LOCAL SMOOTH SOLUTIONS OF THE RELATIVISTIC EULER EQUATION, II

Tetu Makino and Seiji Ukai

1. Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time is governed by

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}}-\frac{p}{c^{2}}\right)+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{k}\right)=0 \tag{1.1}\\
\frac{\partial}{\partial t}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{i}\right)+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{i} v_{k}+p \delta_{i k}\right)=0, \quad i=1,2,3
\end{array}\right.
$$

Here c denotes the speed of light, p the pressure, $\left(v_{1}, v_{2}, v_{3}\right)$ the velocity of the fluid particle, ρ the mass-energy density of the fluid (as measured in units of mass in a reference frame moving with the fluid particle) and $v^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}$. The fluid is assumed to be bartropic, which means that the equation (1.1) is to be supplemented with the equation of state

$$
\begin{equation*}
p=p(\rho), \tag{1.2}
\end{equation*}
$$

where $p(\rho)$ is a given function of ρ only.
For the case of one space dimension, Smoller and Temple [7] constructed global weak solutions to (1.1) for the isentropic case $p(\rho)=a^{2} \rho$ with $0<a<c$, and Chen [1] for the case $p(\rho)=a^{2} \rho^{r}$ with $a>0$ and $\gamma>1$.

In our previous paper [6], the existence of local smooth solutions was proved for three space dimensions, with $p(\rho)=a^{2} \rho, 0<a<c$. Our objective here is to extend this results to the general equation of state (1.2), under the sole assumption that

$$
\begin{align*}
& p(\rho) \in C^{\infty}\left(\rho_{*}, \rho^{*}\right), \\
& p(\rho)>0, \quad 0<p^{\prime}(\rho)<c^{2} \quad \text { for } \quad \rho \in\left(\rho_{*}, \rho^{*}\right), \tag{1.3}
\end{align*}
$$

where ρ_{*} and ρ^{*} are some constants such that $0 \leqq \rho_{*}<\rho^{*} \leqq \infty$. Note that if $p(\rho)=a^{2} \rho^{\gamma}$, then $\rho_{*}=0$ while $\rho^{*}=\infty$ if $\gamma=1$ and $\rho^{*}=\left\{c^{2} /\left(\gamma a^{2}\right)\right\}^{1 /(\gamma-1)}$ if $\gamma>1$.

We consider the initial value problem to (1.1) with the initial condition

$$
\left\{\begin{array}{l}
\left.\rho\right|_{t=0}=\rho_{0}(x), \tag{1.4}\\
\left.v_{i}\right|_{t=0}=v_{0 i}(x), \quad i=1,2,3 .
\end{array}\right.
$$

The main result of this paper is,
Theorem 1.1. Assume (1.3) for $p(\rho)$. Suppose that the initial data ρ_{0} and (v_{01}, v_{02}, v_{03}) belong to the uniformly local Sobolev space $H_{u l}^{s}=H_{u l}^{s}\left(\boldsymbol{R}^{3}\right)$, $s \geqq 3$, [3] and that there exist a positive constant δ sufficiently small so that

$$
\begin{gathered}
\rho_{*}+\delta \leqq \rho(x) \leqq \rho^{*}-\delta, \\
v_{0}^{2}(x)=v_{01}^{2}(x)+v_{02}^{2}(x)+v_{03}^{2}(x) \leqq(1-\delta) c^{2},
\end{gathered}
$$

hold for all $x \in \boldsymbol{R}^{3}$. Then, the Cauchy problem (1.1), (1.2) and (1.4) has a unique solution

$$
\begin{equation*}
\left(\rho, v_{1}, v_{2}, v_{3}\right) \in L^{\infty}\left(0, T ; H_{u l}^{s}\right) \cap C\left([0, T] ; H_{1 \mathrm{oc}}^{s}\right) \cap C^{1}\left([0, T] ; H_{\mathrm{loc}}^{s-1}\right), \tag{1.5}
\end{equation*}
$$

with $\rho_{*}<\rho(x, t)<\rho^{*}$ and $v^{2}(x, t)<c^{2}$. Here $T>0$ depends only on δ and the $H_{u l}^{s} l^{-}$ norm of the initial data.

As in [6], we shall prove the theorem by symmetrizing (1.1) and applying the Friedlichs-Lax-Kato theory [3], [5] of symmetric hyperbolic systems. According to Godunov [2], a suitable symmetrizer can be constructed if a strictly convex entropy function exists. In $\S 3$, it is shown that such an entropy function exists for (1.1), and in $\S 2$, the symmetrizer it induces is discussed. Finally in $\S 4$, the non-relativistic limit of the solutions to (1.1) as $c \rightarrow \infty$ is shown to be a solution of the non-relativistic Euler equation with the same equation of state (1.2).

2. Symmetrization

Theorem 1.1 can be proved if there is a change of variables

$$
\begin{equation*}
z=\left(\rho, v_{1}, v_{2}, v_{3}\right)^{T} \longrightarrow u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right)^{T}, \tag{2.1}
\end{equation*}
$$

which reduces the system (1.1) to a system of the form

$$
\begin{equation*}
A^{0}(u) \frac{\partial u}{\partial t}+\sum_{i=1}^{3} A^{l}(u) \frac{\partial u}{\partial x_{l}}=0 \tag{2.2}
\end{equation*}
$$

whose coefflcent matrices $A^{\alpha}(u), \alpha=0,1,2,3$, satisfy the condition
(i) they are all real symmetric and smooth in u, and
(ii) $A^{0}(u)$ is positive definite.

The system (2.2) satisfying (2.3) is called a symmetric hyperbolic system, see
[3], [5]. We claim that for (1.1), one of such changes of variables is given by

$$
\left\{\begin{array}{l}
u_{0}=-\frac{c^{3} K e^{\phi(\rho)}}{\left(\rho c^{2}+p\right)\left(c^{2}-v^{2}\right)^{1 / 2}}+c^{2}, \tag{2.4}\\
u_{0}=\frac{c K e^{\phi(\rho)}}{\left(\rho c^{2}+p\right)\left(c^{2}-v^{2}\right)^{1 / 2}} v_{j}, \quad \jmath=1,2,3
\end{array}\right.
$$

where

$$
\begin{equation*}
\phi(\rho)=\int_{\bar{\rho}}^{\rho} \frac{c^{2}}{\rho c^{2}+p(\rho)} d \rho, \quad K=c^{2} \bar{\rho}+p(\bar{\rho}), \tag{2.5}
\end{equation*}
$$

$\bar{\rho}$ being an arbitrarily fixed number in (ρ_{*}, ρ^{*}). The derivation of (2.4), based on the idea of Godunov [2], will be presented in $\S 3$. Here we shall check the condition (2.3). To this end, we shall find the matrices $A^{\alpha}, \alpha=0,1,2,3$. explicitly. First, note from (2.4) that

$$
v^{2}=\frac{c^{4}}{\left(c^{2}-u_{0}\right)^{2}} u^{2}, \quad u^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} .
$$

Substituting this into the first equation of (2.4) and putting

$$
\begin{equation*}
\Phi(\rho)=\frac{K e^{\phi(\rho)}}{\rho c^{2}+p(\rho)} \tag{2.6}
\end{equation*}
$$

we get

$$
\begin{equation*}
\Phi(\boldsymbol{\rho})=\frac{1}{c^{2}}\left(\left(c^{2}-u_{0}\right)^{2}-c^{2} u^{2}\right)^{1 / 2} . \tag{2.7}
\end{equation*}
$$

Since $\Phi^{\prime}(\rho)=-K p^{\prime}(\rho) e^{\dot{\rho}(\rho)} /\left(\rho c^{2}+p\right)^{2}<0$ from (2.5) and (2.6), (2.7) can be solved uniquely for $\rho \in\left(\rho_{*}, \rho^{*}\right)$ provided

$$
\begin{equation*}
\Phi\left(\rho^{*}-0\right)^{2}<\left(1-\frac{u_{0}}{c^{2}}\right)^{2}-\frac{u^{2}}{c^{2}}<\Phi\left(\rho_{*}+0\right)^{2} . \tag{2.8}
\end{equation*}
$$

Thus, the map (2.1) defined with (2.4) is a diffeomorphism from

$$
\begin{equation*}
\Omega_{z}=\left\{\rho_{*}<\rho<\rho^{*}, v^{2}<c^{2}\right\} \tag{2.9}
\end{equation*}
$$

onto

$$
\begin{equation*}
\Omega_{u}=\left\{u_{0}<c^{2},(2.8) \text { holds. }\right\} \tag{2.10}
\end{equation*}
$$

After a straight but tedious computation, we find the coefficients $A^{\alpha}(u)=\left(A_{\beta \gamma}^{\alpha}\right)$, $\alpha, \beta, \gamma=0,1,2,3$, as follows:

$$
\begin{align*}
& A_{00}^{0}=A_{1} \Psi(\rho), \quad A_{0 i}^{0}=A_{i 0}^{0}=A_{2} \Psi(\rho) v_{i}, \\
& A_{\imath \jmath}^{0}=A_{3} \Psi(\rho) v_{i} v_{j}+A_{4} \Psi(\rho) \delta_{i \jmath}, \\
& A_{00}^{l}=A_{2} \Psi(\rho), \quad A_{0 i}^{l}=A_{i 0}^{l}=A_{3} \Psi(\rho) v_{i} v_{l}+A_{5} \Psi(\rho) \delta_{i l}, \tag{2.11}\\
& A_{\imath \jmath}^{l}=A_{3} \Psi(\rho) v_{i} v_{\jmath} v_{l}+A_{4} \Psi(\rho)\left(v_{i} \delta_{j l}+v_{j} \delta_{i l}+v_{l} \delta_{i \jmath}\right),
\end{align*}
$$

for $i, \jmath, l=1,2,3$, where

$$
\Psi(\rho)=\frac{1}{K}\left(\rho c^{2}+p\right)^{2} e^{-\phi(\rho)},
$$

and

$$
\begin{array}{ll}
A_{1}=\frac{c^{4}+3 p^{\prime} v^{2}}{c^{3} p^{\prime}\left(c^{2}-v^{2}\right)^{3 / 2}}, & A_{2}=\frac{c^{4}+2 p^{\prime} c^{2}+p^{\prime} v^{2}}{c^{3} p^{\prime}\left(c^{2}-v^{2}\right)^{3 / 2}}, \\
A_{3}=\frac{c^{2}+3 p^{\prime}}{c p^{\prime}\left(c^{2}-v^{2}\right)^{3 / 2}}, & A_{4}=\frac{1}{c\left(c^{2}-v^{2}\right)^{1 / 2}}, \tag{2.12}\\
A_{5}=\frac{1}{c\left(\rho c^{2}+p\right)\left(c^{2}-v^{2}\right)^{1 / 2}} .
\end{array}
$$

These coefficents can be calculated by the chain rule and the formula

$$
\begin{array}{ll}
\frac{\partial \rho}{\partial u_{0}}=\frac{A_{4}}{p^{\prime}} \Psi(\rho), & \frac{\partial \rho}{\partial u_{\jmath}}=\frac{A_{4}}{p^{\prime}} \Psi(\rho) v_{\jmath}, \\
\frac{\partial v_{i}}{\partial u_{0}}=A_{6} \Psi(\rho) v_{\imath}, & \frac{\partial v_{i}}{\partial u_{\jmath}}=c^{2} A_{6} \Psi(\rho) \delta_{i \jmath}, \quad \imath, \jmath=1,2,3,
\end{array}
$$

with

$$
A_{6}=\frac{\left(c^{2}-v^{2}\right)^{1 / 2}}{c^{3}\left(\rho c^{2}+p\right)} .
$$

It is clear from (2.11) that the matrices $A^{\alpha}(u)$ are all real symmetric and smooth in Ω_{z}, and hence in Ω_{u}. To see that $A^{0}(u)$ is positive definite, let $\Xi=\left(\xi_{0}, \xi\right)^{T} \in \boldsymbol{R}^{4}$ be a 4 -vector with $\xi \in \boldsymbol{R}^{3}$. We should calculate the inner product

$$
\left(A^{0}(u) \Xi \mid \boldsymbol{\Xi}\right)=\Psi(\boldsymbol{\rho})\left\{A_{1} \xi_{0}^{2}+2 A_{2} \xi_{0}(v \mid \xi)+A_{3}(v \mid \xi)^{2}+A_{4} \xi^{2}\right\},
$$

A, being those in (2.12). In the same way as in [6], we can get an estimate

$$
\begin{equation*}
\left(A^{0} \Xi \mid \boldsymbol{\Xi}\right) \geqq \frac{1}{2}\left(\kappa_{0} \xi_{0}^{2}+\kappa \xi^{2}\right), \tag{2.13}
\end{equation*}
$$

with

$$
\begin{aligned}
& \kappa_{0}=\frac{\left(c^{2}-v^{2}\right)^{1 / 2}\left(c^{4}-p^{\prime} v^{2}\right) \Psi(\rho)}{c^{3}\left(c^{4} v^{2}+2 c^{2} v^{2} p^{\prime}+c^{4} p^{\prime}\right)}, \\
& \kappa=\frac{\left(c^{2}-v^{2}\right)^{1 / 2}\left(c^{4}-p^{\prime} v^{2} \Psi(\rho)\right.}{c^{3}\left(c^{4}+3 v^{2} p^{\prime}\right)},
\end{aligned}
$$

which implies that (2.3) (ii) is also satisfied in Ω_{u} since (1.3) is fulfilled. Thus, (2.2) with (2.11) for the elements of the matrices $A^{\alpha}(u)$ is a symmetric hyperbolic system, which entails the existence of smooth local solutions to (2.2), thanks to the Friedrichs-Lax-Kato theory [3], [5]. Since (2.4) is a diffeomorphism, we can go back from (2.2) to the original system (1.1) to conclude Theorem 1.1.

3. Strictly convex entropy function

In this section, we shall follow Godunov [2] and explain how to find out the change of variables (2.4). First of all, we rewrite (1.1) in the form of the conservation laws,

$$
\begin{equation*}
w_{t}+\sum_{k=1}^{3}\left(f^{k}(w)\right)_{x_{k}}=0 \tag{3.1}
\end{equation*}
$$

where $w=\left(w_{0}, w_{1}, w_{2}, w_{3}\right)^{T}$ and $f^{k}(w)=\left(w_{k}, f_{1}^{k}, f_{2}^{k}, f_{3}^{k}\right)^{T}$ are defined by

$$
\begin{align*}
& w_{0}=\frac{\rho c^{2}+p}{c^{2}-v^{2}}-\frac{p}{c^{2}}, \quad w_{\jmath}=\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{\jmath} \tag{3.2}\\
& f_{2}^{k}=\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{i} v_{k}+p \delta_{i k}
\end{align*}
$$

A scalar function $\eta=\eta(w)$ is called an entropy function to (3.1) if there exist scalar functions $q^{k}=q^{k}(w), k=1,2,3$, satisfying

$$
\begin{equation*}
D_{w} \eta(w) D_{w} f^{k}(w)=D_{w} q^{k} \tag{3.3}
\end{equation*}
$$

Then, the symmetrizing variable u can be given by

$$
\begin{equation*}
u=\left(D_{w} \eta\right)^{T} \tag{3.4}
\end{equation*}
$$

For the detail, see Godunov [2] or Kawashima-Shizuta [4].
Now, we shall solve (3.3). To this end, it is convenient to employ $z=$ ($\rho, v_{1}, v_{2}, v_{3}$), instead of w of (3.2), as the independent variables in (3.3). This is possible since $D_{z} w$ is regular;

$$
\operatorname{det} D_{z} w=\frac{\left(\rho c^{2}+p\right)^{3}\left(c^{4}-v^{2} p^{\prime}\right)}{c^{2}\left(c^{2}-v^{2}\right)^{4}}>0
$$

which comes by noting

$$
\begin{array}{ll}
\frac{\partial w_{0}}{\partial \rho}=B_{1}, & \frac{\partial w_{0}}{\partial v_{j}}=B_{2} v_{j} \\
\frac{\partial w_{j}}{\partial \rho}=B_{3} v_{2}, & \frac{\partial w_{2}}{\partial v_{j}}=B_{2} v_{i} v_{j}+B_{4} \delta_{2 \jmath} \tag{3.5}
\end{array}
$$

where

$$
\begin{aligned}
& B_{1}=\frac{c^{2}+p^{\prime}}{c_{2}-v^{2}}-\frac{p}{c^{2}}, \quad B_{2}=\frac{2\left(\rho c^{2}+p\right)}{\left(c^{2}-v^{2}\right)^{2}} \\
& B_{3}=\frac{c^{2}+p^{\prime}}{c^{2}-v^{2}}, \quad B_{4}=\frac{\rho c^{2}+p}{c^{2}-v^{2}}
\end{aligned}
$$

Thus the mapping $z \rightarrow w$ is a diffeomorphism in a neighbourhood of each point of Ω_{z}. Moreover, using (3.5), we get

$$
\begin{equation*}
\left(D_{2} w\right)^{-1}=\left(e_{\alpha \beta}\right)_{\alpha, \beta=0,1,2,3} \tag{3.6}
\end{equation*}
$$

as

$$
\begin{array}{ll}
e_{00}=c^{2}\left(c^{2}+v^{2}\right) E_{1}, & e_{0 \jmath}=-2 c^{2} E_{1} v_{\jmath}, \\
e_{i 0}=-c^{2}\left(c^{2}+p^{\prime}\right) E_{1} E_{2} v_{i}, & e_{2 \jmath}=2 p^{\prime} E_{1} E_{2} v_{i} v_{j}+E_{2} \delta_{i j},
\end{array}
$$

with

$$
E_{1}=\frac{1}{c^{4}-v^{2} p^{\prime}}, \quad E_{2}=\frac{c^{2}-v^{2}}{\rho c^{2}+p} .
$$

In view of (3.2) and (3.6), (3.3) can now be rewritten as

$$
\begin{equation*}
D_{z} \eta C^{k}=D_{z} q^{k}, \quad k=1,2,3, \tag{3.7}
\end{equation*}
$$

where

$$
C^{k}=\left(D_{z} w\right)^{-1} D_{z} f^{k}=\left(c_{\alpha \beta}^{k}\right)_{\alpha, \beta=0,1,2,3},
$$

are given by

$$
\begin{array}{ll}
c_{00}^{k}=c^{2} C_{1} v_{k}, & c_{i 0}^{k}=-C_{1} C_{2} v_{i} v_{k}+C_{2} \delta_{k j}, \\
c_{0 j}^{k}=C_{3} \delta_{k \imath}, & c_{i \jmath}^{k}=C_{4} v_{i} \delta_{k j}+v_{k} \delta_{i \jmath},
\end{array}
$$

with

$$
\begin{array}{ll}
C_{1}=\frac{c^{2}-p^{\prime}}{c^{4}-p^{\prime} v^{2}}, & C_{2}=\frac{p^{\prime}\left(c^{2}-v^{2}\right)}{\rho c^{2}+p}, \\
C_{3}=\frac{c^{2}\left(\rho c^{2}+p\right)}{c^{4}-v^{2} p^{\prime}}, & C_{4}=\frac{p^{\prime}\left(c^{2}-v^{2}\right)}{c^{4}-v^{2} p^{\prime}} . \tag{3.8}
\end{array}
$$

Let us solve (3.7) for ($\eta, q^{1}, q^{2}, q^{3}$). A quick count shows that (3.7) costitutes 12 equations for 4 unknowns, that is, it forms an over-determined system. We shall look for the solution of the form

$$
\begin{equation*}
\eta=H(\rho, y), \quad q^{k}=Q(\rho, y) v_{k}, \tag{3.9}
\end{equation*}
$$

where

$$
y=v^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2} .
$$

This ansatz reduces (3.7) to the following system of first order linear partial differential equations;

$$
\begin{gather*}
H_{y}=Q_{y}, \tag{3.10}\\
c^{2} C_{1} H_{\rho}+2 C_{2}\left(-C_{1} y+1\right) H_{y}=Q_{\rho}, \tag{3.11}\\
C_{3} H_{\rho}-2 C_{4} y H_{y}=Q, \tag{3.12}
\end{gather*}
$$

C, being as in (3.8). Seemingly, we have still an over-determined system. However, making (3.11) $\times\left(\rho c^{2}+p\right)-(3.12) \times\left(c^{2}-p^{\prime}\right)$ and using (3.10), we get a single equation for Q :

$$
\begin{equation*}
2\left(c^{2}-y\right) p^{\prime} Q_{y}=\left(\rho c^{2}+p\right) Q_{\rho}-\left(c^{2}-p^{\prime}\right) Q . \tag{3.13}
\end{equation*}
$$

On the other hand, it follows from (3.10) that there should exist a function $G=G(\rho)$ of ρ only such that

$$
H=Q(\rho, y)+G(\rho)
$$

Substitution of this into (3.11), together with (3.13), then yields

$$
\rho G_{\rho}=\frac{c^{2}-y}{\rho c^{2}+p} Q-\frac{c^{2}-y}{c^{2}} Q_{\rho},
$$

or putting $q=\left(c^{2}-y\right) Q$,

$$
\begin{equation*}
G_{\rho}=\frac{1}{\rho c^{2}+p} q-\frac{1}{c^{2}} q_{\rho} . \tag{3.14}
\end{equation*}
$$

Since the left hand side of (3.14) is a function of ρ only, q must be of the form

$$
\begin{equation*}
q=e^{\phi(\rho)}[g(\rho)+h(y)], \tag{3.15}
\end{equation*}
$$

where $\phi(\rho)$ is as in (2.5) while g and h are arbitrary functions. Substituting (3.15) into (3.13) and separating the variables, we have

$$
\frac{\rho c^{2}+p}{p^{\prime}} \frac{d g}{d \rho}-g=2\left(c^{2}-y\right) \frac{d h}{d y}+h=\text { constant }
$$

which can be easily solved as

$$
\begin{align*}
q & =e^{\phi(\rho)}\left[K_{1}\left(c^{2}-y\right)^{1 / 2}+K_{2}^{\prime} e^{\psi(\rho)}\right] \tag{3.16}\\
& =K_{1}\left(c^{2}-y\right)^{1 / 2} e^{\phi(\rho)}+K_{2}\left(\rho c^{2}+p\right)
\end{align*}
$$

where K,'s are integration constants and

$$
\begin{align*}
\psi(\rho) & =\int_{\bar{\rho}}^{\rho} \frac{p^{\prime}(\rho)}{\rho c^{2}+p(\rho)} d \rho \\
& =-\phi(\rho)+\log \frac{\rho c^{2}+p(\rho)}{\bar{\rho} c^{2}+p(\bar{\rho})} \tag{3.17}
\end{align*}
$$

$\bar{\rho}$ being as in (2.5). Now, (3.14) combined with (3.16) gives $G^{\prime}=-K_{2} p^{\prime} / c^{2}$, so that

$$
\begin{equation*}
G=-\frac{K_{2}}{c^{2}} p+K_{3} \tag{3.18}
\end{equation*}
$$

K_{3} being also an integration constant. In view of (3.16) and (3.18), we get

$$
\begin{align*}
\eta=H & =\frac{K_{1}}{\left(c^{2}-v^{2}\right)^{1 / 2}} \rho^{\phi(\rho)}+K_{2}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}}-\frac{p}{c^{2}}\right)+K_{3}, \tag{3.19}\\
Q & =\frac{K_{1}}{\left(c^{2}-v^{2}\right)^{1 / 2}} e^{\phi(\rho)}+\frac{K_{2}}{c^{2}-v^{2}}\left(\rho c^{2}+p\right) . \tag{3.20}
\end{align*}
$$

For the later purpose, we wish to choose the constants $K_{\jmath}, \jmath=1,2,3$, so that (3.19) converges, as $c \rightarrow \infty$, to the entropy function for the non-relativistic case,

$$
\begin{equation*}
\eta^{(\infty)}=\frac{1}{2} \rho v^{2}+\rho \int_{\bar{\rho}}^{\rho} \frac{d p}{\rho}-p, \tag{3.21}
\end{equation*}
$$

which can be obtained exactly in the same way as (3.19). In view of (3.17), $\Phi(\rho)$ of (2.6) equals $e^{-\psi(\rho)}$ so that it can be expanded for large c as

$$
\Phi(\rho)=1-\frac{1}{c^{2}} \int_{\bar{p}}^{p} \frac{d p}{\rho}+O\left(c^{-4}\right),
$$

for each fixed $\rho \in\left(\rho_{*}, \rho^{*}\right)$. Insert this into (3.19) to deduce

$$
\begin{aligned}
\eta= & \frac{\rho+p / c^{2}}{\left(1-v^{2} / c^{2}\right)^{1 / 2}}\left\{\frac{c K_{1}}{K}+\frac{K_{2}}{\left(1-v^{2} / c^{2}\right)^{1 / 2}}\right. \\
& \left.-\frac{K_{1}}{c K} \int_{\bar{p}}^{p} \frac{d p}{\rho}-\frac{K_{1}}{K} O\left(c^{-3}\right)\right\}-\frac{K_{2} p}{c^{2}}+K_{3},
\end{aligned}
$$

where K is as in (2.5). Therefore, the right choice is found to be

$$
K_{1}=-c K, \quad K_{2}=c^{2}, \quad K_{3}=0,
$$

with which (3.19) becomes

$$
\begin{equation*}
\eta=-\frac{c K}{\left(c^{2}-v^{2}\right)^{1 / 2}} e^{\phi(\rho)}+c^{2}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}}-\frac{p}{c^{2}}\right) . \tag{3.22}
\end{equation*}
$$

The change of variables (2.4) was derived from (3.22) via the formula (3.4) or

$$
u=\left(\left(D_{z} w\right)^{T}\right)^{-1}\left(D_{z} \eta\right)^{T},
$$

combined with (3.6). Since the matrix $A^{0}(u)$ is positive definite in Ω_{u} as was shown in the preceding section, the entropy function (3.22) is strictly convex there.

4. Non-relativistic limit

In order to study the limit $c \rightarrow \infty$, we consider $c \geqq c_{0}$ with a fixed c_{0} sufficiently large and assume, without loss of generality, that (1.3) is satisfied for all $c \geqq c_{0}$ with the same constants ρ_{*} and ρ^{*}. For the sake of simplicity, we discuss only the case $\rho^{*}<\infty$. The case $\rho^{*}=\infty$ can be treated similarly. Given $\delta>0$ sufficiently small, define

$$
\begin{equation*}
\Omega_{z}\left(\delta, c_{0}\right)=\left\{\rho_{*}+\delta<\rho<\rho^{*}-\delta, v^{2}<(1-\delta) c_{0}^{2}\right\} . \tag{4.1}
\end{equation*}
$$

Firstly, note that (2.4) is a diffeomorphism from the domain (4.1) onto

$$
\begin{align*}
\Omega_{u}\left(\delta, c_{0}, c\right)= & \left\{u_{0}<c^{2},\left(1-\frac{u_{0}}{c^{2}}\right)^{2}-\frac{u^{2}}{c_{0}^{2}(1-\delta)}>0\right. \\
& \left.\Phi\left(\rho^{*}-\delta\right)^{2}<\left(1-\frac{u_{0}}{c^{2}}\right)^{2}-\frac{u^{2}}{c^{2}}<\Phi\left(\rho_{*}+\delta\right)^{2}\right\} \tag{4.2}
\end{align*}
$$

$c f$. (2.9) and (2.10). Secondly, the matrices $A^{\alpha}(u)$ and all of their derivatives are uniformly bounded in the domain (4.2). Moreover, κ_{0} and κ in (2.13) are bounded away from zero uniformly there, as seen from

$$
\begin{aligned}
\kappa_{0} & =\frac{\rho}{v^{2}+p^{\prime}}+O\left(c^{-2}\right) \\
\kappa & =\rho+O\left(c^{-2}\right)
\end{aligned}
$$

This means that the Friedlichs-Kato-Lax theory applies for (2.2) uniformly for all $c \geqq c_{0}$. Go back to (1.1), which is possible due to the diffeomorphism (2.4), to conclude

THEOREM 4.1. Let $s \geqq 3$. For any fixed $M_{0}, c_{0}>0$ sufficiently large and $\delta_{0}>0$ sufficiently small, there exist positive constants M and T such that for any initial $z_{0}=\left(\rho_{0}, v_{01}, v_{02}, v_{03}\right) \in H_{u l}^{s}$ satisfying

$$
\left\|z_{0}\right\|_{H s} \leqq M_{0}, \quad z_{0}(x) \in \Omega_{z}\left(\delta_{0}, c_{0}\right) \quad \text { for any } x \in \boldsymbol{R}^{3}
$$

and for any $c \geqq c_{0}$, the Cauchy problem (1.1), (1.2) and (1.4) possesses a unique solution $z=\left(\rho, v_{1}, v_{2}, v_{3}\right)$ belonging to the class (1.7) and satisfying

$$
\begin{aligned}
& \underset{t \in(0, T)}{\operatorname{ess} \sup }\|z(t)\|_{H_{u l}^{s}} \leqq M \\
& z(t, x) \in \Omega_{z}\left(\delta_{0} / 2, c_{0}\right) \text { for all } t \in[0, T] \text { and } x \in \boldsymbol{R}^{3}
\end{aligned}
$$

Let us show that the solutions z thus obtained converge as $c \rightarrow \infty$ to the solution of the non-relativistic Euler equation,

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\rho v_{k}\right)=0 \tag{4.3}\\
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\rho v_{i} v_{k}+p \delta_{i k}\right)=0, \quad i=1,2,3
\end{array}\right.
$$

with the same intial z_{0}.
The symmetrizing variables for (4.3) associated with the entropy function (3.21) are given by

$$
\begin{align*}
& u_{0}^{(\infty)}=-\frac{1}{2} v^{2}+\int_{\bar{p}}^{p} \frac{d p}{\rho} \tag{4.4}\\
& u_{\jmath}^{(\infty)}=-v_{\jmath}, \quad \jmath=1,2,3
\end{align*}
$$

and the resulting system is

$$
\begin{equation*}
A^{(\infty) 0}\left(u^{(\infty)}\right) u_{t}^{(\infty)}+\sum_{l=1}^{3} A^{(\infty) l}\left(u^{(\infty)}\right) u_{x l}^{(\infty)}=0, \tag{4.5}
\end{equation*}
$$

with

$$
\begin{aligned}
& a_{00}^{(\infty) 0}=\frac{\rho}{p^{\prime}}, \quad a_{i 0}^{(\infty) 0}=a_{02}^{(\infty) 0}=\frac{\rho}{p^{\prime}} v_{i}, \\
& a_{i j}^{(\infty) 0}=\frac{\rho}{p^{\prime}} v_{i} v_{j}+\rho \delta_{i j},
\end{aligned}
$$

for the matrix elements of $A^{(\infty) 0}$ and so on. Between the transformations (2.4) and (4.4), it holds that

$$
\begin{aligned}
& u(z)=u^{(\infty)}(z)+O\left(c^{-2}\right), \\
& A^{\alpha}(u(z))=A^{(\infty) \alpha}\left(u^{(\infty)}(z)\right)+O\left(c^{-2}\right), \quad \alpha=0,1,2,3,
\end{aligned}
$$

uniformly for $c \geqq c_{0}$ and $z \in \Omega_{2}\left(\delta_{0} / 2, c_{0}\right)$, which implies, together with the uniform properties stated before Theorem 4.1 and by the arguments in [6], the uniform convergence of the solutions u of (2.2) to the solution of (4.5). Again we can go back to (1.1) and conclude

Theorem 4.2. Let $s \geqq 3$. Then, as $c \rightarrow \infty$, the solution z of (1.1), (1.2) and (1.4) given in Theorem 4.1 converges to the solution $z^{(\infty)}$ to (4.3) with the same initial data, uniformly on the time interval $[0, T]$ with T specified in Theorem 4.1, strongly in $H_{\text {loc }}^{s-\varepsilon}$ for any $\varepsilon>0$.

References

[1] J. Chen, Relativistic conservation laws, Doctral thesis, Univ. of Michigan, 1994.
[2] S. K. Godunov, An interesting class of quasilinear systems, Dokl. Acad. Nauk SSSR, 139 (1961), 521-523.
[3] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.
[4] S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyper-bolic-parabolic systems associated with the conservation laws, Tôhoku Math. J., 40 (1988), 449-464.
[5] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Scı., 53, Springer, 1984.
[6] T. Makino and S. Ukai, Local smooth solutions of the relativistic Euler equation, J. Math. Kyoto Univ., 35 (1995), 105-114.
[7] J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Comm. Math. Phys., 156 (1993), 67-99.

Department of Liberal Arts
Osaka Sangyo University
3-1-1 Nakakaito, Daito 574
Japan
Department of Mathematical
and Computing Sciences
Tokyo Institute of Technology
2-12-1 Oh-okayama, Meguro, Tokyo 152
Japan

