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LOCAL SMOOTH SOLUTIONS OF THE RELATIVISTIC

EULER EQUATION, II

T E T U MAKINO AND SEIJI UKAI

1. Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time is
governed by

( ρc2+p

(1.1)

Here c denotes the speed of light, p the pressure, (vlf v2, vs) the velocity of the
fluid particle, p the mass-energy density of the fluid (as measured in units of
mass in a reference frame moving with the fluid particle) and vz=v\-{-vt+vi.
The fluid is assumed to be bartropic, which means that the equation (1.1) is
to be supplemented with the equation of state

(1.2) P=P(p),

where p(ρ) is a given function of p only.
For the case of one space dimension, Smoller and Temple [7] constructed

global weak solutions to (1.1) for the isentropic case p(p)—a2p with 0 < α < c ,
and Chen [1] for the case p(ρ)—a2pr with α>0 and γ>l.

In our previous paper [6], the existence of local smooth solutions was
proved for three space dimensions, with p(ρ)=a2p, 0<a<c. Our objective here
is to extend this results to the general equation of state (1.2), under the sole
assumption that

p p P

(1.3)
p(p)>0, 0<p'(p)<c2 for pς=(p*, p*),

where p* and p* are some constants such that 0^p*<ρ*<,oo. Note that if
p(p)=a2pr, then ^#=0 while p*=oo if γ=l and p^^{c2/(γa2)}^(r-^ if γ>L

We consider the initial value problem to (1.1) with the initial condition
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(1.4)
(*), ί = l, 2, 3.

The main result of this paper is,

THEOREM 1.1. Assume (1.3) for p(p). Suppose that the initial data p0 and
(voi, v02, VQZ) belong to the uniformly local Sobolev space H£ι=H£t(Rz), s;>3, [3]
and that there exist a positive constant δ sufficiently small so that

><p*-δ,

hold for all x^R\ Then, the Cauchy problem (1.1), (1.2) and (1.4) has a unique
solution

(1.5) (p, vlf v2, v3)(ΞL°°(0, T #i ,)nC([0, T] Hilc)r\C\[_0, T] Woe1),

with p*<ρ(x, t)<p* and v\x, t)<c\ Here T > 0 depends only on δ and the Hii-
norm of the initial data.

As in [6], we shall prove the theorem by symmetrizing (1.1) and applying
the Friedlichs-Lax-Kato theory [3], [5] of symmetric hyperbolic systems. Ac-
cording to Godunov [2], a suitable symmetrizer can be constructed if a strictly
convex entropy function exists. In § 3, it is shown that such an entropy func-
tion exists for (1.1), and in §2, the symmetrizer it induces is discussed. Finally
in §4, the non-relativistic limit of the solutions to (1.1) as c-*oo is shown to
be a solution of the non-relativistic Euler equation with the same equation of
state (1.2).

2. Symmetrization

Theorem 1.1 can be proved if there is a change of variables

(2.1) z=(ρ, Vi, v2, Vs)τ — > u=(u0, uu u2, us)
τ,

which reduces the system (1.1) to a system of the form

(2.2) Atu)*+%AKu)%-=0,

whose coefflcent matrices Aa(u), a=0, 1, 2, 3, satisfy the condition

( i ) they are all real symmetric and smooth in u, and
(2.3)

(ii) A°(u) is positive definite.

The system (2.2) satisfying (2.3) is called a symmetric hyperbolic system, see
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[3], [5]. We claim that for (1.1), one of such changes of variables is given by

(2.4)

where

(2.5)

p being an arbitrarily fixed number in (p*, p*). The derivation of (2.4), based
on the idea of Godunov [2], will be presented in §3. Here we shall check the
condition (2.3). To this end, we shall find the matrices Aa, α=0, 1, 2, 3. ex-
plicitly. First, note from (2.4) that

u*=u\+u\+u\.

Substituting this into the first equation of (2.4) and putting

( 2 6 )

we get

(2.7)

Since Φ/(p)=-Kp/(p)e<^>{f))/(ρc2-{-py<0 from (2.5) and (2.6), (2.7) can be solved
uniquely for p<^(p*, p*) provided

(2.8)

Thus, the map (2.1) defined with (2.4) is a diffeomorphism from

(2.9) Ω,= {p*<p<p*t v2<c2}

onto

(2.10) Ωu= {uo<c2, (2.8) holds.}.

After a straight but tedious computation, we find the coefficients Aa(u)=(Afr),
a, β, γ=0, 1, 2, 3, as follows:

(2.11)
A0

ι

0=A2Ψ(ρ),
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for i, j , I—I, 2, 3, where

and

A - C+3p'v2

 A _ c*+2p'c2+p/v2

ι~ c*p'(c2-vψ2' 2 ~ c"p\c2-vψ2

A 1 _
cp'(c*-v*)*'* 4 ~ c(c*vψ*'

Λδ=-
c(pc2+p)(c2-vψ2'

These coefficents can be calculated by the chain rule and the formula

dp _ALW(O)

 dP -Λί.ψ(o)v

^ p ^ i, 7 = 1, 2, 3,

with

c\ρc%+p)

It is clear from (2.11) that the matrices Aa(u) are all real symmetric and
smooth in Ωz, and hence in Ωu. To see that A°(u) is positive definite, let
S—(ξ0, f)Γ<=#4 be a 4-vector with ξ^R\ We should calculate the inner product

{A\u)Ξ 13)=Ψ(p) {̂

Aj being those in (2.12). In the same way as in [6], we can get an estimate

(2.13) {A«Ξ\Ξ^

with

_ {c2-
Ko~~ c\c

__ {c2-v2Yl\ci-pfv2)Ψ{p)

which implies that (2.3) (ii) is also satisfied in Ωu since (1.3) is fulfilled. Thus,
(2.2) with (2.11) for the elements of the matrices Aa{u) is a symmetric hyper-
bolic system, which entails the existence of smooth local solutions to (2.2),
thanks to the Friedrichs-Lax-Kato theory [3], [5]. Since (2.4) is a diffeomor-
phism, we can go back from (2.2) to the original system (1.1) to conclude
Theorem 1.1.
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3. Strictly convex entropy function

In this section, we shall follow Godunov [2] and explain how to find out
the change of variables (2.4). First of all, we rewrite (1.1) in the form of the
conservation laws,

(3.1) wt+ Σ (fk(w))xk=0,
k = l k

where w=(w0, wu w2, wz)
τ and fk{w)—(wk) f\, /f, f \ ) τ are defined by

pc2-\-p p pc2jrp

(3.2)
o o o y

C v C

cA—vΔ

A scalar function η=η(w) is called an entropy function to (3.1) if there
exist scalar functions qk=qk{w), k — 1, 2, 3, satisfying

(3.3) Dwη(w)Dwf
k(w)=Dwq

k.

Then, the symmetrizing variable u can be given by

(o.4) u=(DwηY .

For the detail, see Godunov [2] or Kawashima-Shizuta [4].
Now, we shall solve (3.3). To this end, it is convenient to employ z—

(p> Vι, v2, v3), instead of w of (3.2), as the independent variables in (3.3). This
is possible since Dzw is regular;

which comes by noting

( 3 5 ) / Λ

^=BsVι, %

where
= c2+p' p B = 2(pc*+p)

s» ^ i 2 />2 //>2 Λ.2N2

== c2+p' B ^ pc*+p
3 c2—v2 ' 4 c2—v2

Thus the mapping z-*w is a diffeomorphism in a neighbourhood of each point
of Ωz. Moreover, using (3.5), we get
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(3.6) (W^Mα.HΛU

as

with

eOo=c2(c*+v2)Elf eOJ = -2

ei0^-c2(c2+p/)EίE2vί} eιJ=2pΈ1E2vivj+E2δiJ,

c —v p pc -\-p

In view of (3.2) and (3.6), (3.3) can now be rewritten as

(3.7) DzηCk=Dzq
k, 6 = 1 , 2 , 3 ,

where

are given by

with

Γ , c*-p' r-l^Z}D
Lί-c*-p>v*> ϋ 2 ~ pc*+p->

_ c*(pc*+p) r _ p'(c*-v*)

Let us solve (3.7) for (η> q1, q2, q*). A quick count shows that (3.7) costitutes
12 equations for 4 unknowns, that is, it forms an over-determined system. We
shall look for the solution of the form

(3.9) η=H(p,y), qk

where

This ansatz reduces (3.7) to the following system of first order linear partial
differential equations

(3.10) Hy=Qy,

(3.11) c2C1Hp+2C2(-C1y+l)Hy=Qp,

(3.12) C,Hp-2CtyHv=Q,

Cj being as in (3.8). Seemingly, we have still an over-determined system.
However, making (3.11)X(loc2+/))-(3.12)X(c2-/)/) and using (3.10), we get a
single equation for Q:
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(3.13) 2(c2-y)pfQy^(p

On the other hand, it follows from (3.10) that there should exist a function
G=G(ρ) of p only such that

H=Q(p,y)+G(p).

Substitution of this into (3.11), together with (3.13), then yields

r p pc2jrp c2 r

or putting q=(c2—y)Q,

(3.14) G β = — ί — t f - ^ β .

Since the left hand side of (3.14) is a function of p only, q must be of the form

(3.15) q=e*«»te(p)+h(y)-],

where φ(p) is as in (2.5) while g and h are arbitrary functions. Substituting
(3.15) into (3.13) and separating the variables, we have

which can be easily solved as

(3.16) q~

where K/s are integration constants and

(3.17)

p being as in (2.5). Now, (3.14) combined with (3.16) gives G'——K2p'/c2, so
that

(3.18) G ^ - ^

K3 being also an integration constant. In view of (3.16) and (3.18), we get

(3-20) Q ^-J^—
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For the later purpose, we wish to choose the constants KJt j — l, 2, 3, so
that (3.19) converges, as c-^oo, to the entropy function for the non-relativistic
case,

(3.21) ^ - , ^ ^ +

which can be obtained exactly in the same way as (3.19). In view of (3.17),
Φ(p) of (2.6) equals e~φif>) so that it can be expanded for large c as

P

for each fixed p<^(p*, p*). Insert this into (3.19) to deduce

p+p/c2 \cKλ __K1_
η (l-v2/c2)1/2\ K " + {l-v2/c2)1'2

Kxrpdρ _h

where K is as in (2.5). Therefore, the right choice is found to be

with which (3.19) becomes

\ / / / 2 2M/2 I *~> \ 9 2 2

The change of variables (2.4) was derived from (3.22) via the formula (3.4) or

u=((Dzw)τyχDzV)
τ,

combined with (3.6). Since the matrix A°(u) is positive definite in Ωu as was
shown in the preceding section, the entropy function (3.22) is strictly convex
there.

4. Non-relativistic limit

In order to study the limit c—>oo, we consider c>c0 with a fixed c0 suffici-
ently large and assume, without loss of generality, that (1.3) is satisfied for all
C^CQ with the same constants p* and p*. For the sake of simplicity, we dis-
cuss only the case |0*<oo. The case ρ*=oo can be treated similarly. Given
<5>0 sufficiently small, define

(4.1) Ωa(δ, co)= {p*+δ<p<p*-δ, v2<α-δ)cl\.

Firstly, note that (2.4) is a diffeomorphism from the domain (4.1) onto
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(4.2)

cf. (2.9) and (2.10). Secondly, the matrices Λa(u) and all of their derivatives
are uniformly bounded in the domain (4.2). Moreover, tc0 and tc in (2.13) are
bounded away from zero uniformly there, as seen from

This means that the Friedlichs-Kato-Lax theory applies for (2.2) uniformly for
all c^c0. Go back to (1.1), which is possible due to the diffeomorphism (2.4),
to conclude

THEOREM 4.1. Let s^3 . For any fixed Mo, co>Q sufficiently large and
δo>0 sufficiently small, there exist positive constants M and T such that for any
initial zo=(po, vou v02, vo$)^H£ι satisfying

\\ZO\\HS<MO, zo(x)^Ωz(δo, c0) for any

and for any c^cOf the Cauchy problem (1.1), (1.2) and (1.4) possesses a unique
solution z—{p, vlt v2, v3) belonging to the class (1.7) and satisfying

esssup\\z(t)\\Hs <
ίe(o.Γ) u l

z(t, x)eίΩz(δ0/2, Co) for all ί e [0 , T] and

Let us show that the solutions z thus obtained converge as c-^co to the
solution of the non-relativistic Euler equation,

%-+Σ^-(/ov*)=0

(4.3) *

i J + ^ i + p δ ^ O , ι = l, 2, 3,

with the same intial z0.
The symmetrizing variables for (4.3) associated with the entropy function

(3.21) are given by

(4.4)

u

and the resulting system is
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(4.5) Aleo>0(u<co))uioo) + Σ ^4 ( 0 O ) I(M ( 0 O ))Mi7 )=(

w i t h

for the matrix elements of Λ(co)0 and so on. Between the transformations (2.4)
and (4.4), it holds that

Aa(u(z))=Aico)a(uioo)(z))+0(c-2), α=0, 1, 2, 3 ,

uniformly for c^c 0 and z<=i22(d0/2, c0), which implies, together with the uni-

form properties stated before Theorem 4.1 and by the arguments in [6], the

uniform convergence of the solutions u of (2.2) to the solution of (4.5). Again

we can go back to (1.1) and conclude

THEOREM 4.2. Let s^3 . Then, as c~>co, the solution z of (1.1), (1.2) and

(1.4) given in Theorem 4.1 converges to the solution z(co) to (4.3) with the same

initial data, uniformly on the time interval [0, T] with T specified in Theorem

4.1, strongly in H\όi for any ε>0.
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