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ON THE ZEROS OF FUNCTIONS WITH

FINITE DIRICHLET INTEGRAL

KRZYSZTOF BOGDAN*

Abstract

We characterize subsets A of the unit disc in the plane such that every
Blaschke sequence with elements in A is the sequence of zeros of an analytic
function with finite Dirichlet integral.

Also, assuming that arguments are uniformly distributed independent
random variables, we characterize the moduli of sequences which are almost
surely zero sequences for the same function family.

1. Introduction

We consider the Dirichlet space j0=.0(Δ) of functions / analytic on Δ=
with finite Dirichlet integral

'dm.(l) ll/H2=jΔl/'(*)Γ

By m we denote the planar measure on Δ. A simple computation shows that

if /(z)=ΣS=o anzn is analytic in Δ, then

(2) l l / U 8 = * Σ n | α n | 2 ,

and so 3) is contained in the Hardy space H2. In particular, this implies that

every sequence {zn\ of zeros (counting multiplicities) of a function f ^.3)

(i. e. a zero sequence for 3)) necessarily satisfies the Blaschke condition

(3)

It is well known that (3) and the condition

(4) - Γ \ogά\st(Zte
u)dt<oot

J-π
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characterize the sequences of zeros (counting multiplicities) Z = {zn\ of functions
in the classes Lipα(Δ), a>0. (As usual, dist above denotes the Euclidean dis-
tance on the plane.) Moreover, (3) and (4) imply that there exists an analytic
function / ^ 0 having Z as zeros, with all its derivatives bounded in Δ. This
result was proved in [10] and, indepedently, in [8] (see also [4] and [7]).
Consequenly these conditions are sufficient for the existence of such a function
/ G ί ) . A necessary condition cannot be expressed in such a way because there
exists a zero sequence for 3), which is at the zero distance from every point
of the boundary T=Δ\Δ of Δ, see below. (It was proved in [11] that for / ^ 0 ,
/ ' e / / 1 , (4) necessarily holds; see also [5].)

DEFINITION 1. We call ΛdA a Blaschke set for 3) if every Blaschke sequ-
ence with elements in A is a zero sequence for 3).

Results proved in [4] and [7] show that a radial subset Z of Δ (i.e. the
union of radii) satisfies (4) if and only if every Blaschke sequence in Z is a
zero sequence for 3). We are strenghtening this assertion by the following
theorem.

THEOREM 1. A set AdA is Blaschke for 3) if and only if

(5) ~ ^ l o g d i s t <^> eu)dt<oo .

Moreover, if (5) holds then there is an outer function F<Ξ3) with the property
that BF^3) for every Blaschke product B with zeros in A.

Most of this paper is devoted to the proof of this result. The main tool
we use is the formula for the Dirichlet integral given by Carleson in [2] :

(Q\ II f | | 2__ J l Γ * y> 1 — k n l 8 , f( < tv , 8 , . , _1_Γ* ΓΛ \f(βU)\2d
2 J - π I βlt — Zn 12 4J-JrJ-ff O f 2̂

_ 2 ~

7Γ Jo G 2 ΐ J-π

sin

where

Here {zn) denotes the sequence of zeros (counting multiplicities) of / ; s is the
singular measure of /, and C is a constant of modulus 1. Note that if / =
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CBSF is the above canonical factorization of / into a constant multiple of the
Blaschke product, the singular factor and the outer part respectively, then (6)
yields

(7) \\f\\2=(\\BF\\*-\\F\\η+(\\SF\\*-\\F\\2)+\\F\\\

each summand being nonnegative. The Jensen inequality and (6) yield the fol-
lowing important necessary condition on zero sequences {zn\ for 3):

see [3]. A much stronger condition

(9) Σ V-<°°,

where rn—\zn\, as shown by Shapiro and Shields in [9], is sufficient for {zn\
to be a zero sequence for 3). Conversely, it was proved in [6] that if a sequ-
ence of numbers r n e(0, 1), n = l, 2, •••, does not satisfy (9), then there is a
sequence of numbers #n<=(—π, π] with the property that zn—rne

iθn, is not a
zero sequence for 3). Now, we regard each θn above as value of a randon
variable θn. In this probabilistic setting we have the following result.

THEOREM 2. Let {θn} be a sequence of independent random variables uni-
formly distributed on( — π, TΓ] let rn^(0, 1) and Zn — rne

iΘn, n — 1, 2, •••. // (9)
holds then each realization of \Zn\ is a zero sequence for 3). Conversely if (9)
fails to hold then almost surely \Zn) is a not a zero sequence for 3).

2. Proof of Theorem 1

D E F I N I T I O N 2. For z=reιφ(ΞA, we write Sz={w=peισ<=A: ρ£r, \φ—σ\<

1/2(1-|θ)}, and we define A = \JzζΞASZ) for Ad A.

We need the following estimate

(10) dia-rγ+φ^^le^-rl^a-rγ+φ2, re[0, 1), φ<Ξ(-π, ΛΓ] ,

(some CiX)) which is an easy consequence of

If z—re%φ^A, we write, as usual, Pz for the Poisson kernel



10 KRZYSZTOF BOGDAN

LEMMA 1. There is a constant C2<°° such that for all 2-eΔ,

(11) PM^Cz-^-^-P^), ίe(-π, π] .

The derivation of (11) from (10) is straightforward and we skip it here. We

observe that (11) is equivalent to \eil-z\2 £ C 2 (l+ |z|)/(l + |w\)\e u -w\\ fe=

( - π , π ] . It follows that dist(Λ, eu)^ά\$t(A, e " ) ^ V2C^dist(Λ e"), ^ C Δ , and

(12) - Γ logdist(A eu)dt<oo if and only if - Γ logdist(A, eu)dt<oo .
J-ff J-7Γ

LEMMA 2. /I s#ί ^CΔ is Blaschke if and only if A is Blaschke.

Proof. If A is a Blaschke set then 4̂ is so, since Ad A.
Now assume that A is a Blaschke set. Let {αn} be a sequence of elements

of A with 2 ( 1 — l#»l)<°°. Let {zn} be a sequence of points in A such that
an^SZn for every n. Also, let ρn — \_(l— |α n | ) / ( l— | z j ) ] be the integer part of

|). Notice that

2 l - |

because (1— |α n | ) / ( l— | z n | ) ^ l . We construct an auxiliary sequence Z, replacing
each an in the sequence {an} by pn occurrences of zn. By (13), Σ/>»(!—1^1)
^ Σ ( l — l « n l ) , and so Z satisfies the Blaschke condition. Let B—B(Z) be the
Blaschke product for Z. Our assumption on A implies that there is an outer
function F^£D (see (7)) such that BF<=£). In particular, by (6),

Let / be the Blaschke product for {an\. Applying (6) gives

-*» \eu-an\

We claim that the second term is finite. Indeed, by Lemma 1 and (13),
( 1 - Ia n 1 2 )/ |e u -a n \ 2 ^2C2p n ( l-\Zn\ 2 )/\e u -z n \\ This combined with(14), proves
the assertion. D

DEFINITION 3. Fix ^4cΔ and set

Jn=lte(-π,πl: <\-2-»)eu<ΞA), n=l, 2,

We state below several simple properties of the sets Jn.

(15) Jn is a finite union of disjoint open intervals / of length | / | ^ 2 " 7 i ,

(16) ΛZD/ 23/ 3Z). . ,
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(17) Σ l/»l=Σ»l/»\.Λ,+il + °° lim|/I,|,
7 1 = 1 7 1 = 1 7l->oo

(18) - Γ logdist(i, eu)dt<^ if and only if f] | / J < c o ,
J-π n = l

with the usual convention CXD 0 = 0 in (17).
Let us explain why (18) holds. Consider the radial distance d :

d(A, eιt)=mi{ιc : (l—κ)eu^Ά\, fe(—π, π] .

We easily observe that there is a constant C3<oo such that

(19) dist(Λ, eu)^d{A, eu)^C,ά\st{A, ext), t*Ξ(-π, π~] .

For AΦQ, the definition of d and (17) yield

Σ IΛI=ΣΛ|/n\/»+il+oolim I / J ^ - Γ log2d(Ά, eu(dt
ni π i n jπn = i

Hence by (19), (18) is proved.

DEFINITION 4. We write Rn for the difference Jn\Jn+ι and R% for the
union of all the connected components / of Rn satisfying | / | >2~ ( 7 l + 3 ).

It is clear that Rn is a finite union of pairwise disjoint intervals and points.

LEMMA 3. We have Σ ^ n ^ ί K ω %f and only if Σ>n=in\Rn\<oo.

Proof. Let Rs

n be the union of all those (connected) components of Rn

which have length less than or equal to 2~(7l+3) (so that Rn — R^\jRs

n) and let
cn denote the number of such components. Fix a component / of R*n. Let P
be the first endpoint of /. (We adopt the natural orientation of T^(—π, TΓ].)
By definition /Γ\/7l+i==0. Also, P is in the closure of Jn+1 since otherwise | / |
;>2~(n+2) (a sketch of A in polar coordinates may be useful). Note that P is
the (second) endpoint of a component, say IP, of Jn+1, and, by (15), | / p | ^
2"(7i+1). While passing from Jn+ί to Jn+2, each components of Jn+ί gets smaller
by at least 2 2"^+3> i.e. | M / B + 2 | ^ 2 2"^+ 3 ), therefore |/?n+il = l/»+i\/n+sl^
2-<n+2)cn, and so \R'n\ ^2-<n+2)cn£l/2\Rn+1\. Then

(20) Σ i

which yields
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= ^ - Σ « l # J + -^Σ \R»\,
Z π=i Z w=l

and the desired conclusion follows. D

LEMMA 4. // A is a Blaschke set then —\ logdist(Λ eu)dt<oo.
J-π

Proof. Let A be a Blaschke set. We first prove the lemma under the as-
sumption lim^ool/J^O. For n—\, 2, •••, consider the finite sequence Zn of all
those points ZSΞA, which are of the form z=(l—2-n)exρ(ιfc2- ( n + S )), fe=0, 1, •••,
2n + 8—1, and such that £ 2 - ( n + 3 ) e # £ . Let Mn be the number of those points.
Also, for each component / of Rk, let ct be the number of elements of Zn with
^2" ( n + 3 ; e/( so that Mn—^Σnd). Observe that, by Definition 4, c/^1, and, more-
over, ( l / 2 ) | / | 2 π + 3 < c / ^ 2 | / | 2 n + 3 , which yields

Let Z = {̂ n} denote the sequence obtained by putting all the sequences Zn

together. We claim that Z satisfies (3). Indeed,

Σ Σ ( 1 - \z\)= Σ Mn2~n^ Σ 2 | i?έ |2 w + 3 2"^32π .
7i=l Zn n = l n = l

(If S is a sequence, Σ-s is the sum taken over its elements.) Again, let / be a
component of R%. For each ί e / , there is an element z~reιφ of Zn such that
\φ-t\<2-<n+*\ We apply (10) to get

(l+2-»)

By the assumption on A, Z is a zero sequence for the class W, and the same
is true for the sequence Z/ obtained by adding z=0 to Z. Then (8) implies

= log2Σ(»-l) | f l ί |^ log2Σ»|Λί |-2Jrtog2.
n=i 7i=i

By Lemma 3, (17) and (18), we get the desired conclusion. The proof will be
complete when we show that if limΛ_»oo l/πl^O, then A is not a Blaschke set.
Assume that the intersection /«>—Ππ=i/τι is of positive Lebesgue measure. We
claim that there is a sequence {εn} of positive numbers satisfying
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and a collection \ίn\ of disjoint intervals in (—π, π~] such that

|/»l=e», /nΠ/oo^0, n = l, 2, - . .

We do not give detailed construction here. For φn^InΓΛjco, we put zn=(l—εn)etφn,
to obtain a Blaschke sequence in A for which, by (21) and the method discussed
above, (8) fails to hold. It follows that A is not a Blaschke set, which com-
pletes the proof. •

Let us remark that the idea of using (8) in investigation of zeros of func-
tions in the class 3) is due to Carleson (see [3], [4]).

LEMMA 5. // l > ε > 0 and g(=C1+ε(T) is nonnegative, then the Poisson inte-
gral of g is 0 ( 1 - |z |) on the set W={z=retφ^A: l-r^g(φ)}.

Proof. Let 0 < ε < l and g£ΞC1+ε(T), meaning that g^C\T) and g'e=Lipβ(Γ).
By Taylor's formula, (10) and a simple change of variables we get, for * =

^ ^ [ ^ ^ ^ ^ ^

provided z<=W. This completes the proof. •

Proof of Theorem 1. If A is a Blaschke set then Lemmas 2, 4 and (12)
clearly show that (5) holds.

Now assume that (5) is satisfied. Let Z be a Blaschke sequence with ele-
ments in A. Then, of course, we have (4), and, by the result in [10], there
is an analytic function /<ΞC°°(Δ), vanishing precisely on Z. Clearly f^3).

To prove the second part of the theorem, we proceed as follows. Let A
be a Blaschke set. Suppose that there exists an outer function F^3) such that

(22) P,[ |F(β") | ] = O ( l - | * l ) on A.

Let B=B(Z) be the Blaschke product for a zero sequence Z— {zn} composed of
elements of A. By (6), (3) and the assumption on F, we have

so the function BF, whose zero sequence is precisely Z, belongs to 3). There-
fore, it is enough to construct the outer function F^S) satisfying (22). This
can be done using the above mentioned result in [10], but we propose an ele-
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mentary approach, which do not depend on the deep methods of [10].
Let /(ί)=dist {At eiι), te(—TΓ, π~]. By the assumption on A, f is log-inte-

grable. Also, it is clear that / is Lipschitz continuous:

l / ( 0 - / ( s ) | ^ U - s | , t, se(-7Γ, π ] .

We claim that there are a continuous function h on (—π, π] and positive con-
stants c0, clf c2, such that on the set {te(—π, π] : /(ί)>0} we have cof{t)^h{t)
<f{t) and h(n){t)<cnf{ty~n, n = l, 2. The construction of h is left to the inter-
ested reader. Let F be the outer function given by | F{eu) \ — \ h{eu) \, te(—π, π].
Lemma 5 with g(f)=|F(β")|8eC1 + β(T) (any 0<e<l), yields P,[ |F(e u) | 2] =
O(l-\z\)on {z=rβ^^A : 1-r^ | F(e^)|2} ZD^Z)A Finally by (6) and £<ΞC1+ε(T),
we have

dx\\ogg{x)\\2g{x)-g{x+t)-g{x-t)\$m-*^

\" dx\\og g(x)\Ctι+* sin-2-t<™ ,

with a constant C<<^, and so F^3). This completes the proof. Π

3. Proof of Theorem 2

The necessary condition (8) is much weaker than (9). To see this we note,
that another condition

implies (8) (we leave the verification to the reader). At the same time, as
shown in Introduction, (9) is the weakest sufficient condition for moduli of zero
sequences for 3). Theorem 2 is another precise formulation of this observation.

We need the following version of the Borel-Cantelli lemma given in [1].

LEMMA 6. // {An} is a sequence of measurable subsets of some probability
space (DC, P) such that J]P(An)=oo and

lim inf ^>**» p(AJnAk> < i

then P(limsupn_0o^4n)=:l.

As usual, we write limsup^oo^ for Γ\m=i U»=m An.

Proof of Theorem 2. The first part of the theorem is the result of Shapiro
and Shields in [9] discussed in Introduction. We now turn to the second part
of the theorem. For θ^{—π, π~\ define
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(24) 5 ( ί ) = { r ^ E Δ : l - r > e x p { - — _ ^

This region makes exponential contact with T at eiθ. It was proved in [6] that
for every F^W, H(θ)=\im F(z) exists as z->eiθ within ε(β) for almost all 0 e
(—π, π ] . In particular, for F^O, the set {#<=(—TΓ, TΓ] : //(0)=O} is of zero
Lebesgue measure. Let {rn} be a sequence with elements in (0, 1) for which

(25) Σ ^ , — = 00.
1 ^

Let {θn} be a sequence of independent random variables on some probability
space (Ω, μ), uniformly distributed on (—π, TΓ]. For n = l , 2, •••, define Z w =
rne

iθn Also, let /n be the interval on (—π, π~\^T with the length l/log(l/(l—r J ) ,
and the center 0, and An—{In-\-θn)moά2π be the random interval of the same
lenght and with the center θn. Note that for every φ^An, we have Zne£(<p).
To prove that almost surely on Ω (a. s.), {Zn} is not a zero sequence for 3),
we only need to show that |lim supn_oo An\ >0 a. s., Indeed, for every F^S)
having \Zn\ as the zero sequence, the function H, defined above, is equal to
zero a. e. on lim supw_oo i4ΛC(—π, TΓ].

In what follows we write P for the normalized Lebesgue measure on (—π, TΓ].
Let E denote the expectation with respect to the probabilistic measure μ on Ω.
By Fubini's theorem we have EP(AjΓ\Ak)=P(Ij)P(Ik), ]Φky and by Fatou's
lemma and (25)

7-Λ i . c Έjj,k^nP(AjίΛAk) ^ v . f jπ

E hm mf - = p ^ h m inf E
L ( ^ J

Vm.fΈ,.k*nEP(AjΓΛAk) Vm iΣ^kP(IJ)P(h)±Σk1nP{h} 1=hm mf —=—-—pγγ-yr 2 —=hm mf — = 1 .

This yields that (23) holds on a set $cΩ of positive probability. By the zero-
one law, μ(*B)=l. We have P(lim sup̂ ôo An)—1 a. s. and the proof is com-
plete. G
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