lies fully in S° or in S?. Furthermore
they proved that there exist no mass-symmetric 2-type surfaces which lie fully
in S*. After that O.]. Garay [7] showed that a mass-symmetric 2-type Chen
surface in S™, that is a surface with zero allied mean curvature vector ([3],
p. 203), is flat and lies fully in S® or in S°® or in S” unless it is pseudoumbilical.

In [12] Y. Miyata based on a powerfull result of R. Bryant [2] treated
mass-symmetric 2-type surfaces M?%(¢) in S™ with constant Gauss curvature c¢
and proved, among others, that: Let M?*(c) be a mass-symmetric 2-type surface
in S™ with 0<4,<4, then, (i) there exists no such surface with ¢<0 and (ii) if
¢=0 and M?(c¢) lies fully in S™ then m is odd. Finally M. Kotani [11] showed
that if M is a compact mass-symmetric 2-type surface of genus zero which lies
fully in S™ then m is odd.

In this paper we will discuss this problem. The paper is organized as
follows. In the first paragraph we prove some basic lemmas that will be
needed in the proofs of the main results. In the second paragraph we give
some local results. Specifically we prove that: If M is a mass-symmetric 2-type
surface which lies fully in S™ and dim N,<2, where N, stands for the first
normal space of M in S™, then m is odd unless M is pseudoumbilical. In the
third paragraph we prove global results for mass-symmetric 2-type surfaces in
S™. In particular we prove that: If M is a complete mass-symmetric 2-type
surface in S™ with non-negative Gaussian curvature then M is flat and m is
odd unless M is pseudoumbilical. Finally in the last paragraph we prove that
there exist no mass-symmetric 2-type surfaces which lie fully in S°.

1. Basic lemmas

Let M be a surface of the unit hypersphere S™ of E™*! centered at the
origin O. Denote by H, A, D the mean curvature vector, the Weingarten map
and the normal connection of M in S™ respectively. Moreover H, A and D
denote the corresponding quantities for M in E™*'. We choose a local ortho-
normal frame field {e,, e; **-, em,1} On M such that e, e, are tangent to M,
e;=x and H=|H|e,, where x is the position vector field with respect to the
center O. Denote by ®, w, the dual frame of e;,, ¢;. The connection form
s A, B=1,2, -, m+1 is given by w,s(X)=< ye4, ep), where V stands for
the usual Riemannian connection of E™*'. By Cartan’s Lemma we have

2
W= 2 hw;, a=3, 1=1, 2,
=1

where h¢ are the coefficients of the second fundamental form.
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The surface M is said to be pseudoumbilical at the point peM if the
Weingarten map A, is proportional to the identity map. Moreover M is said to
be pseudoumbilical in UCM or pseudoumbilical if M is pseudoumbilical every-
where on U or everywhere on M, respectively.

The mean curvature vector H is given by
ﬁ:H—eg, 2H=(tr A4)e4-

Henceforth we assume that M is mass-symmetric 2-type in S™. Then we have
the spectral decomposition

x=x1+%, Axi=Ax, Axe=AXx:, A<As.

Because of the main result in [8] and Theorem 2 in [1] we may assume that
m=5. Moreover from our choice of the frame we have tr A,=0 for «=5 and
so we may set hfy=—h$=p, and h=h§=y,. Thus we have

a=(Ty D) A=l ) ana a,=( _he) for azs.

12 Nag ta
Using Chen’s formula ([4], Lemma 4.1, p. 271) and the above expression for x
we easily obtain the following necessary conditions for mass-symmetric and
2-type surface in S™ (m=5).

(L.1) (tr A)*=2(A;+4;)— A A —4=(2—2)(2—1,),

(1.2) 2 Apeie,=0

(1.3) tr A3+ | De,|*=2+2,—2

(1.4) tr(A,Ag)—tr Vo, +<De,, De,>=0, for any az=5,
where

{Dey, De,>= Ej]l<Deie4, D.e,> for any a=4.
and
tr 0 =3 v DY (el@ia(e) —@iaV o e.)) .

LEMMA 1.1. Let M be a mass-symmetric 2-type surface in S™ (m=5). The
Weingarten map A, is a Codazzi tensor, that is A, satisfies equation V e Ade.=
V.,Ader.

Proof. Since D,;e,=3 425 0sa(er)e,, from (1.2) we have

(1.5) azg)s(ww(el)pa+w4a(ez),aa)=0 and a@ﬁ(wm(el)pa—ww(ez)ya)=0.
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The last equations imply Ap.,e.=Ap,e; and so from the Codazzi equation
ey ey
(Ve,A4)ez“(VezAA)elelge,ez—A25491
1 2
we conclude the desired result.

Let N,(p) be the first normal space of M in S™ at the point peM. Con-
sidering the linear map &§—A. from the normal bundle (T,M)* of M in S™
into the bundle whose fiber at pM is the space of symmetric linear trans-
formations of T,M we conclude that dim N,(p)<3. It is obvious that e, belongs
to Ni(p) for all peM.

Consider, now, the linear map L,: T ,M—(T ,M)* defined by L,(X)=Dxe,.
We set d,=dim(L (T ,M)). It is obvious that d,<2 everywhere on M. In the
following let

M,={pesM:d4d,=0}, M,={psM:d,=1} and M,={peM:d,=2}.
It is clear that M, is an open subset of M.

LEMMA 1.2. Let Int(My)#0. Every component V, of Int(M,) lies fully in
a totally geodesic S*® of S™.

Proof. The vectors D, e, and D,e, vanish identically on V,. Since M is
2-type from equation (1.1) we conclude that tr A,=const.#0. So V, has parallel
mean curvature vector in S™. According to a result due to B.Y. Chen and
S.T. Yau (see for example [3], p. 106), V, lies in a sphere S® of S™. Then,
the main result in [8] implies that V, is an open portion of a Riemannian
product of two circles of different radii in a great sphere S® of S™.

LEmMMA 1.3. Let Int(M,)#0. On every component V. of Int(M,) we may
choose es, es, -+, en S0 that A;=0 and A,=0 for any a=8. Moreover D, e,~=
o(ees, Deyes=wis5(es)es and @is(e)+wis(e)#0 everywhere on V.

Proof. The vectors D.e,, D,e, are linearly dependent everywhere on V,
and at least one of them is nonzero. Denote by e; its common unit direction.
Then we have

D.e,=wi(e)es and  D.ei=wis(es)es

and i;(e,)+wis(e;)#0, everywhere on V,. In this case from equation (1.2) we
find
@45(e1) ps+@ys(ex)ps=0 and  wis(er)ps—wys(e2) ps=0

from which we obtain y;=p;=0. Thus A;=0, that is ¢; nowhere belongs to
the first normal space. Then we choose ¢, ¢, so that eg e,=N, and thus
e,&N, for any a=8.
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LEMMA 1.4. Let M;#0. On every component Vy of M, we may choose e,
e so that

D, ei=wis(e)es, Deei=wi5(es)es+wies)es and 45(e1)  046(e5) 0

everywhere on V,. Moreover we may suppose that V, consists in open neighbour-
hoods Vg, Vi such that one of the following holds

As#0, As#0 everywhere on V.

As=0 and As=0 everywhere on V.

Proof. Because the vectors D, e,, D.,e, are linearly independent everywhere
on V, by Gram-Schmidt orthogonalization process the first part of Lemma is
established. For the proof of the second part it is necessary to prove that there
is no open set of V, where A;#0 and A,=0 or A;=0 and A;+#0. In fact if
such an open set there exists, then from equation (1.2) we have

0s@a5(en)+ pswis(e2)=0, pswis(e;)— 0s@s5(e2)=0
or
ww(ez)[ls:() , 0)46(32)106:0

which are impossible.

Remark 1.5. In the following we refer quite often to neighbourhoods such
as V,, Vi, Vi, Vy and V,, which are defined in the above Lemmas.

In order to state another lemma which is useful in the proof of global
results, we restrict to a nowhere pseudoumbilical neighbourhood U of M. In
this situation we may choose e,, ¢, as the eigenvectors of A, with correspond-
ing eigenvalues k,, &, (k;>k,). In that case we have, k,+k,=tr A,=const.+0,
as it follows from equation (1.1) and because M is of 2-type.

LEMMA 1.6. Let M be a mass-symmetric 2-type surface in S™. In a nowhere
pseudoumbilical neighbourhood U the curvature form w,, and the Gaussian curva-
ture K are given by

1 ebi—ky) 1 e(ki—k)

(1.6) YT Thimky T2 ki—ky

1.7 K=—%A log(k,—ks).

Proof. From our choice of the frame we have w;,=Fkw;, k,+k,=const. and
O10= 0aW1F fLa®s, Wso=p.01—p,w,. Because of (1.6) we find

Zwla/\wwt:() and ZwZa/\wcu:O
azb azb

and thus
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dw=01: N\, AOu=0s AW
The last equations imply (1.6). By using (1.6) and the Gauss equation
K=es(w:5(e,))—e1(@15(€2)) — (@15(e1))* — (@12(e2))®

we conclude (1.7).

2. Local results

Let M be a mass-symmetric 2-type surface in S™, m>=5. In this section we
prove some local results.

PROPOSITION 2.1. There is no neighbourhood of the form V, which lies fully
in S™.

Proof. This is a immediate consequence of Lemma 1.2.

PROPOSITION 2.2. Let M be a mass-symmetric 2-type surface in S™, m=5.
If M has a neighbourhood of the form V. then M is nowhere pseudoumbilical in
an open set of V, and V, is flat.

Proof. By Lemma 1.3 we may set w,=p.0,+[.0., where B3+ B5+0. By
exterior differentiation of w,,=0 and w,,=0 we get respectively

_/920’56(91)+,31w56<92):(k1"kz)/ls
and

— Bawsi(e1)+ B1@sq(es) = (k1 — ko) pta .
Moreover (1.4) for a=6 and a=7 becomes respectively

,310)53(31)+,32w56(02>:(k1*kz)Ps
and

B1@s(e))+ Bawsq(es)=(k1— ko) 0, .
Hence we find

_ kl"_kg _
wse(e;)= ﬁ%'l‘ﬁg (B106— Bapte)
kl_kg
w56(32)——m(ﬁlﬂ6+ﬁzps)
kl'—kz
wm(el)—m(ﬁlm"ﬁzm)

kl_kz
ws7(92)—m(ﬁlﬂ7+ﬁ2‘07) .

Differentiation of w,;=w.,=0 gives
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k1,82+Pewss(ez)—#sw65(91)+vavs(ez)—/hwm(el):o
—,@1kz+/ls(065(ez)+Pawss(el)+#7w75(82)+P7w75(31):0'

Substituting wes(e;), wes(ez), wqis(ey), wis(e;) into the last two equations we get
respectively

kifB.— ﬁz(Pe+ﬂe+P7+ﬂ7) >=0

o

k
kzﬁl+ﬁl(p§+ﬂ%+p%+ﬂ ‘BI-I-‘BZ =0.

Because k,+k, is a nonzero constant from the last equations we infer §8,8,=0.
Moreover from these equations we conclude that M is nowhere pseudoumbilical
in an open set of V,. Without loss of generality we can suppose that 8,=0;
then w,;=p.0, and by exterior differentiation we find

ez(ﬁx) )
B

e kﬁ?kz):o‘

Furthermore (1.4) for a=5 and taking account that A;=0, becomes
91(131)+,81w12(e2)=0

from which by using (1.6) we obtain

(5250

Hence there is a constant d such that fi=d(k,—k,). Now, using (1.3) and (1.1),
we easily, deduce that k,, k,;, 8, are constant. The flatness of V, follows now
from Lemma 1.6.

ws(e)=

Using (1.6) we get

PROPOSITION 2.3. Let M be a mass-symmetric 2-type surface in S™, m=6.
If M has a neighbourhood of form Vg, then this lies fully in a totally geodesic
sphere S°® of S™.

Proof. In V, by using Lemma 1.4 we set w;=p10+ B0, and @,=7.0,
where B,7:#0, everywhere in V. Moreover pi+pi=0, pi+p%i+0 and A,=0
for any a=7. Since w,,=®,,=0 for any a=7, (1.2) implies

(2.1) B10s+Bapts+12t6=0
2.2) Bipts— Beps—7206=0.

Because w,,=0 for any a=7, relation (1.4) implies
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(2.3) B1@as(e1)+ Be®as(e1)+71Was(€2)+12Was(e2)=0, az=T7.

On the other hand by exterior differentiation of w,,=w;,=w®.,=0, a=7 one finds
2.4 B10,5(e2)— Bawas(er) —720q6(e1)=0,

(2.5) 0@ a5(81) + 5@ a5(22) - P 6@ a6(€1) + pewas(e2)=0,

(2.6) — 50 45(€1)F P50 45(€2)— fteWas(e1)+ 0eWas(€2)=0.

We consider (2.3), (2.4), (2.5) and (2.6) as a linear system with respect to w,s(e,),
Wa5(2s), Wae(er), Wae(es). Denote by T the determinant of the system. We claim
that T is everywhere positive on V,. In fact by computation we find

T:(,B%'f“,Bg)(Pg+#%)‘l‘T%(Pg‘*‘[lg)‘f“zﬁlh([lsps_Ps/«ls)_zﬁz)’z(Pspe““#sﬂs);
which by using (2.1) and (2.2) becomes
T=(B+ B0+ ) +1H ot + D)+ 21+ 0D,

which proves the claim. So, the system yields ws,=ws,=0, for any «=7. But
w.,=0, for any a=7. It follows that the first normal space which is spanned
by e, es, es is parallel in the normal bundle of M in S™. So, the codimension
of V,, is reduced to 3 by Erbacher’s Theorem [6] and V, lies in a totally
geodesic sphere S® of S™.

Since in the following we shall apply at times the result of Y. Miyata [12]
the following lemma is necessary.

LEMMA 24. Let M be a mass-symmetric 2-type surface in S™  Then
0< <2< 4,.

Proof. Taking account of (1.1) one finds

kit+ky)? | (ki—ky)? A1A ki—Fky)?
k%‘l‘k%:( 1_; 2) 'l"( 12 2) =21+22_ 122_2+( 12 2)
and because of (1.3) we have
(Ri—ky)? o A1he
_2 -+ |De,|*= 2

which proves the assertion, by using (1.1).
Now we are able to prove the following.

THEOREM 2.5. Let M be a mass-symmetric 2-type surface in S™, m=5. If
dim N.=<2 and M lies fully in S™ then m is odd unless M is pseudoumbilical.

Proof. If m=5 there is nothing to prove. So, we may suppose m:=6.
Because of Propositions 2.1 and 2.3 M cannot has neighbourhoods of form V,,
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Ve which are fully in S™ with m>=6. So, there is neighbourhood of form V,
or of form V,, which lies fully in S™ with m=6. In the first case V, must be
flat by Proposition 2.2. But then a result due to Y. Miyata ([12], Theorem and
its Corollary) implies that m is odd.

From now on we suppose that M has a neighbourhood of form V,, nowhere
pseudoumbilical which lies fully in S™ with m>=6. Moreover, because of
dim N,<2 and ¢,N, we may assume that py=ps=0 everywhere on V.. We
set Wy=P10;+Pw. and w,=7.w., Where B,y,#0 by Lemma 1.4. Taking exterior
differentiation of w;;=w.;=0, we get

010:5(e1)+ prowrs(es) =B k2

— pa@r5(€1)+ p1wr5(es)=—k 1 .
Similarly, from w,;=w.,=0 we obtain

0:016(e1)+ prawq6(e2)=0

— peWqs(e1)+ Pwqs(er)=—R 172

We claim that p34p7#0 on an open subset of V.. Assume in the contrary
that p3+p3=0 in an open subset VCV,. Then it follows from the above
relations that k,-k,=0 and since k,+%,=const. we would have from Lemma 1.6
that K=0. On the other hand from Gauss equation we find K=1 which is
impossible. Therefore we get

1
(075(91)=W<k2ﬁ1{07+k1/92[17)

1
wn(ez):m(—klﬂzpv"‘ kafiptn)

1
0)76(91)=mk17’2#7

Wq6(es)=— Riye07.

1
o5+ 7
Differentiating w,,=0 we get
(kz—kl)/l7+ﬁlww(ez)_ﬁzwm(el)_)’20)67(91):0-
Moreover (1.4) for a=7 becomes
(k1“kz)P7+/910)75(31)+,32(075(ez)+7’2(076(92):0~

Substituting ®.s(e1), ®.s(es), w.s(e;) and wq¢(e;) into the last equations we obtain

1
2.7 (kl""kz)[h‘i";g_*_—‘ug(_klﬂlﬁgﬂv"'kzﬂ%pﬁ_kz,Bl,szr‘klﬁggh—k,)’%;h)-——o



2-TYPE SURFACES IN A HYPERSPHERE 35

1
(2.8) (kl_kz)P7+W(kzﬂ%P7+klﬂxﬁzﬂv—klﬁ%{h_ k2,31,82/17— le%/h):O .
7 7

Eliminating the terms (k,—kz)y, and (k,—ks)p, from (2.7) and (2.8) we find
B:8:=0 and thus B,=0. Hence (2.7) and (2.9) give

_ 2,31 17’2:
(2.9) ki—ky+ p 0.

Differentiating w,;=p:w; we obtain
—82(,31)+,310)12(31):T2(056(91)

and using (1.6) we get

__ 2B
eg( Bi— ) Fi—F, wse(er) .
On the other hand (1.4) for «=6 on account of 8,=0 and (1.6) becomes

7 2Biys
(kl—k ) Tk, esen)

e(fimp)=0-

By a similar argument on w,;=7.0,, (1.4) for «=5 and (1.6) we also have

Bi—ri
e‘( Ei—k, )
Consequently,

(2.10) ‘B%—T§=d(k1—kz)

Therefore

where d is a constant. Eliminating 3, and 7, from (1.3), (2.9) and (2.10) we get
203+ )+ b3+ R =A+ do—2—d (k1 + k)

which implies that the Gaussian curvature of V,, is constant, since k2,4 k,=const.
Using again the result of Y. Miyata [12] we infer that m is odd and the proof
is completed.

COROLLARY 2.6. Let M be a mass-symmetric 2-type surface in S™. If M
has flat normal connection and lies fully in S™ then m is odd unless M is
pseudoumbilical.

Proof. 1t is obvious that the flatness of the normal connection implies that
dim N, <2.
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3. Global results
In this section we give two global results.

THEOREM 3.1. Let M be a complete mass-symmetric 2-type surface in S™.
If M has non-negative Gaussian curvature and lies fully in S™ then it is either
pseudoumbilical or flat. In the last case m is odd.

Proof. Since M is complete with Gaussian curvature K=0 by a theorem of
A. Huber [10] we know that M is either compact or parabolic. At first we
assume that M is compact. If K is not identically zero then M is homeomorphic
to S®. Therefore by a result of M. Kotani [11] m is odd. If K=0 identically,
then the conclusion follows from the result of Y. Miyata [12].

Now assume that M is non-compact and parabolic. We know from Lemma
1.1 that A, is a Codazzi tensor with constant trace, by using a result of B.
Wegner [13, Satz 1] we get

3.1 —%A tr At=K(ky— kot |V A, .
Since K=0 the above equation implies that tr A% is a subharmonic function on
M. On the other hand from Gauss equation we obtain

tr Ai<4(1H|*+1).

Therefore tr A? is bounded from above. Consequently tr A? is a constant since
M is parabolic and thus k,, k, are constants. It follows then from (3.1) that
K(k,—Fky)?*=0. So M is either pseudoumbilical or nowhere pseudoumbilical. In
the last case using Lemma 1.1 we infer that M is flat and applying once more
the result of Y. Miyata [12] we conclude that m is odd.

THEOREM 3.2. Let M be a compact mass-symmetric 2-type surface in S™
with non-posttive Gauss curvature K. If M is nowhere pseudoumbilical and lies
fully in S™ then it is flat and m is odd.

Proof. From our assumption and Lemma 1.1 we have Alog(k,—k;)=0 on
M. By the compactness of M and the maximum principle we obtain k,—k,=
const. Since k;+k,=const. we get that k,, k, are constant on M. Appealing
again to Lemma 1.1 we deduce K=0 on M and so on.

4. A non-existence theorem

In this paragraph we prove the following non-existence result.

THEOREM 4.1. There exist no mass-symmetric 2-type surfaces which lie fully
in S°.
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Proof. By the proof of Theorem 2.5 it is enough to consider the case
when there is a neighbourhood of the form V,, where M is pseudoumbilical.
By Lemma 1.4 we may suppose that

a9, aman, 4 0)

and @;=p10,+B.0., w=7.0, Where B,7,#0 everywhere on V,, and k, is a
nonzero constant. Differentiating w,;=0, @,;;=0, w,,=0, w,,=0 we get respec-
tively

4.1) 01wrs(es)=—k: B,
4.2) 0:w-5(e;) =k, B,
4.3) 0wre(e)=—"Fk.i7.
“.4) 0:@1e(e)=0.

It is obvious that p, is nonzere everywhere on V,,.
Taking exterior differentiation of w,,=0 we obtain

(4.5) ﬂ1w75(92)_ﬁ20)75(31)_7’2(076(31)20 .

Furthermore (1.4) for a=7 becomes
(4.6) ﬂ1w75(91)+,32(075(92)+7’2(076(32>=0 .

Substituting wqs(e,), ws(es), wqle)), wiele,) from (4.1), 4.2), 4.3) and (4.4) into
(4.5) and (4.6) we get respectively

B.f:=0 and Bi—pi=0.

From the first of the above equations we conclude that 8,=0 and so Bi=yi.
Then (1.3) implies that 8, and 7. are nonzero constants.

Taking, now, exterior differentiation of ws=p0w, and w,=7.0. We get
W= *+w;; and so, using dw,,=—Kw, \w,, we obtain

K=iﬂf(—§§—-—1).

On the other hand
K=1+k}—p03}.

Comparing these equations we deduce that p, is a constant and moreover K is
a nonzero constant. So we have a mass-symmetric 2-type surface with a con-
stant Gauss curvature which lies fully in S® a contradiction of Y. Miyata [12]
result. This completes the proof.
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